Skip to main content

A Framework for Interpolating Scattered Data Using Space-Filling Curves

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XV (IDA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9897))

Included in the following conference series:

Abstract

The analysis of spatial data occurs in many disciplines and covers a wide variety activities. Available techniques for such analysis include spatial interpolation which is useful for tasks such as visualization and imputation. This paper proposes a novel approach to interpolation using space-filling curves. Two simple interpolation methods are described and their ability to interpolate is compared to several interpolation techniques including natural neighbour interpolation. The proposed approach requires a Monte-Carlo step that requires a large number of iterations. However experiments demonstrate that the number of iterations will not change appreciably with larger datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bader, M.: Space-Filling Curves an Introduction with Applications in Scientific Computing, vol. 9. Springer, New York (2012)

    MATH  Google Scholar 

  2. Bourel, M., Fraiman, R., Ghattas, B.: Random average shifted histograms. Comput. Stat. Data Anal. 79, 149–164 (2014)

    Article  MathSciNet  Google Scholar 

  3. Braun, J., Sambridge, M.: A numerical method for solving partial differential equations on highly irregular evolving grids. Nature 376, 655–660 (1995)

    Article  Google Scholar 

  4. Chen, H.L., Chang, Y.I.: All-nearest-neighbors finding based on the Hilbert curve. Expert Syst. Appl. 38(6), 7462–7475 (2011)

    Article  Google Scholar 

  5. Lamarque, C.H., Robert, F.: Image analysis using space-filling curves and 1D wavelet bases. Pattern Recogn. 29(8), 1309–1322 (1996)

    Article  Google Scholar 

  6. Lazzaro, D., Montefusco, L.B.: Radial basis functions for the multivariate interpolation of large scattered data sets. J. Comput. Appl. Math. 140(1), 521–536 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ledoux, H., Gold, C.: An efficient natural neighbour interpolation algorithm for geoscientific modelling. In: Fisher, P.F. (ed.) Developments in Spatial Data Handling, pp. 97–108. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Li, J., Heap, A.D.: Spatial interpolation methods applied in the environmental sciences: a review. Environ. Model. Softw. 53, 173–189 (2014)

    Article  Google Scholar 

  9. Mari, J.F., Le Ber, F.: Temporal and spatial data mining with second-order hidden Markov models. Soft. Comput. 10(5), 406–414 (2006)

    Article  Google Scholar 

  10. Mennis, J., Guo, D.: Spatial data mining and geographic knowledge discovery. An introduction. Comput. Environ. Urban Syst. 33(6), 403–408 (2009)

    Article  Google Scholar 

  11. Ohashi, O., Torgo, L.: Spatial interpolation using multiple regression. In: 2012 IEEE 12th International Conference on Data Mining, pp. 1044–1049. IEEE (2012)

    Google Scholar 

  12. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, vol. 501. Wiley, New York (2009)

    MATH  Google Scholar 

  13. Park, S., Linsen, L., Kreylos, O., Owens, J., Hamann, B.: Discrete Sibson interpolation. IEEE Trans. Vis. Comput. Graph. 12(2), 243–253 (2006)

    Article  Google Scholar 

  14. Sagan, H.: Space-Filling Curves. Springer, New York (1994)

    Book  MATH  Google Scholar 

  15. Skilling, J.: Programming the Hilbert curve. In: Bayesian Inference and Maximum Entropy Methods in Science and Engineering: 23rd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, vol. 707, pp. 381–387. AIP Publishing (2004)

    Google Scholar 

  16. Weston, D.J.: Exploiting novel properties of space-filling curves for data analysis. In: Blockeel, H., Leeuwen, M., Vinciotti, V. (eds.) IDA 2014. LNCS, vol. 8819, pp. 356–367. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12571-8_31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Weston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Weston, D.J. (2016). A Framework for Interpolating Scattered Data Using Space-Filling Curves. In: Boström, H., Knobbe, A., Soares, C., Papapetrou, P. (eds) Advances in Intelligent Data Analysis XV. IDA 2016. Lecture Notes in Computer Science(), vol 9897. Springer, Cham. https://doi.org/10.1007/978-3-319-46349-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46349-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46348-3

  • Online ISBN: 978-3-319-46349-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics