Skip to main content

Spinal Cord Neurophysiology

  • Chapter
  • First Online:
Neurological Aspects of Spinal Cord Injury
  • 2130 Accesses

Abstract

Neurophysiological techniques and their clinical value in a spinal cord injury (SCI) specific context are discussed in this chapter. Since spontaneous neurological recovery is much better in clinical incomplete compared to complete cases, the rational for a detailed analysis of motor and sensory pathways after SCI is based on the intention to find markers of lesional incompleteness. For this reason, neurophysiological techniques are applied to investigate parameters of connectivity (e.g., somatosensory evoked potentials (SSEPs), motor evoked potentials (MEPs)) and the impact of that connectivity (e.g., reflex studies, patterns of muscle activation in polyelectromyography).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allert ML, Jelasic F (1969) Der Analreflex im Elektromyogram der Blasen- und Darmschliessmuskeln. Wiener Zeitschrift für Nervenheilkunde und deren Grenzgebiete 27:281–287

    CAS  PubMed  Google Scholar 

  2. Amarenco G, Ismael SS, Bayle B, Kerdraon J (2003) Dissociation between electrical and mechanical bulbocavernosus reflexes. NeurourolUrodyn 22:676–680

    Google Scholar 

  3. Amarenco G, Kerdraon J (2000) Clinical value of ipsi- and contralateral sacral reflex latency measurement: a normative data study in man. NeurourolUrodyn 19:565–576

    CAS  Google Scholar 

  4. ASIA. American Spinal Injury Association (2014) Available: http://www.asia-spinalinjury.org/elearning/ISNCSCI.php

  5. Barker AT, Freeston IL, Jabinous R, Jarratt JA (1986) Clinical evaluation of conduction time measurements in central motor pathways using magnetic stimulation of human brain. Lancet 1:1325–1326

    Article  CAS  PubMed  Google Scholar 

  6. Barker AT, Freeston IL, Jalinous R, Jarratt JA (1987) Magnetic stimulation of the human brain and peripheral nervous system: an introduction and the results of an initial clinical evaluation. Neurosurgery 20:100–109

    Article  CAS  PubMed  Google Scholar 

  7. Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1:1106–1107

    Article  CAS  PubMed  Google Scholar 

  8. Benecke R, Conrad B (1980) The distal sensory nerve action-potential as a diagnostic-tool for the differentiation of lesions in dorsal roots and peripheral-nerves. J Neurol 223:231–239

    Article  CAS  PubMed  Google Scholar 

  9. Beric A (1992) Cortical somatosensory evoked-potentials in spinal-cord injury patients. J Neurol Sci 107:50–59

    Article  CAS  PubMed  Google Scholar 

  10. Beric A, Dimitrijevic MR, Lindblom U (1987) Cortical evoked-potentials and somatosensory perception in chronic spinal-cord injury patients. J Neurol Sci 80:333–342

    Article  CAS  PubMed  Google Scholar 

  11. Beric A, Light JK (1992) Function of the conus medullaris and cauda-equina in the early period following spinal-cord injury and the relationship to recovery of detrusor function. J Urol 148:1845–1848

    CAS  PubMed  Google Scholar 

  12. Bird VG, Brackett NL, Lynne CM, Aballa TC, Ferrell SM (2001) Reflexes and somatic responses as predictors of ejaculation by penile vibratory stimulation in men with spinal cord injury. Spinal Cord 39:514–519

    Article  CAS  PubMed  Google Scholar 

  13. Bischoff C, Fuglsang-Fredriksen A, Vendelbo L, Sumner A (1999) Standards of instrumentation of EMG. The international federation of clinical neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52:199–211

    CAS  PubMed  Google Scholar 

  14. Brouwer B, Bugaresti J, Ashby P (1992) Changes in corticospinal facilitation of lower-limb spinal motor neurons after spinal-cord lesions. J Neurol Neurosurg Psychiatry 55:20–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brown PJ, Marino RJ, Herbison GJ, Ditunno JF (1991) The 72-hour examination as a predictor of recovery in motor complete quadriplegia. Arch Phys Med Rehabil 72:546–548

    CAS  PubMed  Google Scholar 

  16. Buchthal F, Clemmesen S (1941) On the differentiation of muscle atrophy by electromyography. Acta Psychiatrica Et Neurologica 16:143–181

    Article  Google Scholar 

  17. Buchthal F, Guld C, Rosenfalck P (1957) Multielectrode study of the territory of a motor unit. Acta Physiol Scand 39:83–104

    Article  CAS  PubMed  Google Scholar 

  18. Burke D, Hallett M, Fuhr P, Pierrot-Deseilligny E (1999) H reflexes from the tibial and median nerves. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52:259–262

    CAS  PubMed  Google Scholar 

  19. Calancie B, Alexeeva N, Broton JG, Suys S, Hall A, Klose KJ (1999) Distribution and latency of muscle responses to transcranial magnetic stimulation of motor cortex after spinal cord injury in humans. J Neurotrauma 16:49–67

    Article  CAS  PubMed  Google Scholar 

  20. Campbell WW (2008) Evaluation and management of peripheral nerve injury. Clin Neurophysiol 119:1951–1965

    Article  PubMed  Google Scholar 

  21. Cariga P, Catley M, Mathias CJ, Savic G, Frankel HL, Ellaway PH (2002) Organisation of the sympathetic skin response in spinal cord injury. J Neurol Neurosurg Psychiatry 72:356–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cariga P, Catley M, Nowicky AV, Savic G, Ellaway PH, Davey NJ (2002) Segmental recording of cortical motor evoked potentials from thoracic paravertebral myotomes in complete spinal cord injury. Spine 27:1438–1443

    Article  PubMed  Google Scholar 

  23. Caruso G, Eisen A, Stalberg E, Kimura J, Mamoli B, Dengler R, Santoro L, Hopf HC (1999) Clinical EMG and glossary of terms most commonly used by clinical electromyographers. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52:189–198

    CAS  PubMed  Google Scholar 

  24. Catz A, Itzkovich M, Steinberg F, Philo O, Ring H, Ronen J, Spasser R, Gepstein R, Tamir A (2001) The Catz-Itzkovich SCIM: a revised version of the spinal cord independence measure. Disabil Rehabil 23:263–268

    Article  CAS  PubMed  Google Scholar 

  25. Catz A, Itzkovich M, Tesio L, Biering-Sorensen F, Weeks C, Laramee MT, Craven BC, Tonack M, Hitzig SL, Glaser E, Zeilig G, Aito S, Scivoletto G, Mecci M, Chadwick RJ, El Masry WS, Osman A, Glass CA, Silva P, Zeilig G, Aito S, Scivoletto G, Mecci M, Chadwick RJ, El Masry WS, Osman A, Glass CA, Silva P, Soni BM, Gardner BP, Savic G, Bergstrom EM, Bluvshtein V, Ronen J (2007) A multicenter international study on the spinal cord independence measure, version III: rasch psychometric validation. Spinal Cord 45:275–291

    Article  CAS  PubMed  Google Scholar 

  26. Chang CW, Lien IN (1991) Estimate of motor conduction in human spinal cord – slowed conduction in spinal-cord injury. Muscle Nerve 14:990–996

    Article  CAS  PubMed  Google Scholar 

  27. Chen L, Houlden DA, Rowed DW (1990) Somatosensory evoked-potentials and neurological grades as predictors of outcome in acute spinal-cord injury. J Neurosurg 72:600–609

    Article  Google Scholar 

  28. Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, Mills K, Rosler KM, Triggs WJ, Ugawa Y, Ziemann U (2008) The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 119:504–532

    Article  PubMed  Google Scholar 

  29. Clarke CE, Modarressadeghi H, Twomey JA, Burt AA (1994) Prognostic value of cortical magnetic stimulation in spinal-cord injury. Paraplegia 32:554–560

    Article  CAS  PubMed  Google Scholar 

  30. Claus D, Schondorf R (1999) Sympathetic skin response. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52:277–282

    CAS  PubMed  Google Scholar 

  31. Crozier KS, Cheng LL, Graziani V, Zorn G, Herbison G, Ditunno JF Jr (1992) Spinal cord injury: prognosis for ambulation based on quadriceps recovery. Paraplegia 30:762–767

    Article  CAS  PubMed  Google Scholar 

  32. Cruccu G, Aminoff MJ, Curio G, Guerit JM, Kakigi R, Mauguiere F, Rossini PM, Treede RD, Garcia-Larrea L (2008) Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol 119:1705–1719

    Article  CAS  PubMed  Google Scholar 

  33. Cruz-Almeida Y, Felix ER, Martinez-Arizala A, Widerstrom-Noga EG (2012) Decreased spinothalamic and dorsal column medial lemniscus-mediated function is associated with neuropathic pain after spinal cord injury. J Neurotrauma 29:2706–2715

    Article  PubMed  PubMed Central  Google Scholar 

  34. Curt A, Dietz V (1996) Neurographic assessment of intramedullary motoneurone lesions in cervical spinal cord injury: consequences for hand function. Spinal Cord 34:326–332

    Article  CAS  PubMed  Google Scholar 

  35. Curt A, Dietz V (1996) Traumatic cervical spinal cord injury: relation between somatosensory evoked potentials, neurological deficit, and hand function. Arch Phys Med Rehabil 77:48–53

    Article  CAS  PubMed  Google Scholar 

  36. Curt A, Dietz V (1997) Ambulatory capacity in spinal cord injury: significance of somatosensory evoked potentials and ASIA protocol in predicting outcome. Arch Phys Med Rehabil 78:39–43

    Article  CAS  PubMed  Google Scholar 

  37. Curt A, Dietz V (1999) Electrophysiological recordings in patients with spinal cord injury: significance for predicting outcome. Spinal Cord 37:157–165

    Article  CAS  PubMed  Google Scholar 

  38. Curt A, Keck ME, Dietz V (1997) Clinical value of F-wave recordings in traumatic cervical spinal cord injury. Electromyogr Mot Control Electroencephalogr Clin Neurophysiol 105:189–193

    Article  CAS  Google Scholar 

  39. Curt A, Keck ME, Dietz V (1998) Functional outcome following spinal cord injury: significance of motor-evoked potentials and ASIA scores. Arch Phys Med Rehabil 79:81–86

    Article  CAS  PubMed  Google Scholar 

  40. Curt A, Nitsche B, Rodic B, Schurch B, Dietz V (1997) Assessment of autonomic dysreflexia in patients with spinal cord injury. J Neurol Neurosurg Psychiatry 62:473–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Curt A, Rodic B, Schurch B, Dietz V (1997) Recovery of bladder function in patients with acute spinal cord injury: significance of ASIA scores and somatosensory evoked potentials. Spinal Cord 35:368–373

    Article  CAS  PubMed  Google Scholar 

  42. Curt A, Schwab ME, Dietz V (2004) Providing the clinical basis for new interventional therapies: refined diagnosis and assessment of recovery after spinal cord injury. Spinal Cord 42:1–6

    Article  CAS  PubMed  Google Scholar 

  43. Curt A, Van Hedel HJA, Klaus D, Dietz V, EM-SCI Study Group (2008) Recovery from a spinal cord injury: significance of compensation, neural plasticity, and repair. J Neurotrauma 25:677–685

