Skip to main content

Introduction to Microbial Metabolomics

  • Chapter
  • First Online:
Microbial Metabolomics

Abstract

We could say that the concept of metabolomics started with microorganisms because the first published metabolome studies were focused on microbial systems and since the early 1990s, metabolite profiling has been applied to microbiology for phenotypic characterization of microbial strains and as a tool for microbial identification. This chapter presents a brief history of microbial metabolomics in the past 14 years, highlighting major breakthroughs and achievements as well as remaining technical challenges in the field. The future of microbial metabolomics will certainly depend on increasing sensitivity of analytical techniques to allow the detection and identification of intracellular metabolites using very small biomass samples. Mass spectrometry seems to be the technology with best potential to achieve this objective. Important recent steps have been taken towards this goal, meaning that single-cell microbial metabolomics could be very close to reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar-Barajas E, Diaz-Perez C, Ramirez-Diaz MI, Riveros-Rosas H, Cervantes C (2011) Bacterial transport of sulfate, molybdate, and related oxyanions. Biometals 24:687–707

    Google Scholar 

  • Allen J, Davey HM, Broadhurst D, Heald JK, Rowland JJ, Oliver SG, Kell DB (2003) High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat Biotech 21:692–696

    Google Scholar 

  • Alvarez-Martinez CE, Christie PJ (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73:775–808

    Google Scholar 

  • Andersen B, Solfrizzo M, Visconti A (1995) Metabolite profiles of common Staphylium species. Mychological Res 99:672–676

    Google Scholar 

  • Badri DV, Zolla G, Bakker MG, Manter DK, Vivanco JM (2013) Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behaviour. N Phytol 198:264–273

    Google Scholar 

  • Bolten CJ et al (2007) Sampling for metabolome analysis of microorganisms. Anal Chem 79:3843–3849

    Google Scholar 

  • Boots AW, van Berkel JJBN, Dallinga JW, Smolinska A, Wouters EF, van Schooten FJ (2012) The versatile use of exhaled volatile organic compounds in human health and disease. J Breath Res 6:027108

    Google Scholar 

  • Bundy JG, Willey TL, Castell RS, Ellar DJ, Brindle KM (2005) Discrimination of pathogenic clinical isolates and laboratory strains of Bacillus cereus by NMR-based metabolomic profiling. FEMS Microbiol Lett 242:127–136

    Google Scholar 

  • Canelas AB et al (2008) Leakage-free rapid quenching technique for yeast metabolomics. Metabolomics 4:226–239

    Google Scholar 

  • Castrillo JI, Hayes A, Mohammed S, Gaskell SJ, Oliver SG (2003) An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry. Phytochemistry 62:929–937

    Google Scholar 

  • Cevallos-Cevallos JM, Danyluk MD, Reyes-De-Corcuera JI (2011) GC-MS based metabolomics for rapid simultaneous detection of Escherichia coli O157:H7, Salmonella Typhimurium, Salmonella Muenchen, and Salmonella Hartford in ground beef and chicken. J Food Sci 76:M238–M246

    Google Scholar 

  • Chapon-Hervé V, Akrim M, Latifi A, Williams A, Bally M (1997) Regulation of the xcp secretion pathway by multiple quorum-sensing modulons in Pseudomonas aeruginosa Mol Microbiol 24:1169–1178

    Google Scholar 

  • Collar C (1991) Biochemical and technological assessment of the metabolism of pure and mixed cultures of yeast and lactic acid bacteria in breadmaking applications. Food Sci Technol Int 2:349–367

    Google Scholar 

  • Faijes M, Mars AE, Smid EJ (2007) Comparison of quenching and extraction methodologies for metabolome analysis of Lactobacillus plantarum. Microb Cell Fact 6(1):1

    Google Scholar 

  • Fiehn O (2001) Combining genomics, metabolome analysis, and biochemical modeling to understand metabolic networks. Com Funct Genomics 2:155–168

    Google Scholar 

  • Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Google Scholar 

  • Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161

    Google Scholar 

  • Genin S, Boucher CA (1994) A superfamily of proteins involved in different secretion pathways in gram-negative bacteria: modular structure and specificity of the N-terminal domain. Mol Genomics Genet 243:112–118

    Google Scholar 

  • Granucci N, Pinu FR, Han T-L, Villas-Bôas SG (2015) Can we predict the intracellular metabolic state of a cell based on extracellular metabolite data? Mol Biosyst 11:3297–3304

    Google Scholar 

  • Guo AC, Jewison T, Wilson M, Liu YF, Knox C, Djoumbou Y, Lo P, Mandal R, Krishnamurthy R, Wishart DS (2013) ECMDB: the E-coli metabolome database. Nucleic Acid Res 41:D625–D630

    Google Scholar 

  • Han J, Antunes LCM, Finlay BB, Borcherst CH (2010) Metabolomics: towards understanding host-microbe interactions. Future Microbiol 5:153–161

    Google Scholar 

  • Hoerr V, Zbytnuik L, Leger C, Tam PPC, Kubes P, Vogel HJ (2012) Gram-negative and Gram-positive bacterial infections give rise to a different metabolic response in a mouse model. J Proteome Res 11:3231–3245

    Google Scholar 

  • Hofman-Bang J (1999) Nitrogen catabolite repression in Saccharomyces cerevisiae. Mol Biotechnol 12:35–73

    Google Scholar 

  • Jahangir M, Kim HK, Choi YH, Verpoorte R (2008) Metabolomic response of Brassica rapa submitted to pre-harvest bacterial contamination. Food Chem 107:362–368

    Google Scholar 

  • Jewison T, Knox C, Neveu V, Djoumbou Y, Guo AC, Lee J, Liu P, Mandal R, Krishnamurthy R, Sinelnikov I, Wilson M, Wishart DS (2012) YMDB: the yeast metabolome database. Nucleic Acid Res 40:D815–D820

    Google Scholar 

  • Jojima T, Omumasaba CA, Inui M, Yukawa H (2010) Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook. Appl Microbiol Biotechnol 85:471–480

    Google Scholar 

  • Kimes NE, Callaghan AV, Aktas DF, Smith WL, Sunner J, Golding BT, Drozdowska M, Hazen TC, Suflita JM, Morris PJ (2013) Metagenomic analysis and metabolite profiling of deep-sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill. Front Microbiol 4:50

    Google Scholar 

  • Krämer R (1994) Secretion of amino acids by bacteria: physiology and mechanism. FEMS Microbiol Rev 13:75–94

    Google Scholar 

  • Lee SY, Lee D, Kim TY (2005) Systems biotechnology for strain improvement. Trends Biotechnol 23:349–358

    Google Scholar 

  • Lv HT (2013) Mass spectrometry-based metabolomics towards understanding of gene functions with a diversity of biological contexts. Mass Spectrom Rev 32:118–128

    Google Scholar 

  • Maharjan RP, Ferenci T (2003) Global metabolite analysis: the influence of extraction methodology on metabolome profiles of Escherichia coli. Anal Biochem 313:145–154

    Google Scholar 

  • Marcobal A, Kashyap PC, Nelson TA, Aronov PA, Donia MS, Spormann A, Fischbach MA, Sonnenburg JL (2013) A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. ISME J 7:1933–1943

    Google Scholar 

  • Martín JF, Casqueiro J, Liras P (2005) Secretion systems for secondary metabolites: how producer cells send out messages of intracellular communication. Curr Opin Microbiol 8:282–293

    Google Scholar 

  • Martin FPJ, Dumas ME, Wang YL, Legido-Quigley C, Yap IKS, Tang HR, Zirah S, Murphy GM, Cloarec O, Lindon JC, Sprenger N, Fay LB, Kochhar S, van Bladeren P, Holmes E, Nicholson JK (2007) A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol Syst Biol 112:112

