Skip to main content

Bionics and Biodiversity – Bio-inspired Technical Innovation for a Sustainable Future

  • Chapter
  • First Online:
Biomimetic Research for Architecture and Building Construction

Part of the book series: Biologically-Inspired Systems ((BISY,volume 8))

Abstract

Rethinking the relationship between Homo sapiens and Planet Earth in the Anthropocene is fundamental for a sustainable future for humankind. The complex Earth system and planetary boundaries demand new approaches to addressing our current challenges. Bionics, namely learning from the diversity of life for nature-based technical solutions, is an increasingly important component.

In this paper, we address the interrelated aspects of the uneven geographic distribution of biodiversity, the issue of the continued erosion of biodiversity translating into a loss of the “living prototypes” for bionics, the relationship between bionics and biodiversity and the North-south gradient in institutional capacity related to biodiversity and bionics-related areas. World maps illustrating these points are included. In particular, we discuss historical aspects and complex terminological issues within bionics or rather bionics-related disciplines, the role of evolution and biodiversity as contributors to the fabric of bionics and the contribution of bionics to the attainment of sustainable development.

The history of bionic ideas and the confusing terminologies associated with them (the term bionic was coined in 1901) are discussed with regard to research, design and marketing. Bionics or Biomimetics, as we understand it today, dates back to the period between 1800 and 1925 and its proponents Alessandro Volta (electric battery), Otto Lilienthal (flying machine), and Raoul Francé (concepts). It was virtually reinvented under the strong influence of cybernetics in the 1960s by H. v. Foerster and W. McCulloch. The term biomimetics arose simultaneously with a slightly different connotation. “Bioinspiration” is a convenient modern overarching term that embraces everything from bionics and biotechnology to bioinspired fashion design. Today, marketing strategies play a crucial role in product placement within an increasingly competitive economy. The majority of so-called “biomimetic” products, however, only pretend to have a bionic origin or function; we have introduced the term “parabionic” for such products.

Life arose almost four billion years ago. Today’s relevant living prototypes for bionics have a history of more than one billion years of evolution, in essence a process of “technical optimization” governed by mutation and selection. In one specific example, we provide evidence that superhydrophobicity, an important biomimetic feature, has been in existence since at least the Paleozoic period, the time when life conquered land.

Bionics might be a major contributor to future nature-based technological solutions and innovations, thus addressing some of humankind’s most pressing issues. Bionics and related fields may become a major component of the current “great transformation” that humanity is experiencing on its trajectory towards sustainable development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addis B (2015) Buildings – 300 years of design, engineering and construction. Phaidon Press, London

    Google Scholar 

  • Anisko T (2013) Victoria, the seductress. Longwood Garden Press, Philadelphia

    Google Scholar 

  • Arnold EN, Poinar G (2008) A 100 million year old gecko with sophisticated adhesive toe pads, preserved in amber from Myanmar. Zootaxa 1847:62–68

    Google Scholar 

  • Bar-Cohen Y (2011) Biomimetics: nature-based innovations. CRC Press. Biomimetic series 778 pages. ISBN 9781439834763

    Google Scholar 

  • Barnosky AD, Matzke N, Tomiya S et al (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57

    Article  CAS  PubMed  Google Scholar 

  • Barthlott W (1990) Scanning electron microscopy of the epidermal surface in plants. In: Claugher D (ed) Application of the scanning EM in taxonomy and functional morphology, Systematics Associations’ special volume. Clarendon Press, Oxford, pp 69–94

    Google Scholar 

  • Barthlott W (1992) Die Selbstreinigungsfähigkeit pflanzlicher Oberflächen durch Epicuticularwachse. In: Rheinische Friedrich-Wilhelms-Universität Bonn (Hrsg) Klima- und Umweltforschung an der Universität Bonn, pp 117–120

    Google Scholar 

  • Barthlott W, Ehler N (1977) Raster-Elektronenmikroskopie der Epidermis-Oberflächen von Spermatophyten. Tropisch-subtropische Pflanzenwelt 19. Akad. Wiss. Lit. Mainz. Franz Steiner Verlag Stuttgart, 105 S

    Google Scholar 

  • Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8

    Article  CAS  Google Scholar 

  • Barthlott W, Lauer W, Placke A (1996) Global distribution of species diversity in vascular plants: towards a world map of phytodiversity. Erdkunde 50:317–328

    Article  Google Scholar 

  • Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I, Wilhelmi H (1998) Classification and terminology of plant epicuticular waxes. Bot J Linn Soc 126:237–260

    Article  Google Scholar 

  • Barthlott W, Hostert A, Kier G et al (2007) Geographic patterns of vascular plant diversity at continental to global scales. Erdkunde 61(4):305–315

    Article  Google Scholar 

  • Barthlott W, Schimmel T, Wiersch S, Koch K, Brede M, Barczewski M, Walheim S, Weis A, Kaltenmaier A, Leder A, Bohn HF (2010) The Salvinia paradox: Superhydrophobic surfaces with hydrophilic pins for air-retention under water. Adv Mater 22:1–4. doi:10.1002/adma.200904411

    Article  Google Scholar 

  • Barthlott W, Erdelen WR, Rafiqpoor DM (2014) Biodiversity and technical innovations: bionics. In: Lanzerath D, Friele M (eds) Concepts and Values in Biodiversity. Routledge, London/New York, pp 300–315

    Google Scholar 

  • Barthlott W, Mail M, Neinhuis C (2016) Superhydrophobic hierachically structured surfaces in biology: evolution, structural principles and biomimetic applications. Phil Trans R Soc A 374:20160191. doi:http://dx.doi.org/10.1098/rsta.2016.0191

    Article  PubMed  Google Scholar 

  • Barthlott W, Mail M, Bhushan B, Koch K (2017) Plant surfaces: structures and functions for biomimetic applications. In: Bhushan B (ed) Springer handbook of nanotechnology, Chapter 36, 4th edn. Springer Publishers (in print)

    Google Scholar 

  • Bechert DW, Bartenwerfer M (1989) The viscous flow on surfaces with longitudinal ribs. J Fluid Mech 206:105–129. Cambridge University Press, doi: http://dx.doi.org/10.1017/S0022112089002247

    Google Scholar 

  • Bell EA, Boehnke P, Harrison TM, Mao WL (2015) Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc Natl Acad Sci U S A 112(47):14518–14521. doi:10.1073/pnas.1517557112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benyus J (1997) Biomimicry. William Morrow, New York

    Google Scholar 

  • Bertling J (2014) Bionik als Innovations-Strategie. In: Herstatt C, Kalogerakis K, Schulthess M (eds) Innovationen durch Wissenstransfer. Springer, Heidelberg/New York, pp 140–184

    Google Scholar 

  • Bhushan B (2016) Biomimetics – bioinspired hierarchical-structured surfaces for green science and technology. Springer, Heidelberg/New York

    Google Scholar 

  • Breidbach O (2011) Ernst Haeckel, Walther Bauernfeld und die Konstruktionsidee des Jenaer Planetariums. In: Meinl H et al (eds) Die Weltenmaschine – Beiträge zur frühen Geschichte des Zeiss-Planetariums. Ernst-Abbe-Stiftung, Jena, pp 45–62

    Google Scholar 

  • Brongniart C (1884) Sur un gigantesque Neurorthoptère, provenant des terrains houillers de Commentry (Allier). C R Hebd Seances Acad Sci 98:832–833

    Google Scholar 

  • Brooks TM, Mittermeier RA, Mittermeier CG et al (2002) Habitat loss and extinction in the hotspots of biodiversity. Conserv Biol 16:909–923

    Article  Google Scholar 

  • Brown JH (2014) Why are there so many species in the tropics? J Biogeogr 41:8–22

    Article  PubMed  Google Scholar 

  • Bud R (1993) The uses of life – a history of biotechnology. Cambridge University Press, New York

    Google Scholar 

  • Caidin M (1972) Cyborg. Warner Paperback Library – Warner Books, New York

    Google Scholar 

  • Caley MJ, Fisher R, Mengersen K (2013) Global species richness estimates have not converged. TREE 29:187–188

    Google Scholar 

  • Cavendish H (1776) An account of some attempts to imitate the effects of the Torpedo by electricity. Phil Trans R Soc Lond 1776:196–225