    Article  PubMed  Google Scholar 

  44. Curt A, Weinhardt C, Dietz V (1996) Significance of sympathetic skin response in the assessment of autonomic failure in patients with spinal cord injury. J Auton Nerv Syst 61:175–180

    Article  CAS  PubMed  Google Scholar 

  45. Davey NJ, Smith HC, Savic G, Maskill DW, Ellaway PH, Frankel HL (1999) Comparison of input–output patterns in the corticospinal system of normal subjects and incomplete spinal cord injured patients. Exp Brain Res 127:382–390

    Article  CAS  PubMed  Google Scholar 

  46. Davey NJ, Smith HC, Wells E, Maskill DW, Savic G, Ellaway PH, Frankel HL (1998) Responses of thenar muscles to transcranial magnetic stimulation of the motor cortex in patients with incomplete spinal cord injury. J Neurol Neurosurg Psychiatry 65:80–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dawson GD (1947) Cerebral responses to electrical stimulation of peripheral nerve in man. J Neurol Neurosurg Psychiatry 10:134–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dawson GD (1956) The relative excitability and conduction velocity of sensory and motor nerve fibres in man. J Physiol London 131:436–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Denny-Brown D, Pennybacker JB (1938) Fibrillation and fasciculation in voluntary muscle. Brain 61:311–334

    Article  Google Scholar 

  50. Di Lazzaro V, Oliviero A, Profice P, Ferrara L, Saturno E, Pilato F, Tonali P (1999) The diagnostic value of motor evoked potentials. Clin Neurophysiol 110:1297–1307

    Article  PubMed  Google Scholar 

  51. Diamantopoulos E, Zander Olsen P (1967) Excitability of motor neurones in spinal shock in man. J Neurol Neurosurg Psychiatry 30:427–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dietz V, Grillner S, Trepp A, Hubli M, Bolliger M (2009) Changes in spinal reflex and locomotor activity after a complete spinal cord injury: a common mechanism. Brain 132:2196–2205

    Article  CAS  PubMed  Google Scholar 

  53. Dietz V, Wirz M, Curt A, Colombo G (1998) Locomotor pattern in paraplegic patients: training effects and recovery of spinal cord function. Spinal Cord 36:380–390

    Article  CAS  PubMed  Google Scholar 

  54. Dimitrijevic MR (1987) Neurophysiology in spinal-cord injury. Paraplegia 25:205–208

    Article  CAS  PubMed  Google Scholar 

  55. Dimitrijevic MR, Larsson LE, Lehmkuhl D, Sherwood A (1978) Evoked spinal-cord and nerve root potentials in humans using a non-invasive recording technique. Electroencephalogr Clin Neurophysiol 45:331–340

    Article  CAS  PubMed  Google Scholar 

  56. Dykstra D, Sidi A, Cameron J, Magness J, Stradal L, Portugal J (1987) The use of mechanical stimulation to obtain the sacral reflex latency – a new technique. J Urol 137:77–79

    CAS  PubMed  Google Scholar 

  57. Eisen A, Fisher M (1999) The F wave. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52:255–257

    CAS  PubMed  Google Scholar 

  58. Ellaway PH, Anand P, Bergstrom EMK, Catley M, Davey NJ, Frankel HL, Jamous A, Mathias C, Nicotra A, Savic G, Short D, Theodorou S (2004) Towards improved clinical and physiological assessments of recovery in spinal cord injury: a clinical initiative. Spinal Cord 42:325–337

    Article  CAS  PubMed  Google Scholar 

  59. Ellaway PH, Catley M (2013) Reliability of the electrical perceptual threshold and Semmes-Weinstein monofilament tests of cutaneous sensibility. Spinal Cord 51:120–125

    Article  CAS  PubMed  Google Scholar 

  60. Ellaway PH, Catley M, Davey NJ, Kuppuswamy A, Strutton P, Frankel HL, Jamous A, Savic G (2007) Review of physiological motor outcome measures in spinal cord injury using transcranial magnetic stimulation and spinal reflexes. J Rehabil Res Dev 44:69–75

    Article  PubMed  Google Scholar 

  61. Ertekin C, Reel F (1976) Bulbocavernosus reflex in normal men and in patients with neurogenic bladder and-or impotence. J Neurol Sci 28:1–15

    Article  CAS  PubMed  Google Scholar 

  62. Fawcett JW, Curt A, Steeves JD, Coleman WP, Tuszynski MH, Lammertse D, Bartlett PF, Blight AR, Dietz V, Ditunno J, Dobkin BH, Havton LA, Ellaway PH, Fehlings MG, Privat A, Grossman R, Guest JD, Kleitman N, Nakamura M, Gaviria M, Short D (2007) Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord 45:190–205

    Article  CAS  PubMed  Google Scholar 

  63. Felix ER, Widerstrom-Noga EG (2009) Reliability and validity of quantitative sensory testing in persons with spinal cord injury and neuropathic pain. J Rehabil Res Dev 46:69–83

    Article  PubMed  Google Scholar 

  64. Finnerup NB, Gyldensted C, Fuglsang-Frederiksen A, Bach FW, Jensen TS (2004) Sensory perception in complete spinal cord injury. Acta Neurol Scand 109:194–199

    Article  CAS  PubMed  Google Scholar 

  65. Finnerup NB, Johannesen IL, Bach FW, Jensen TS (2003) Sensory function above lesion level in spinal cord injury patients with and without pain. Somatosens Mot Res 20:71–76

    Article  CAS  PubMed  Google Scholar 

  66. Finnerup NB, Johannesen IL, Fuglsang-Frederiksen A, Bach FW, Jensen TS (2003) Sensory function in spinal cord injury patients with and without central pain. Brain 126:57–70