    Google Scholar 

  • Mashego MR, van Gulik WM, Vinke JL, Heijnen JJ (2003) Critical evaluation of sampling techniques for residual glucose determination in carbon limited chemostat culture of Saccharomyces cerevisiae. Biotech Bioeng 83:395–399

    Google Scholar 

  • Mickiewicz B, Vogel HJ, Wong HR, Winston BW (2013) Metabolomics as a novel approach for early diagnosis of pediatric septic shock and its mortality. Am J Respir Crit Care Med 187:967–976

    Google Scholar 

  • Ming X, Stein TTP, Barnes V, Rhodes N, Guo LN (2012) Metabolic perturbance in autism spectrum disorders: a metabolomics study. J Proteomic Res 11:5856–5862

    Google Scholar 

  • Montel E, Bridge PD, Sutton BC (1991) An integrated approach to Phoma systematics. Mychopathologia 115:89–103

    Google Scholar 

  • Moxley JF et al (2009) Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p. Proc Natl Acad Sci USA 106:6477–6482

    Google Scholar 

  • Nguyen QT, Merlo ME, Medema MH, Jankevics A, Breitling R, Takano E (2012) Metabolomics methods for the synthetic biology of secondary metabolism. FEBS Lett 586:2177–2183

    Google Scholar 

  • Oliver SG (1997) Yeast as a navigational aid in genome analysis. Microbiology 7:405–409

    Google Scholar 

  • Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–378

    Google Scholar 

  • Ponnusamy K, Lee S, Lee CH (2013) Time-dependent correlation of the microbial community and the metabolomics of traditional Barley Nuruk starter fermentation. Biosci Biotechnol Biochem 77:683–690

    Google Scholar 

  • Reeves ML, Rabinowtiz JD (2011) Metabolomics in systems microbiology. Curr Opin Biotechnol 22:17–25

    Google Scholar 

  • Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J 23:131–142

    Google Scholar 

  • Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29

    Google Scholar 

  • Russell WR, Duncan SH (2013) Advanced analytical methodologies to study the microbial metabolome of the human gut. Trac-Trends Anal Chem 52:54–60

    Google Scholar 

  • Slupsky CM (2010) NMR-based analysis of metabolites in urine provides rapid diagnosis and etiology of pneumonia. Biomark Med 4:195–197

    Google Scholar 

  • Smedsgaard J, Frisvad JC (1996) Using direct electrospray mass spectrometry in taxonomy and secondary metabolite profiling of crude fungal extracts. J Microbiol Meth 25:5–17

    Google Scholar 

  • Soga T, Ross GA (1999) Simultaneous determination of inorganic anions, organic acids, amino acids and carbohydrates by capillary electrophoresis. J Chromatogr A 837:231–239

    Google Scholar 

  • Soga T, Heiger DN (2000) Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 72:1236–1241

    Google Scholar 

  • Soga T, Imaizumi M (2001) Capillary electrophoresis method for the analysis of inorganic anions, organic acids, amino acids, nucleotides, carbohydrates and other anionic compounds. Electrophoresis 22:3418–3425

    Google Scholar 

  • Soga T, Ueno Y, Naraoka H, Ohashi Y, Tomita M, Nishioka T (2002a) Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 74:2233–2239

    Google Scholar 

  • Soga T, Ueno Y, Naraoka H, Matsuda K, Tomita M, Nishioka T (2002b) Pressure-assisted capillary electrophoresis electrospray ionization mass spectrometry for analysis of multivalent anions. Anal Chem 74:6224–6229

    Google Scholar 

  • Stergiopoulos I, Zwiers L-H, Waard, MAD (2002) Secretion of natural and synthetic toxic compounds from filamentous fungi by membrane transporters of the ATP-binding cassette and major facilitator superfamily. Eur J Plant Pathol 108:719–734

    Google Scholar 

  • Storr M, Vogel HJ, Schicho R (2013) Metabolomics: is it useful for inflammatory bowel diseases? Curr Opin Gastroenterol 29:378–383