    Article  Google Scholar 

  • Chapman AD (2009) Numbers of Living Species in Australia and the World, 2nd edn. Australian Government, Department of the Environment, Water, Heritage and the Arts. Canberra. http://is.gd/k8ljSQ

  • Chatfield T (2013) Netymology: from apps to zombies – a linguistic celebration of the digital world. Quercus Publishing, London

    Google Scholar 

  • Clynes ME, Kline NS (1960) Cyborgs and space. Astronautics, pp 24–27, 74–76

    Google Scholar 

  • Coineau Y, Darmanin C, Guittard F (2015) Superhydrophobic and superoleophobic properties in nature. Materials Today 18(5):273–285

    Article  Google Scholar 

  • Daly H (2015) Economics for a Full World. Great Transformation Initiative (June 2015).

    Google Scholar 

  • Díaz S et al (2015) The IPBES Conceptual Framework – connecting nature and people. Curr Opin Environ Sustain 14:1–16

    Article  Google Scholar 

  • Dicks H (2015) The philosopy of biomimicry. Phil Technol 29:223–243, Springer. doi:10.1007/s13347-015-0210-2. http://bit.ly/2ad6REM

    Google Scholar 

  • Drack M (2002) Bionik und Ecodesign – Untersuchung biogener Materialien im Hinblick auf Prinzipien, die für eine umweltgerechte Produktgestaltung nutzbar sind. Dissertation an der TU Wien, Austria

    Google Scholar 

  • Drexhage J, Murphy D (2010) Sustainable Development: From Brundtland to Rio 2012. Background paper prepared for consideration by the High Level Panel on Global Sustainability at its first meeting, 19 September 2010. United Nations, New York.

    Google Scholar 

  • Eggermont H et al (2015) Nature-based solutions: new influence for environmental management and research in Europe. Gaia 24:243–248

    Article  Google Scholar 

  • Erdelen WR (2014) The future of biodiversity and sustainable development: challenges and opportunities. In: Lanzerath D, Friele M (eds) Concepts and values in biodiversity. Routledge, London/New York, pp 149–161

    Google Scholar 

  • Farnham TJ (2007) Saving nature’s legacy: origins of the idea of biological diversity. Yale University Press, New Haven/London

    Google Scholar 

  • Fine PVA (2015) Ecological and evolutionary drivers of geographic variation in species diversity. Annu Rev Ecol Evol Syst 46:369–392

    Article  Google Scholar 

  • Foerster Hv, Glasersfeld Ev (1999) Wie wir uns erfinden. Carl Auer Verlag, HeidelbergFoerster, H v (1963) Bionics. In: McGraw-Hill yearbook science and technology. McGraw-Hill, New York, pp 148–151

    Google Scholar 

  • Forbes P (2005) The Gecko’s foot. Bio-inspiration: engineered from nature. Fourth Estate, London

    Google Scholar 

  • Francé RH (1920) Die Pflanze als Erfinder – Franckh'sche Verlagshandlung, Stuttgart (engl. Edition: Plants as inventors. Simpkin and Marshall, London 1926)

    Google Scholar 

  • Francé RH (1924) Der Begründer der Lebenslehre, Raoul H Francé. Eine Festschrift zu seinem 50. Geburtstag, Heilbronn

    Google Scholar 

  • Gallagher AJ, Hammerschlag N, Cooke SJ et al (2015) Evolutionary theory as a tool for predicting extinction risk. TREE 30:61–65

    PubMed  Google Scholar 

  • Gamble T, Greenbaum E, Jackman TR et al (2012) Repeated origin and loss of adhesive toepads in geckos. PLoS One 7(6):e39429. doi:10.1371/journal.pone.0039429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebeshuber IC, Macqueen MO (2014) What is a physicist doing in the jungle? Biomimetics of the rainforest. Appl Mech Mat 461:152–162

    Google Scholar 

  • Giessler A (1939) Biotechnik. Quelle und Meyer, Leipzig

    Google Scholar 

  • Gleich A, Pade C, Petschow U, Pissarskoie E (2010) Potentials and trends in biomimetics. Springer, Heidelberg/New York

    Book  Google Scholar 

  • Goel AK, McAdams DA, Stone RB (eds) (2014) Biologically inspired design. Springer, Heidelberg