    Article  CAS  PubMed  Google Scholar 

  67. Fisher MA (1992) Aaem minimonograph 13 – H-reflexes and F-waves – physiology and clinical indications. Muscle Nerve 15:1223–1233

    Article  CAS  PubMed  Google Scholar 

  68. Fuglsang-Frederiksen A, Pugdahl K (2011) Current status on electrodiagnostic standards and guidelines in neuromuscular disorders. Clin Neurophysiol 122:440–455

    Article  PubMed  Google Scholar 

  69. Furlan JC, Fehlings MG, Tator CH, Davis AM (2008) Motor and sensory assessment of patients in clinical trials for pharmacological therapy of acute spinal cord injury: psychometric properties of the ASIA standards. J Neurotrauma 25:1273–1301

    Article  PubMed  Google Scholar 

  70. Gianutsos J, Eberstein A, MA D, Holland T, Goodgold T (1987) A noninvasive technique to assess completeness of spinal cord lesions in humans. Exp Neurol 98:34–40

    Article  CAS  PubMed  Google Scholar 

  71. Gilliatt RW, Sears TA (1958) Sensory nerve action potentials in patients with peripheral nerve lesions. J Neurol Neurosurg Psychiatry 21:109–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Groppa S, Oliviero A, Eisen A, Quartarone A, Cohen LG, Mall V, Kaelin-Lang A, Mima T, Rossi S, Thickbroom GW, Rossini PM, Ziemann U, Valls-Sole J, Siebner HR (2012) A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 123:858–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Haefeli J, Curt A (2012) Refined sensory measures of neural repair in human spinal cord injury: bridging preclinical findings to clinical value. Cell Tissue Res 349:397–404

    Article  PubMed  Google Scholar 

  74. Haefeli J, Kramer JLK, Blum J, Curt A (2014) Assessment of spinothalamic tract function beyond pinprick in spinal cord lesions: a contact heat evoked potential study. Neurorehabil Neural Repair 28:494–503

    Article  PubMed  Google Scholar 

  75. Harris P (1968) Associated injuries in traumatic paraplegia and tetraplegia. Paraplegia 5:215–220

    Article  CAS  PubMed  Google Scholar 

  76. Hayes KC, Allatt RD, Wolfe DL, Kasai T, Hsieh J (1991) Reinforcement of motor evoked-potentials in patients with spinal cord injury. Electroencephalogr Clin Neurophysiol 43:312–329

    CAS  Google Scholar 

  77. Hayes KC, Allatt RD, Wolfe DL, Kasai T, Hsieh J (1992) Reinforcement of subliminal flexion reflexes by transcranial magnetic stimulation of motor cortex in subjects with spinal cord injury. Electroencephalogr Clin Neurophysiol 85:102–109

    Article  CAS  PubMed  Google Scholar 

  78. Hayes KC, Potter PJ, Wolfe DL, Hsieh JTC, Delaney GA, Blight AR (1994) 4-aminopyridine-sensitive neurologic deficits in patients with spinal cord injury. J Neurotrauma 11:433–446

    Article  CAS  PubMed  Google Scholar 

  79. Hayes KC, Wolfe DL, Hsieh JT, Potter PJ, Krassioukov A, Durham CE (2002) Clinical and electrophysiologic correlates of quantitative sensory testing in patients with incomplete spinal cord injury. Arch Phys Med Rehabil 83:1612–1619

    Article  PubMed  Google Scholar 

  80. Herbison GJ, Zerby SA, Cohen ME, Marino RJ, Ditunno JF (1992) Motor power differences within the 1st 2 weeks post-sci in cervical spinal cord-injured quadriplegic subjects. J Neurotrauma 9:373–380

    Article  CAS  PubMed  Google Scholar 

  81. Hess CW, Mills KR, Murray NMF (1987) Responses in small hand muscles from magnetic stimulation of the human brain. J Physiol London 388:397–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hiersemenzel LP, Curt A, Dietz V (2000) From spinal shock to spasticity – neuronal adaptations to a spinal cord injury. Neurology 54:1574–1582

    Article  CAS  PubMed  Google Scholar 

  83. Hodes R, Larrabee MG, German W (1948) The human electromyogram in response to nerve stimulation and the conduction velocity of motor axons; studies on normal and on injured peripheral nerves. Arch Neurol Psychiatry 60:340–365

    Article  CAS  PubMed  Google Scholar 

  84. Hoffmann P (1918) Über die Beziehung der Sehnenreflexe zur willkürlichen Bewegung zum Tonus. Z Biol 68:351–370

    Google Scholar 

  85. Houlden DA, Schwartz ML, Klettke KA, Bartkowski H (1992) Neurophysiologic diagnosis in uncooperative trauma patients – confounding factors. J Trauma Inj Infect Crit Care 33:244–251

    Article  CAS  Google Scholar 

  86. Hubli M, Dietz V, Bolliger M (2012) Spinal reflex activity: a marker for neuronal functionality after spinal cord injury. Neurorehabil Neural Repair 26:188–196

    Article  PubMed  Google Scholar 

  87. Hunter J, Ashby P (1984) Secondary changes in segmental neurons below a spinal-cord lesion in man. Arch Phys Med Rehabil 65:702–705

    CAS  PubMed  Google Scholar 

  88. Hussey RW, Stauffer ES (1973) Spinal-cord injury – requirements for ambulation. Arch Phys Med Rehabil 54:544–547

    CAS  PubMed  Google Scholar 

  89. Kamradt T, Rasch C, Schuld C, Bottinger M, Murle B, Hensel C, Furstenberg CH, Weidner N, Rupp R, Hug A (2013) Spinal cord injury: association with axonal peripheral neuropathy in severely paralysed limbs. Eur J Neurol 20(5):843–848