    Google Scholar 

  • Sue T, Obolonkin V, Griffiths H, Villas-Bôas SG (2011) An exometabolomics approach to monitoring microbial contamination in microalgal fermentation processes by using metabolic footprint analysis. Appl Environ Microbiol 77:7605–7610

    Google Scholar 

  • Tredwell GD et al (2011) The development of metabolomic sampling procedures for Pichia pastoris and baseline metabolome data. Plos One 6(1):e16286

    Google Scholar 

  • Tweeddale H, Notley-McRobb L, Ferenci T (1998) Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (Metabolome) analysis. J Bacteriol 180:5109–5116

    Google Scholar 

  • Tweeddale H, Notley-McRobb L, Ferenci T (1999) Assessing the effect of reactive oxygen species on Escherichia coli using a metabolome approach. Redox Rep 4:237–241

    Google Scholar 

  • van der Werf MJ, Overkamp KM, Muilwijk B, Coulier L, Hankemeier T (2007) Microbial metabolomics: toward a platform with full metabolome coverage. Anal Biochem 370:17–25

    Google Scholar 

  • Villas-Bôas SG, Delicado DG, Åkesson M, Nielsen J (2003) Simultaneous analysis of amino and nonamino organic acids as methyl chloroformate derivatives using gas chromatography-mass spectrometry. Anal Biochem 322:134–138

    Google Scholar 

  • Villas-Bôas SG, Moxley JF, Åkesson M, Stephanopoulos G, Nielsen J (2005a) High-throughput metabolic state analysis: the missing link in integrated functional genomics of yeasts. Biochem J 388:669–677

    Google Scholar 

  • Villas-Bôas SG, Højer-Pedersen J, Åkesson M, Smedsgaard J, Nielsen J (2005b) Global metabolite analysis of yeasts: evaluation of sample preparation methods. Yeast 22:1155–1169

    Google Scholar 

  • Villas-Bôas SG, Noel S, Lane GA, Attwood G, Cookson A (2006) Extracellular metabolomics: a metabolic footprinting approach to assess fiber degradation in complex media. Anal Biochem 349:297–305

    Google Scholar 

  • Villas-Bôas SG, Bruheim P (2007) Cold glycerol-saline: the promising quenching solution for accurate intracellular metabolite analysis of microbial cells. Anal Biochem 370:87–97

    Google Scholar 

  • Villas-Bôas SG et al (2008) Phenotypic characterization of transposon-inserted mutants of Clostridium proteoclasticum B316T using extracellular metabolomics. J Biotech 134:55–63

    Google Scholar 

  • Wang Q, Wu C, Chen T, Chen X, Zhao X (2006) Integrating metabolomics into systems biology framework to exploit metabolic complexity: strategies and applications in microorganisms. Appl Microbiol Biotech 70:151–161

    Google Scholar 

  • Wittmann C, Krömer JO, Kiefer P, Binz T, Heinzle E (2004) Impact of the cold shock phenomenon on quantification of intracellular metabolites in bacteria. Anal Biochem 327:135–139

    Google Scholar 

  • Xie BG, Waters MJ, Schirra HJ (2012) Investigating potential mechanisms of obesity by metabolomics. J Biomed Biotech #805683.

    Google Scholar 

  • Zenobi R (2013) Single-cell metabolomics: analytical and biological perspectives. Science 342:1243259

    Google Scholar 

  • Zhang AH, Sun H, Yan GL, Wang P, Han Y, Wang XJ (2014) Metabolomics in diagnosis and biomarker discovery of colorectal cancer. Cancer Lett 345:17–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silas G. Villas-Boas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Villas-Boas, S.G. (2016). Introduction to Microbial Metabolomics. In: Beale, D., Kouremenos, K., Palombo, E. (eds) Microbial Metabolomics. Springer, Cham. https://doi.org/10.1007/978-3-319-46326-1_1

Download citation

Publish with us

Policies and ethics