    Google Scholar 

  • Gorb S (2009) Functional surfaces in biology, 2 vols. Springer, Heidelberg

    Google Scholar 

  • Goujon P (2001) From biotechnology to genomes. World Scientific Publishing Co Pte Ltd. ISBN 978-981-02-4328-9

    Google Scholar 

  • Gould J (2015) Learning from nature’s best. Nature 519:S2–S3. doi:10.1038/519S2a

    Article  CAS  PubMed  Google Scholar 

  • Gray CH (1995) An interview with Jack Steele. In: Gray (ed) The Cyborg handbook. Routledge, New York, pp 453–467

    Google Scholar 

  • Gruber P (2011) Biomimetics in Architecture. Springer, Heidelberg

    Book  Google Scholar 

  • Gruber P (2013) Was macht die Architektin im Dschungel? Bautechnik 90:1–9

    Article  Google Scholar 

  • Guiry MD (2012) How many species of Algae are there? J Phycol (48)5:1057–1063, doi:10.1111/j.1529-8817.2012.01222.x

    Google Scholar 

  • Gyllenberg M, Akay A, Hynes M (2012) Nature-inspired science and engineering for a sustainable future. Science policy briefing 44. European Science Foundation, Strasbourg

    Google Scholar 

  • Haeckel E (1899–1904) Kunstformen der Natur. Leipzig, Wien

    Google Scholar 

  • Halacy DS (1965) Bionics – the science of living machines. Holiday House, New York

    Google Scholar 

  • Harkness JM (2001) A lifetime connections – Otto Herbert Schmitt 1913–1998. Phys Perspect 4(4):456–490

    Article  Google Scholar 

  • Harrison PA, Berry PM, Simpson G et al (2014) Linkages between biodiversity attributes and ecosystem services: a systematic review. Ecosyst Serv 9:191–203

    Article  Google Scholar 

  • Helmcke JG (1984) Diatomeen, morphogenetische Analyse und Merkmalssynthese an Diatomeenschalen (ein Versuch). In: Bach K, Burkhard B (eds) Diatomeen 1, Schalen in Natur und Technik. Cramer, Stuttgart, pp 10–207

    Google Scholar 

  • Helmcke JG, Otto F (1962) Lebende und Technische Konstruktionen in Natur und Technik. Deutsche Bauzeitung 67(11):855–861

    Google Scholar 

  • Hertel H (1963) Biologie und Bauen. Krauskopf, Mainz. (Englisch: Structure-Form-Movement. Reinhold, New York

    Google Scholar 

  • Hinchliff CE et al (2015) Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc Natl Acad Sci U S A 112(41):12764–12769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoeller N, Goel A, Freixas C et al (2013) Developing a common ground for learning from nature. Zygote Q 7:134–145

    Google Scholar 

  • Hwang J, Jeong Y, Park JM et al (2015) Biomimetics: forecasting the future of science, engineering, and medicine. Int J Nanomed 10:5701–5713

    CAS  Google Scholar 

  • IUCN (2010) The World Conservation Union 2010. IUCN Red list of threatened species. Summary statistics for globally threatened species. Table 1: numbers of threatened species by major groups of organisms (1996–2010). http://is.gd/KKIe5l

  • IUCN (2012) The IUCN programme 2013–2016. Gland, Switzerland

    Google Scholar 

  • IUCN (2015) Red List version 2015.2, update of 23 June 2015. Retrieved, Gland, Switzerland

    Google Scholar 

  • Kline RR (2015) The cybernetic moment. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Knippers J, Speck T (2012) Design and construction principles in nature and architecture. Bioinspiration and Biomimetics 7. doi:10.1088/1748-3182/7/1/01500

  • Kolbert E (2014) The sixth extinction: an unnatural history. Henry Holt and Company, New York

    Google Scholar 

  • Kresling B (1994) Bionics and design: witnesses to the evolution of this approach. ELISAVA (Escola Superior de Disseny) TdB, Barcelona

    Google Scholar 

  • Lawton J (1993) On the behaviour of autecologists and the crisis of extinction. Oikos 67:3–5

    Article  Google Scholar 

  • Leadley PW, Krug CB, Alkemade R et al (2014) Progress towards the Aichi biodiversity targets: an assessment of biodiversity trends, policy scenarios and key actions. Secretariat of the Convention on Biological Diversity. Technical series 78. Montreal