    Article  CAS  PubMed  Google Scholar 

  90. King NKK, Savic G, Frankel H, Jamous A, Ellaway PH (2009) Reliability of cutaneous electrical perceptual threshold in the assessment of sensory perception in patients with spinal cord injury. J Neurotrauma 26:1061–1068

    Article  PubMed  Google Scholar 

  91. Kirshblum S, Lim S, Garstang S, Millis S (2001) Electrodiagnostic changes of the lower limbs in subjects with chronic complete cervical spinal cord injury. Arch Phys Med Rehabil 82:604–607

    Article  CAS  PubMed  Google Scholar 

  92. Kirshblum SC, Burns SP, Biering-Sorensen F, Donovan W, Graves DE, Jha A, Johansen M, Jones L, Krassioukov A, Mulcahey MJ, Schmidt-Read M, Waring W (2011) International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med 34:535–546

    Article  PubMed  PubMed Central  Google Scholar 

  93. Knikou M, Angeli CA, Ferreira CK, Harkema SJ (2009) Soleus H-reflex modulation during body weight support treadmill walking in spinal cord intact and injured subjects. Exp Brain Res 193:397–407

    Article  PubMed  Google Scholar 

  94. Kovindha A, Mahachai R (1992) Short-latency somatosensory evoked-potentials (Sseps) of the tibial nerves in spinal-cord injuries. Paraplegia 30:502–506

    Article  CAS  PubMed  Google Scholar 

  95. Koyanagi T, Arikado K, Takamatsu T, Tsuji I (1982) Experience with electromyography of the external urethral sphincter in spinal cord injury patients. J Urol 127:272–276

    CAS  PubMed  Google Scholar 

  96. Kramer JK, Taylor P, Steeves JD, Curt A (2010) Dermatomal somatosensory evoked potentials and electrical perception thresholds during recovery from cervical spinal cord injury. Neurorehabil Neural Repair 24:309–317

    Article  PubMed  Google Scholar 

  97. Kramer JLK, Haefeli J, Curt A, Steeves JD (2012) Increased baseline temperature improves the acquisition of contact heat evoked potentials after spinal cord injury. Clin Neurophysiol 123:582–589

    Article  CAS  PubMed  Google Scholar 

  98. Kramer JLK, Haefeli J, Jutzeler CR, Steeves JD, Curt A (2013) Improving the acquisition of nociceptive evoked potentials without causing more pain. Pain 154:235–241

    Article  PubMed  Google Scholar 

  99. Kramer JLK, Moss AJ, Taylor P, Curt A (2008) Assessment of posterior spinal cord function with electrical perception threshold in spinal cord injury. J Neurotrauma 25:1019–1026

    Article  PubMed  Google Scholar 

  100. Kramer JLK, Taylor P, Haefeli J, Blum J, Zariffa J, Curt A, Steeves J (2012) Test-retest reliability of contact heat-evoked potentials from cervical dermatomes. J Clin Neurophysiol 29:70–75

    Article  PubMed  Google Scholar 

  101. Krassioukov A, Wolfe DL, Hsieh JTC, Hayes KC, Durham CE (1999) Quantitative sensory testing in patients with incomplete spinal cord injury. Arch Phys Med Rehabil 80:1258–1263

    Article  CAS  PubMed  Google Scholar 

  102. Kugelberg E (1947) Electromyograms in muscular disorders. J Neurol Neurosurg Psychiatry 10:122–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kugelberg E (1949) Electromyography in muscular dystrophies – differentiation between dystrophies and chronic lower motor neuron lesions. J Neurol Neurosurg Psychiatry 12:129–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kuhn F, Halder P, Spiess MR, Schubert M, EM-SCI Study Group (2012) One-year evolution of ulnar somatosensory potentials after trauma in 365 tetraplegic patients: early prediction of potential upper limb function. J Neurotrauma 29:1829–1837

    Article  PubMed  Google Scholar 

  105. Kumru H, Vidal J, Perez M, Schestatsky P, Valls-Sole J (2009) Sympathetic skin responses evoked by different stimuli modalities in spinal cord injury patients. Neurorehabil Neural Repair 23:553–558

    Article  PubMed  Google Scholar 

  106. Lauschke JL, Leong GWS, Rutkowski SB, Waite PME (2011) Changes in electrical perceptual threshold in the first 6 months following spinal cord injury. J Spinal Cord Med 34:473–481

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lehmkuhl D, Dimitrijevic MR, Renouf F (1984) Electrophysiological characteristics of lumbosacral evoked-potentials in patients with established spinal cord injury. Electroencephalogr Clin Neurophysiol 59:142–155

    Article  CAS  PubMed  Google Scholar 

  108. Leong GWS, Gorrie CA, Ng K, Rutkowski S, Waite PME (2009) Electrical perceptual threshold testing: a validation study. J Spinal Cord Med 32:140–146

    Article  PubMed  PubMed Central  Google Scholar 

  109. Levy WJ, Amassian VE, Traad M, Cadwell J (1990) Focal magnetic coil stimulation reveals motor cortical system reorganized in humans after traumatic quadriplegia. Brain Res 510:130–134

    Article  PubMed  Google Scholar 

  110. Li C, Houlden DA, Rowed DW (1990) Somatosensory evoked potentials and neurological grades as predictors of outcome in acute spinal cord injury. J Neurosurg 72:600–609

    Article  CAS  PubMed  Google Scholar 

  111. Li K, Atkinson D, Boakye M, Tolfo CZ, Aslan S, Green M, Mckay B, Ovechkin A, Harkema SJ (2012) Quantitative and sensitive assessment of neurophysiological status after human spinal cord injury. J Neurosurg Spine 17:77–86

    Article  PubMed  Google Scholar 

  112. Lin CS, Macefield VG, Elam M, Wallin BG, Engel S, Kiernan MC (2007) Axonal changes in spinal cord injured patients distal to the site of injury. Brain : J Neurol 130:985–994

    Article  Google Scholar 

  113. Lindsley DB (1935) Myographic and electromyographic studies of myasthenia gravis. Brain 58:470–482

    Article  Google Scholar 

  114. Little JW, Halar EM (1985) H-reflex changes following spinal cord injury. Arch Phys Med Rehabil 66:19–22

    CAS  PubMed  Google Scholar 

  115. Lucas MG, Thomas DG (1989) Lack of relationship of conus reflexes to bladder function after spinal cord injury. Br J Urol 63:24–27

    Article  CAS  PubMed  Google Scholar 

  116. Lucas MG, Thomas DG (1990) Lumbosacral evoked-potentials and vesicourethral function in patients with chronic suprasacral spinal-cord injury. J Neurol Neurosurg Psychiatry 53:982–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Macdonell RA, Talalla A, Swash M, Grundy D (1989) Intrathecal baclofen and the H-reflex. J Neurol Neurosurg Psychiatry 52:1110–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Macdonell RAL, Donnan GA (1995) Magnetic cortical stimulation in acute spinal cord injury. Neurology 45:303–306

    Article  CAS  PubMed  Google Scholar 

  119. Magladery JW, Mcdougal DB Jr (1950) Electrophysiological studies of nerve and reflex activity in normal man. I. Identification of certain reflexes in the electromyogram and the conduction velocity of peripheral nerve fibers. Bull Johns Hopkins Hosp 86:265–290

    CAS  PubMed  Google Scholar 

  120. Mauguiere F, Allison T, Babiloni C, Buchner H, Eisen AA, Goodin DS, Jones SJ, Kakigi R, Matsuoka S, Nuwer M, Rossini PM, Shibasaki H (1999) Somatosensory evoked potentials. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52:79–90

    CAS  PubMed  Google Scholar 

  121. Maynard FM, Reynolds GG, Fountain S, Wilmot C, Hamilton R (1979) Neurological prognosis after traumatic quadriplegia – 3-year experience of California regional spinal-cord injury care system. J Neurosurg 50:611–616

    Article  CAS  PubMed  Google Scholar 

  122. Mckay WB, Lim HK, Priebe MM, Stokic DS, Sherwood AM (2004) Clinical neurophysiological assessment of residual motor control in post-spinal cord injury paralysis. Neurorehabil Neural Repair 18:144–153

    Article  CAS  PubMed  Google Scholar 

  123. Mckay WB, Ovechkin AV, Vitaz TW, De Paleville DGLT, Harkema SJ (2011) Neurophysiological characterization of motor recovery in acute spinal cord injury. Spinal Cord 49:421–429

    Article  CAS  PubMed  Google Scholar 

  124. Meinecke FW (1968) Frequency and distribution of associated injuries in traumatic paraplegia and tetraplegia. Paraplegia 5:196–209

    Article  CAS  PubMed  Google Scholar 

  125. Merton PA, Morton HB (1980) Stimulation of the cerebral cortex in the intact human subject. Nature 285:227

    Article  CAS  PubMed  Google Scholar 

  126. Mesrati F, Vecchierini MF (2004) F-waves: neurophysiology and clinical value. Neurophysiol Clin 34:217–243

    Article  CAS  PubMed  Google Scholar 

  127. Mills KR (1999) Magnetic stimulation of the human nervous system. Oxford University Press, Oxford/New York

    Google Scholar 

  128. Müller LR (1901) Klinische und expedmentelle Studien fiber die Innervation der Blase, des Mastdarms und des Genitalapparates. Dtsch Z Nervenheilkd 21:86–155

    Article  Google Scholar 

  129. Nagarajarao HS, Kumar BN, Watt JWH, Wiredu E, Bhamidimarri K (2006) Bedside assessment of sympathetic skin response after spinal cord injury: a brief report comparing inspiratory gasp and visual stimulus. Spinal Cord 44:217–221

    Article  CAS  PubMed  Google Scholar 

  130. Nanninga JB, Meyer P (1980) Urethral sphincter activity following acute spinal-cord injury. J Urol 123:528–530

    CAS  PubMed  Google Scholar 

  131. Nogajski JH, Engel S, Kiernan MC (2006) Focal and generalized peripheral nerve dysfunction in spinal cord-injured patients. J Clin Neurophysiol: Off Publ Am Electroencephalogr Soc 23:273–279

    Article  Google Scholar 

  132. Nyboer VJ, Johnson HE (1971) Electromyographic findings in lower extremities of patients with traumatic quadriplegia. Arch Phys Med Rehabil 52:256–259

    CAS  PubMed  Google Scholar 

  133. Pedersen E, Harving H, Klemar B, Torring J (1978) Human anal reflexes. J Neurol Neurosurg Psychiatry 41:813–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Petersen I, Franksson C (1955) Electromyographic study of the striated muscles of the male urethra. Br J Urol 27:148–153

    Article  CAS  PubMed  Google Scholar 

  135. Petersen JA, Spiess M, Curt A, Dietz V, Schubert M, EM-SCI Study Group (2012) Spinal cord injury: one-year evolution of motor-evoked potentials and recovery of leg motor function in 255 patients. Neurorehabil Neural Repair 26:939–948

    Article  PubMed  Google Scholar 

  136. Previnaire JG, Soler JM, Hanson P (1993) Skin potential recordings during cystometry in spinal-cord injured patients. Paraplegia 31:13–21

    Article  CAS  PubMed  Google Scholar 

  137. Qiao J, Hayes KC, Hsieh JTC, Potter PJ, Delaney GA (1997) Effects of 4-aminopyridine on motor evoked potentials in patients with spinal cord injury. J Neurotrauma 14:135–149