    Google Scholar 

  • LeCointre G, Le Guyader H (2001) Classification phylogenetique du vivant. Belin, Paris

    Google Scholar 

  • Lettvin JW, Maturana HR, McCulloch WC, Pitts WH (1959) What the frog’s eye tells the frog’s brain. Proc IRE 47:1940–1951

    Article  Google Scholar 

  • Lilienthal O (1889) Der Vogelflug als Grundlage der Fliegekunst. Gaertners, Berlin/London/Heidelberg/New York/Dordrecht

    Google Scholar 

  • Lilienthal G (1924) Biotechnik des Vogelfluges. Voigtländer, Leipzig

    Google Scholar 

  • Locey KJ, Lennon JT (2016) Scaling laws predict global microbial diversity. www.pnas.org/cgi/doi/10.1073/pnas.1521291113

  • Maes J, Jacobs S (2015) Nature-based solutions for Europe’s sustainable development. Conserv Lett 2015:1–4. doi:10.1111/conl.12216

    Google Scholar 

  • Merill CL (1982) Biomicry of the dioxygen active site in the copper proteins hemocyanin and cytochrome oxidase. PhD thesis, Rice University, Huston

    Google Scholar 

  • Millennium Ecosystem Assessment (MEA) (2005a) Ecosystems and human well-being: synthesis, Island Press, Washington, DC

    Google Scholar 

  • Millennium Ecosystem Assessment (MEA) (2005b) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, DC

    Google Scholar 

  • Mooers AØ (2007) The diversity of biodiversity. Nature 445:717–718

    Article  CAS  PubMed  Google Scholar 

  • Mora C, Tittensor DP, Adl S et al (2011) How many species are there on earth and in the ocean?. PLoS Biol 9(8). Online. Available:http://is.gd/tlUZmB

  • Müggenberg J (2011) Lebende Prototypen und lebhafte Artefakte. Die (Un-) Gewissheiten in der Bionik. ilinx 2. http://is.gd/aIAXtU

  • Müggenberg J (2014) Clean by nature. Lively Surfaces and the Holistic-Systemic heritage of Contemporary Bionik – communication +1 Vol 3, Article 9. doi:10.7275/R5MK69TR

  • Müller A, Müller K (eds) (2007) An unfinished revolution? Heinz von Foerster and the Biological Computing Laboratory (BCL) 1958–1976. Edition Echoraum, Vienna, pp 277–302

    Google Scholar 

  • Mumford L (1934) Technics and civilization. Harcourt, New York

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Nachtigall W (1998) Bionik. Springer, Heidelberg

    Book  Google Scholar 

  • Nachtigall W (2005) Biologisches design. Springer, Heidelberg

    Google Scholar 

  • Nachtigall W, Wisser A (2014) Bionics by examples. Springer, Heidelberg

    Google Scholar 

  • Nagel JKS (2014) A Thesaurus for bioinspired engineering design. In: Goel AK et al (eds) Biologically inspired design. Springer, London. doi:10.1007/978-1-4471-5248-4_4

    Google Scholar 

  • Nature News (2011) Number of species on Earth tagged at 8.7 million. Published online 23 August 2011. doi:10.1038/news.2011.498

  • Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79:667–677

    Article  Google Scholar 

  • Nerdinger W (ed) (2005) Frei Otto, complete works. Birkhäuser, München

    Google Scholar 

  • Oestreicher H.L (ed.) 1964 Information processing by living organisms and machines. In: Proceedings of the 2nd Dayton bionics symposium, 1963

    Google Scholar 

  • Oestreicher H, Moore DR (eds) (1968) Cybernetic problems in Bionics. In: Proceedings of the 3rd Dayton bionics symposium, 1966, Gordon and Breach, New York

    Google Scholar 

  • Pancaldi G (2003) Volta - Science and culture in the age of enlightenment, xx + 381 pp. Princeton University Press

    Google Scholar 

  • Perera K (2015) Sand, ein knappes Gut. In: Atlas der Globalisierung – Weniger wird mehr. Berlin: Le Monde diplomatique / taz Verlags- und Vertriebs GmbH, pp 72–75