    Article  CAS  PubMed  Google Scholar 

  138. Reitz A, Schmid DM, Curt A, Knapp PA, Schurch B (2002) Sympathetic sudomotor skin activity in human after complete spinal cord injury. Auton Neurosci Basic Clin 102:78–84

    Article  Google Scholar 

  139. Riddoch G (1917) The reflex functions of the completely divided spinal cord in man compared with those associated with less severe lesions. Brain 40:264–402

    Article  Google Scholar 

  140. Rodic B, Curt A, Dietz V, Schurch B (2000) Bladder neck incompetence in patients with spinal cord injury: significance of sympathetic skin response. J Urol 163:1223–1227

    Article  CAS  PubMed  Google Scholar 

  141. Rossolimo G (1891) Der Analreflex, seine Physiolgie und Pathologie. Neurologisches Zentralblatt 10:257–259

    Google Scholar 

  142. Rowed DW, Mclean JAG, Tator CH (1978) Somatosensory evoked-potentials in acute spinal-cord injury – prognostic value. Surg Neurol 9:203–210

    CAS  PubMed  Google Scholar 

  143. Rushworth G (1967) Diagnostic value of the electromyographic study of reflex activity in man. Electroencephalogr Clin Neurophysiol Suppl 25:65–73

    Google Scholar 

  144. Rutz S, Dietz V, Curt A (2000) Diagnostic and prognostic value of compound motor action potential of lower limbs in acute paraplegic patients. Spinal Cord 38:203–210

    Article  CAS  PubMed  Google Scholar 

  145. Savic G, Bergstrom E, Frankel HL, Jamous MA, Ellaway PH, Davey NJ (2006) Perceptual threshold to cutaneous electrical stimulation in patients with spinal cord injury. Spinal Cord 44:560–566

    Article  CAS  PubMed  Google Scholar 

  146. Savic G, Bergstrom EMK, Davey NJ, Ellaway PH, Frankel HL, Jamous A, Nicotra A (2007) Quantitative sensory tests (perceptual thresholds) in patients with spinal cord injury. J Rehabil Res Dev 44:77–82

    Article  PubMed  Google Scholar 

  147. Savic G, Frankel HL, Jamous MA, Jones PW, King NKK (2011) Sensitivity to change of the cutaneous electrical perceptual threshold test in longitudinal monitoring of spinal cord injury. Spinal Cord 49:439–444

    Article  CAS  PubMed  Google Scholar 

  148. Schindler-Ivens SM, Shields RK (2004) Soleus H-reflex recruitment is not altered in persons with chronic spinal cord injury. Arch Phys Med Rehabil 85:840–847

    Article  PubMed  PubMed Central  Google Scholar 

  149. Schurch B, Curt A, Rossier AB (1997) The value of sympathetic skin response recordings in the assessment of the vesicourethral autonomic nervous dysfunction in spinal cord injured patients. J Urol 157:2230–2233

    Article  CAS  PubMed  Google Scholar 

  150. Scivoletto G, Di Donna V (2009) Prediction of walking recovery after spinal cord injury. Brain Res Bull 78:43–51

    Article  PubMed  Google Scholar 

  151. Sedgwick EM, Elnegamy E, Frankel H (1980) Spinal cord potentials in traumatic paraplegia and quadriplegia. J Neurol Neurosurg Psychiatry 43:823–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Shenot PJ, Rivas DA, Watanabe T, Chancellor MB (1998) Early predictors of bladder recovery and urodynamics after spinal cord injury. NeurourolUrodyn 17:25–29

    CAS  Google Scholar 

  153. Sherwood AM, Dimitrijevic MR, Mckay WB (1992) Evidence of subclinical brain influence in clinically complete spinal cord injury: discomplete SCI. J Neurol Sci 110:90–98

    Article  CAS  PubMed  Google Scholar 

  154. Sherwood AM, Mckay WB, Dimitrijevic MR (1996) Motor control after spinal cord injury: assessment using surface EMG. Muscle Nerve 19:966–979

    Article  CAS  PubMed  Google Scholar 

  155. Siroky MB, Sax DS, Krane RJ (1979) Sacral signal tracing – electrophysiology of the bulbocavernosus reflex. J Urol 122:661–664

    CAS  PubMed  Google Scholar 

  156. Spiess M, Schubert M, Kliesch U, Halder P, EM-SCI Study Group (2008) Evolution of tibial SSEP after traumatic spinal cord injury: baseline for clinical trials. Clin Neurophysiol 119:1051–1061

    Article  PubMed  Google Scholar 

  157. Spiess MR, Muller RM, Rupp R, Schuld C, Van Hedel HJ (2009) Conversion in ASIA impairment scale during the first year after traumatic spinal cord injury. J Neurotrauma 26:2027–2036

    Article  PubMed  Google Scholar 

  158. Stalberg E, Falck B, Gilai A, Jabre J, Sonoo M, Todnem K (1999) Standards for quantification of EMG and neurography. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52:213–220

    CAS  PubMed  Google Scholar 

  159. Steeves JD, Kramer JK, Fawcett JW, Cragg J, Lammertse DP, Blight AR, Marino RJ, Ditunno JF Jr, Coleman WP, Geisler FH, Guest J, Jones L, Burns S, Schubert M, Van Hedel HJ, Curt A, EM-SCI Study Group (2011) Extent of spontaneous motor recovery after traumatic cervical sensorimotor complete spinal cord injury. Spinal Cord 49:257–265

    Article  CAS  PubMed  Google Scholar 

  160. Tansey KE (2012) Profiling motor control in spinal cord injury: moving towards individualized therapy and evidence-based care progression. J Spinal Cord Med 35:305–309