    Google Scholar 

  • Pichler F (2005) The contribution of Raul Francé: Biocentric modelling. In: Weibel P (ed) Beyond art: a third culture. Springer, Heidelberg, pp 371–375

    Google Scholar 

  • Pimm SL, Joppa LN (2015) How many plant species are there, where are they, and at what rate are they going extinct? Ann Missouri Bot Gard 100:70–176

    Article  Google Scholar 

  • Pimm SL, Jenkins CN, Abell R et al (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:1246752. doi:10.1126/science.1246752

    Article  CAS  PubMed  Google Scholar 

  • Pohl G, Nachtigall W (2015) Biomimetics for architecture & design. Springer, Heidelberg/New York

    Book  Google Scholar 

  • Rechenberg I (1965) Cybernetic solution path of an experimental problem. Royal Aircraft Establishment, Library Translation No. 122, Farnborough

    Google Scholar 

  • Rechenberg I (1971) Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der Biologischen Evolution. Dissertation, TU Berlin

    Google Scholar 

  • Rechenberg I (1994) Evolutionsstrategie’94. Frommann-Holzboog, Stuttgart

    Google Scholar 

  • Reif WE (1981) Oberflächenstrukturen und Skulpturen bei schnell schwimmenden Wirbeltieren. Paläontologische Kursbücher 1:141–157

    Google Scholar 

  • Robinette JC (ed) (1961) Living Prototypes – the key to new Technology. – Proceedings of the Bionic Symposium 13.-15. Sept. 1960, Wright Air Development Division (WADD), Dayton, WADD Technical Report No. 60–600, 506 (499 + vii), Dayton, Ohio

    Google Scholar 

  • Rockström J (2015) Bounding the Planetary Future: Why We Need a Great Transformation. Great Transformation Initiative. Tellus Institute, Boston. http://is.gd/k6zL9c

  • Roth RR (1983) The foundations of Bionics. Persp Biol Med 26(2):229–242

    Article  CAS  Google Scholar 

  • San Diego Zoo Global and Fermanian Business & Economic Institute Point Loma (Eds) (2013) Bioinspiration: An Economic Progress Report. San Diego: 1–45

    Google Scholar 

  • Secretariat of the Convention on Biological Diversity (SCBD) (2010) Global Biodiversity Outlook 3, Montreal

    Google Scholar 

  • Secretariat of the Convention on Biological Diversity (SCBD) (2011) Nagoya Protocol on Access to Genetic Resources and the Fair And Equitable Sharing of Benefits Arising from their Utilization To The Convention On Biological Diversity, Montreal

    Google Scholar 

  • Secretariat of the Convention on Biological Diversity (SCBD) (2014) Global Biodiversity Outlook 4, Montreal

    Google Scholar 

  • Seireg A (1969) Leonardo da Vinci – the bio-mechanician. In: Bootzin D, Muffley HC (eds) Biomechanics. Plenum, New York

    Google Scholar 

  • Stork NE, McBroom J, Gely C, Hamilton AJ (2015) New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proc Natl Acad Sci U S A 112:7519–7523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stroud JT, Feeley KJ (2015) A downside to diversity? A response to Gallagher et al. TREE 30:296–297

    PubMed  Google Scholar 

  • Tittensor DP, Walpole M, Hill SLL et al (2014) A mid-term analysis of progress toward international biodiversity targets. Science 346:241–244

    Article  CAS  PubMed  Google Scholar 

  • UN (United Nations) (2015) Transforming our world: The 2030 agenda for sustainable development. United Nations, New York

    Google Scholar 

  • UNESCO (United Nations Educational, Scientific and Cultural Organization) (2010) Engineering: issues, challenges and opportunities for development. UNESCO, Paris

    Google Scholar 

  • United Nations (1992) Convention on biological diversity. The United Nations, New York

    Google Scholar 

  • United Nations (2015) Transforming our world: the 2030 agenda for sustainable development. The United Nations, New York

    Google Scholar 

  • VDI (2012) Biomimetics – conceptions and strategy. VDI (Verein Deutscher Ingenieure), Richtlinie 6220, Düsseldorf

    Google Scholar 

  • VDI (Verband Deutscher Ingenieure) and BIOKON (Bionik-Kompetenznetzwerk) (2012) Die Zukunft der Bionik: Interdisziplinäre Forschung stärken und Innovationspotentiale nutzen. VDI und BIOKON: Positionspapier

    Google Scholar 

  • Vincent J (2009a) Biomimetics in architectural design. In: AD Architectural design, special issue patterns of architecture. Wiley, New York, pp 74–78

    Google Scholar 

  • Vincent JFV (2009b) Biomimetics – a review. J Eng Med Proc Inst Mech Eng 223(8):919–939

    Article  CAS  Google Scholar 

  • Vincent J (2012) Structural biomaterials. Princeton University Press, Princeton

    Google Scholar 

  • Vincent J, Bogatyreva OA et al (2006) Biomimetics: its practice and theory. J Roy Soc Interf 3(9):471–482

    Article  Google Scholar 

  • Volta A (1800) On the electricity excited by the mere contact of conducting substances of different kinds. Phil Trans Roy Soc London 403–431

    Google Scholar 

  • Wagner T, Neinhuis C, Barthlott W (1996) Wettability and contaminability of insect wings as a function of their surface sculptures. Acta Zool 77(3):213–225

    Article  Google Scholar 

  • Wahl CD (2015) Bionics vs. biomimcry: from control of nature to sustainable participation in nature; wit design & nature paper. http://bit.ly/29Scjbi

  • WCED (World Commission on Environment and Development) (1987) Our common future. Oxford University Press, Oxford

    Google Scholar 

  • Williams HS (1903) Correlation of geological faunas. GPO, Washington, DC

    Google Scholar 

  • Wilson EO (ed) (1988) Biodiversity. National Academy Press, Washington, DC

    Google Scholar 

  • World Wide Fund for Nature (WWF) (2014) Living planet report. WWF, Gland

    Google Scholar 

  • Yan YY, Gao N, Barthlott W (2011) Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces. Adv Colloid Interf Sci 80–105. doi:10.1016/j.cis.2011.08

Download references

Acknowledgements

We acknowledge the help and support of many colleagues and friends in preparing the complex text. The first author (WB) had the chance to meet some of the pioneer workers mentioned in the text (e.g. Ingo Rechenberg, Johann Helmcke and Frei Otto). He met the inspiring Heinz von Foerster 1993 on the occasion of the NeuroWorld symposium in Düsseldorf but missed the singular chance to ask him about the origin of the term “bionic” because, at that time, he was unaware of von Foerster’s crucial role in the Dayton Bionic Symposium of 1960. WB acknowledges information from multiple discussions with his colleagues, friends and students such as Christoph Neinhuis, Thomas and Olga Speck, Armin B. Cremers, Stanislav Gorb, Claus Mattheck, Fredmund Malik, Rainer Erb, Bharat Bhushan and the late Günther Osche.

Many of the ideas presented in this paper benefitted from Walter Erdelen’s extensive international experience, in particular his work as Assistant Director-General for Natural Sciences (2001–2010) and subsequently as strategic adviser at UNESCO. He expresses his sincere thanks to UNESCO Member States and their representatives, up to highest political levels, former staff of the Natural Sciences Sector and colleagues in the Organization with whom he specifically collaborated as Head of Delegation to the World Summit on Sustainable Development (2002).

We are grateful to the Hon. Margaret Austin and Patrick Lim, Callaghan Institute New Zealand, for information on the situation of bionics in New Zealand and to Jacques G. Richardson for constructive comments on earlier drafts of the manuscript.

We acknowledge the reviewers for most valuable comments and the help of Danica Christensen in rereading the English version. Last but not least, the text is shaped by our own experience and work in Bionics and Biodiversity, which was supported by the Deutsche Bundesstiftung Umwelt DBU, the German Research Council DFG, the Federal Ministry for Science and Education BMBF, and the Academy of Science and Literature in Mainz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm Barthlott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barthlott, W., Rafiqpoor, M.D., Erdelen, W.R. (2016). Bionics and Biodiversity – Bio-inspired Technical Innovation for a Sustainable Future. In: Knippers, J., Nickel, K., Speck, T. (eds) Biomimetic Research for Architecture and Building Construction. Biologically-Inspired Systems, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-46374-2_3

Download citation

Publish with us

Policies and ethics