    Article  PubMed  PubMed Central  Google Scholar 

  161. Taylor S, Ashby P, Verrier M (1984) Neurophysiological changes following traumatic spinal lesions in man. J Neurol Neurosurg Psychiatry 47:1102–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Thomas SL, Gorassini MA (2005) Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury. J Neurophysiol 94:2844–2855

    Article  PubMed  Google Scholar 

  163. Topka H, Cohen LG, Cole RA, Hallett M (1991) Reorganization of corticospinal pathways following spinal cord injury. Neurology 41:1276–1283

    Article  CAS  PubMed  Google Scholar 

  164. Tsai CT, Chen HW, Chang CW (2003) Assessments of chronodispersion and tacheodispersion of F waves in patients with spinal cord injury. Am J Phys Med Rehabil 82:498–503

    PubMed  Google Scholar 

  165. Ulrich A, Haefeli J, Blum J, Min K, Curt A (2013) Improved diagnosis of spinal cord disorders with contact heat evoked potentials. Neurology 80:1393–1399

    Article  PubMed  Google Scholar 

  166. Van De Meent H, Hosman AJ, Hendriks J, Zwarts M, Schubert M (2010) Severe degeneration of peripheral motor axons after spinal cord injury: a European multicenter study in 345 patients. Neurorehabil Neural Repair 24:657–665

    Article  Google Scholar 

  167. Van Hedel HJA, Kumru H, Rohrich F, Galen S, EM-SCI Study Group (2012) Changes in electrical perception threshold within the first 6 months after traumatic spinal cord injury: a multicenter responsiveness study. Neurorehabil Neural Repair 26:497–506

    Article  PubMed  Google Scholar 

  168. Van Middendorp JJ, Goss B, Urquhart S, Atresh S, Williams RP, Schuetz M (2011) Diagnosis and prognosis of traumatic spinal cord injury. Glob Spine J 1:1–8

    Article  Google Scholar 

  169. Velstra IM, Bolliger M, Baumberger M, Rietman JS, Curt A (2013) Epicritic sensation in cervical spinal cord injury: diagnostic gains beyond testing light touch. J Neurotrauma 30:1342–1348

    Article  PubMed  Google Scholar 

  170. Waters RL, Adkins RH, Yakura JS, Sie I (1993) Motor and sensory recovery following complete tetraplegia. Arch Phys Med Rehabil 74:242–247

    CAS  PubMed  Google Scholar 

  171. Waters RL, Adkins RH, Yakura JS, Sie I (1994) Motor and sensory recovery following incomplete paraplegia. Arch Phys Med Rehabil 75:67–72

    Article  CAS  PubMed  Google Scholar 

  172. Waters RL, Adkins RH, Yakura JS, Sie I (1994) Motor and sensory recovery following incomplete tetraplegia. Arch Phys Med Rehabil 75:306–311

    Article  CAS  PubMed  Google Scholar 

  173. Wirth B, Van Hedel HJA, Curt A (2008) Changes in corticospinal function and ankle motor control during recovery from incomplete spinal cord injury. J Neurotrauma 25:467–478

    Article  PubMed  Google Scholar 

  174. Wolfe DL, Hayes KC, Hsieh JTC, Potter PJ (2001) Effects of 4-aminopyridine on motor evoked potentials in patients with spinal cord injury: a double-blinded, placebo-controlled crossover trial. J Neurotrauma 18:757–771

    Article  CAS  PubMed  Google Scholar 

  175. Wolfe DL, Hayes KC, Potter PJ, Delaney GA (1996) Conditioning lower limb H-reflexes by transcranial magnetic stimulation of motor cortex reveals preserved innervation in SCI patients. J Neurotrauma 13:281–291

    CAS  PubMed  Google Scholar 

  176. Wyndaele JJ (1997) Correlation between clinical neurological data and urodynamic function in spinal cord injured patients. Spinal Cord 35:213–216

    Article  CAS  PubMed  Google Scholar 

  177. Xie J, Boakye M (2008) Electrophysiological outcomes after spinal cord injury. Neurosurg Focus 25:E11

    Article  PubMed  Google Scholar 

  178. Yokota T, Matsunaga T, Okiyama R, Hirose K, Tanabe H, Furukawa T, Tsukagoshi H (1991) Sympathetic skin response in patients with multiple sclerosis compared with patients with spinal-cord transection and normal controls. Brain 114:1381–1394

    Article  PubMed  Google Scholar 

  179. York DH, Watts C, Raffensberger M, Spagnolia T, Joyce C (1983) Utilization of somatosensory evoked cortical potentials in spinal cord injury. Prognostic limitations. Spine (Phila Pa 1976) 8:832–839

    Article  CAS  Google Scholar 

  180. Zariffa J, Kramer JL, Fawcett JW, Lammertse DP, Blight AR, Guest J, Jones L, Burns S, Schubert M, Bolliger M, Curt A, Steeves JD (2011) Characterization of neurological recovery following traumatic sensorimotor complete thoracic spinal cord injury. Spinal Cord 49:463–471

    Article  CAS  PubMed  Google Scholar 

  181. Zorner B, Blanckenhorn WU, Dietz V, Curt A, EM-SCI Study Group (2010) Clinical algorithm for improved prediction of ambulation and patient stratification after incomplete spinal cord injury. J Neurotrauma 27:241–252

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Hug .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hug, A. (2017). Spinal Cord Neurophysiology. In: Weidner, N., Rupp, R., Tansey, K. (eds) Neurological Aspects of Spinal Cord Injury. Springer, Cham. https://doi.org/10.1007/978-3-319-46293-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46293-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46291-2

  • Online ISBN: 978-3-319-46293-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics