Skip to main content

Constraining the Pre-atmospheric Parameters of Large Meteoroids: Košice, a Case Study

  • Conference paper
  • First Online:
Assessment and Mitigation of Asteroid Impact Hazards

Abstract

Out of a total around 50,000 meteorites currently known to science, the atmospheric passage was recorded instrumentally in only 25 cases with the potential to derive their atmospheric trajectories and pre-impact heliocentric orbits. Similarly, while observations of meteors generate thousands of new entries per month to existing databases, it is extremely rare they lead to meteorite recovery (http://www.meteoriteorbits.info/). These 25 exceptional cases thus deserve a thorough re-examination by different techniques—not only to ensure that we are able to match the model with the observations, but also to enable the best possible interpretation scenario and facilitate the robust extraction of key characteristics of a meteoroid based on the available data. In this study, we evaluate the dynamic mass of the Košice meteoroid using analysis of drag and mass-loss rate available from the observations. We estimate the dynamic pre-atmospheric meteoroid mass at 1850 kg. The pre-fragmentation size proportions of the Košice meteoroid are estimated based on the statistical distribution of the recovered meteorite fragments. The heliocentric orbit of the Košice meteoroid, derived using numerical integration of the equations of motion, is found to be in close agreement to earlier published results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramovitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1972)

    Google Scholar 

  • Acton, C.: Ancillary data services of NASA’s navigation and ancillary information facility. Planet. Space Sci. 44(1), 65–70 (1996)

    Article  ADS  Google Scholar 

  • Andreev, G.: The influence of the meteor position on the zenith attraction. In: Proceedings of the International Meteor Conference, Violau, Germany, 6–9 September 1990, pp. 25–27

    Google Scholar 

  • Andrews, E.W.: Experimental Studies of Dynamic Fragmentation in Brittle Materials, 240 p. Brown University, Providence, RI (1997)

    Google Scholar 

  • Aström, J.A.: Statistical models of brittle fragmentation. Adv. Phys. 55, 247–278 (2006)

    Article  ADS  Google Scholar 

  • Aström, J.A.: Difference between fracture of thin brittle sheets and two-dimensional fracture. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(4 Pt 2), 046113 (2009)

    Article  ADS  Google Scholar 

  • Aström, J.A., Linna, R.P., Timonen, J., Møller, P.F., Oddershede, L.: Exponential and power-law mass distributions in brittle fragmentation. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(2 Pt 2), 026104 (2004)

    Article  ADS  Google Scholar 

  • Bažant, Z.P.: Scaling of Structural Strength. Hermes Penton Science, London (2002)

    MATH  Google Scholar 

  • Bland, P.A.: Fireball cameras: The Desert Fireball Network. Astron. Geophys. 45(5), 5.20–5.23 (2004)

    Article  ADS  Google Scholar 

  • Bland, P.A., Smith, T.B., Jull, A.J.T., Berry, F.J., Bevan, A.W.R., Cloudt, S., Pillinger, C.T.: The flux of meteorites to the Earth over the last 50,000 years. Mon. Not. Roy. Astron. Soc. 283, 551 (1996)

    Article  ADS  Google Scholar 

  • Borovička, J., Tóth, J., Igaz, A., Spurný, P., Kalenda, P., Haloda, J., Svoreň, J., Kornoš, L., Silber, E., Brown, P., Husárik, M.: The Košice meteorite fall: Atmospheric trajectory, fragmentation, and orbit. Meteorit. Planet. Sci. 48(10), 1757–1779 (2013)

    Article  ADS  Google Scholar 

  • Bouquet, A., Baratoux, D., Vaubaillon, J., Gritsevich, M.I., Mimoun, D., Mousis, O., Bouley, S.: Simulation of the capabilities of an orbiter for monitoring the entry of interplanetary matter into the terrestrial atmosphere. Planet. Space Sci. 103, 238–249 (2014)

    Article  ADS  Google Scholar 

  • Brown, P.G., Weryk, R.J., Wong, D.K., Campbell-Brown, M.D.: The Canadian Meteor Orbit Radar II: a new facility for measurement of the dust environment in near-Earth space. American Astronomical Society, DPS meeting #44, #302.04 (2012)

    Google Scholar 

  • Buehler, M.J., Abraham, F.F., Gao, H.: Hyperelasticity governs dynamic fracture at a critical length scale. Nature 426, 141–146 (2003)

    Article  ADS  Google Scholar 

  • Carpinteri, A., Pugno, N.: Are scaling laws on strength of solids related to mechanics or to geometry? Nat. Mater. 4, 421–423 (2005)

    Article  ADS  Google Scholar 

  • Ceplecha, Z.: Geometric, dynamic, orbital and photometric data on meteoroids from photographic fireball networks. Astron. Inst. Czech. Bull. 38, 222–234 (1987)

    ADS  Google Scholar 

  • Ceplecha, Z., Borovička, J., Elford, W.G., Revelle, D.O., Hawkes, R.L., Porubčan, V., Šimek, M.: Meteor phenomena and bodies. Space Sci. Rev. 84, 327–471 (1998)

    Article  ADS  Google Scholar 

  • Chambers, J.E.: A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. Roy. Astron. Soc. 304(4), 793–799 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  • Collins, G.S., Melosh, H.J., Marcus, R.A.: Earth Impact Effects Program: A Web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteorit. Planet. Sci. 40(6), 817–840 (2005)

    Article  ADS  Google Scholar 

  • Dmitriev, V., Lupovka, V., Gritsevich, M.: A new approach to meteor orbit determination. In: Rault, J.-L., Roggemans, P. (eds.) Proceedings of the International Meteor Conference, Giron, France, 18–21 September 2014. International Meteor Organization, ISBN 978-2-87355-028-8, pp. 157–159 (2014)

    Google Scholar 

  • Dmitriev, V., Lupovka, V., Gritsevich, M.: Orbit determination based on meteor observations using numerical integration of equations of motion. Planet. Space Sci. 117, 223–235 (2015)

    Article  ADS  Google Scholar 

  • Domokos, G., Kun, F., Sipos, A.Á., Szabó, T.: Universality of fragment shapes. Sci. Rep. 5, 9147 (2015)

    Article  ADS  Google Scholar 

  • Edwards, W.N., Eaton, D.W., Brown, P.G.: Seismic observations of meteors: Coupling theory and observations. Rev. Geophys. 46(4), RG4007 (2007)

    ADS  Google Scholar 

  • Emel’yanenko, V.V., Shustov, B.M.: The Chelyabinsk event and the asteroid-comet hazard. Phys. Usp. 56(8), 833–836 (2013)

    Article  Google Scholar 

  • Everhart, E.: Implicit single-sequence method for integrating orbits. Celest. Mech. 10, 35–55 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Flynn, G.J., Durda, D.D., Kreft, J.W., Sitnitsky, I., Strait, M.: Catastrophic disruption experiments on the Murchison hydrous meteorite. In: Lunar and Planetary Science Conference, vol. 38. (2007)

    Google Scholar 

  • Folkner, W., Williams, J., Boggs, D.: The Planetary and Lunar Ephemeris DE 421. IPN Progress Report, vol. 42–178, 34 p (2009)

    Google Scholar 

  • Fries, M., Fries, J.: Doppler weather radar as a meteorite recovery tool. Meteorit. Planet. Sci. 45, 1476–1487 (2010)

    Article  ADS  Google Scholar 

  • Gnos, E., Lorenzetti, S., Eugster, O., Jull, A.J.T., Hofmann, B.A., Al-Kathiri, A., Eggimann, M.: The Jiddat al Harasis 073 strewn field, Sultanate of Oman. Meteorit. Planet. Sci. 44, 375–387 (2009)

    Article  ADS  Google Scholar 

  • Gritsevich, M.I.: Approximation of the observed motion of bolides by the analytical solution of the equations of meteor physics. Sol. Syst. Res. 41(6), 509–514 (2007). http://dx.doi.org/10.1134/S003809460706007X

    Article  ADS  Google Scholar 

  • Gritsevich, M.I.: Estimating the terminal mass of large meteoroids. Dokl. Phys. 53(11), 588–594 (2008a)

    Article  ADS  MATH  Google Scholar 

  • Gritsevich, M.I.: The Pribram, Lost City, Innisfree, and Neuschwanstein falls: an analysis of the atmospheric trajectories. Sol. Syst. Res. 42(5), 372–390 (2008b)

    Article  ADS  Google Scholar 

  • Gritsevich, M.I.: Identification of fireball dynamic parameters. Moscow Univ. Mech. Bull. 63(1), 1–5 (2008c). http://dx.doi.org/10.1007/s11971-008-1001-5

  • Gritsevich, M.I.: Determination of parameters of meteor bodies based on flight observational data. Adv. Space Res. 44, 323–334 (2009)

    Article  ADS  Google Scholar 

  • Gritsevich, M., Koschny, D.: Constraining the luminous efficiency of meteors. Icarus 212(2), 877–884 (2011)

    Article  ADS  Google Scholar 

  • Gritsevich, M.I., Stulov, V.P., Turchak, L.I.: Consequences for collisions of natural cosmic bodies with the earth atmosphere and surface. Cosmic Res. 50(1), 56–64 (2012). http://dx.doi.org/10.1134/S0010952512010017

    Article  ADS  MATH  Google Scholar 

  • Gritsevich, M., Vinnikov, V., Kohout, T., Tóth, J., Peltoniemi, J., Turchak, L., Virtanen, J.: A comprehensive study of distribution laws for the fragments of Košice meteorite. Meteorit. Planet. Sci. 49(3), 328–345 (2014a)

    Google Scholar 

  • Gritsevich, M., Lyytinen, E., Moilanen, J., Kohout, T., Dmitriev, V., Lupovka, V., Midtskogen, V., Kruglikov, N., Ischenko, A., Yakovlev, G., Grokhovsky, V., Haloda, J., Halodova, P., Peltoniemi, J., Aikkila, A., Taavitsainen, A., Lauanne, J., Pekkola, M., Kokko, P., Lahtinen, P., Larionov, M.: First meteorite recovery based on observations by the Finnish Fireball Network. In: Rault, J.-L., Roggemans, P. (eds.) Proceedings of the International Meteor Conference, Giron, France, 18–21 September 2014. International Meteor Organization, ISBN 978-2-87355-028-8, pp. 162–169 (2014b)

    Google Scholar 

  • Halliday, I., Griffin, A.A., Blackwell, A.T.: The Innisfree meteorite fall—a photo-graphic analysis of fragmentation, dynamics and luminosity. Meteoritics 16(2), 153–170 (1981)

    Article  ADS  Google Scholar 

  • Halliday, I., Blackwell, A.T., Griffin, A.A.: Detailed records of many unrecovered meteorites in western Canada for which further searches are recommended. J. Roy. Astron. Soc. Can. 83(2), 49–80 (1989)

    ADS  Google Scholar 

  • Halliday, I., Griffin, A.A., Blackwell, A.T.: Detailed data for 259 fireballs from the Canada camera network and inferences concerning the influx of large meteoroids. Meteorit. Plan. Sci. 31, 185–217 (1996)

    Article  ADS  Google Scholar 

  • Harris, A.W., Barucci, M.A., Cano, J.L., Fitzsimmons, A., Fulchignoni, M., Green, S.F., Hestroffer, D., Lappas, V., Lork, W., Michel, P., Morrison, D., Payson, D., Schäfer, F.: The European Union funded NEOShield project: A global approach to near-Earth object impact threat mitigation. Acta Astron. 90(1), 80–84 (2013)

    Article  Google Scholar 

  • Hernández, G.: Discrete model for fragmentation with random stopping. Phys. Stat. Mech. Appl. 300(1), 13–24 (2001)

    Article  MATH  Google Scholar 

  • Hughes, D.W., Harris, N.W.: The distribution of asteroid sizes and its significance. Planet. Space Sci. 42(4), 291–295 (1994)

    Article  ADS  Google Scholar 

  • IAU SOFA Astrometry Tools, Release 10, 14 April, 2014, 81 p

    Google Scholar 

  • IAU Division A: Fundamental Astronomy “Standards of Fundamental Astronomy Board”, Release 10, 31 October, 2013

    Google Scholar 

  • IERS Conventions: IERS Technical Note No. 36 (2010)

    Google Scholar 

  • Jacchia, L.G., Verniani, F., Briggs, R.E.: An analysis of the atmospheric trajectories of 413 precisely reduced photographic meteors. Smithson. Contrib. Astrophys. 10(1), 1–139 (1967)

    Article  ADS  Google Scholar 

  • Iordache, D.A., Chiroiu, V., Iordache, V.: Study of some theoretical descriptions of the dependence of the fracture parameters on the sample size. Rom. J. Phys. 50(7–8), 847–858 (2005)

    Google Scholar 

  • Jenniskens, P., Gural, P.S., Dynneson, L., Grigsby, B.J., Newman, K.E., Borden, M., Koop, M., Holman, D.: CAMS: Cameras for Allsky Meteor Surveillance to establish minor meteor showers. Icarus 216(1), 40–61 (2011)

    Article  ADS  Google Scholar 

  • Kero, J., Szasz, C., Nakamura, T., Meisel, D.D., Ueda, M., Fujiwara, Y., Terasawa, T., Nishimura, K., Watanabe, J.: The 2009–2010 MU radar head echo observation programme for sporadic and shower meteors: radiant densities and diurnal rates. Mon. Not. Roy. Astron. Soc. 425(1), 135–146 (2012)

    Article  ADS  Google Scholar 

  • Kohout, T., Havrila, K., Tóth, J., Husárik, M., Gritsevich, M., Britt, D., Borovička, J., Spurný, P., Igaz, A., Kornoš, L., Vereš, P., Koza, J., Zigo, P., Gajdoš, Š., Világi, J., Čapek, D., Krišandová, Z., Tomko, D., Šilha, J., Schunová, E., Bodnárová, M., Búzová, D., Krejčová, T.: Density, porosity and magnetic susceptibility of the Košice meteorites and homogeneity of its parent meteoroid. Planet. Space Sci. 93–94, 96–100 (2014)

    Article  Google Scholar 

  • Kohout, T., Gritsevich, M., Lyytinen, E., Moilainen, J., Trigo-Rodríguez, J.M., Kruglikov, N., Ishchenko, A., Yakovlev, G., Grokhovsky, V., Haloda, J., Halodova, P., Meier, M.M.M., Laubenstein, M., Dimitrev, V., Lupovka, V.: Annama H5 meteorite fall: Orbit, trajectory, recovery, petrology, noble gases, and cosmogenic radionuclides. Meteorit. Planet. Sci. 50 (2015). MetSoc 2015 special issue, #5209

    Google Scholar 

  • Kuznetsova, D., Gritsevich, M., Vinnikov, V.: The Kosice meteoroid investigation: From trajectory data to analytic model. In: Rault, J.-L., Roggemans, P. (eds.) Proceedings of the International Meteor Conference, Giron, France, 18–21 September 2014. International Meteor Organization, ISBN 978-2-87355-028-8, pp. 178–181 (2014)

    Google Scholar 

  • Langbroek, M.: A spreadsheet that calculates meteor orbits. WGN J. Int. Meteor. Org. 32(4), 109–110 (2004)

    ADS  Google Scholar 

  • Laurance, M.R., Brownlee, D.E.: The flux of meteoroids and orbital space debris striking satellites in low earth orbit. Nature 323, 136–138 (1986)

    Article  ADS  Google Scholar 

  • Linna, R.P., Åström, J.A., Timonen, J.: Dimensional effects in dynamic fragmentation of brittle materials. Phys. Rev. E 72, 015601(R) (2005)

    Article  ADS  Google Scholar 

  • Love, S.G., Brownlee, D.E.: A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553 (1993)

    Article  ADS  Google Scholar 

  • Lyytinen, E., Gritsevich, M.: Implications of the atmospheric density profile in the processing of fireball observations. Planet. Space Sci. 120, 35–42 (2016)

    Article  ADS  Google Scholar 

  • Meibom, A., Balslev, I.: Composite power laws in shock fragmentation. Phys. Rev. Lett. 76, 2492 (1996)

    Article  ADS  Google Scholar 

  • Meier, M.M.M., Welten, K.C., Riebe, M., Caffee, M.W., Gritsevich, M., Maden, C., Busemann, H.: Park Forest (L5) and the asteroidal source of shocked L chondrites. Meteorit. Planet. Sci. (2016)

    Google Scholar 

  • McCrosky, R.E., Posen, A., Schwartz, G., Shao, C.-Y.: Lost City meteorite—its recovery and a comparison with other fireballs. J. Geophys. Res. 76, 4090–4108 (1971)

    Article  ADS  Google Scholar 

  • Moreno-Ibáñez, M., Gritsevich, M., Trigo-Rodríguez, J.M.: New methodology to determine the terminal height of a fireball. Icarus 250, 544–552 (2015)

    Article  ADS  Google Scholar 

  • Moreno-Ibáñez, M., Gritsevich, M., Trigo-Rodriguez, J.M., Lyytinen, E.: Current progress in the understanding of the physics of large bodies recorded by photographic and digital fireball networks. In: Roggemans, A., Roggemans P. (eds.) Proceedings of the International Meteor Conference, Egmond, The Netherlands, 2–5 June 2016, pp. 192–196

    Google Scholar 

  • Moreno-Ibáñez, M., Gritsevich, M., Trigo-Rodríguez, J.M.: Measuring the terminal heights of bolides to understand the atmospheric flight of large asteroidal fragments. In: Trigo-Rodríguez, J.M., Gritsevich, M., Palme H. (eds.) Assessment and Mitigation of Asteroid Impact Hazards, pp. 129–151. Springer, New York (2017)

    Google Scholar 

  • Oberst, J., Molau, S., Heinlein, D., Gritzner, C., Schindler, M., Spurny, P., Ceplecha, Z., Rendtel, J., Betlem, H.: The “European Fireball Network”: Current status and future prospects. Meteorit. Planet. Sci. 33(1), 49–56 (1998)

    Article  ADS  Google Scholar 

  • Oddershede, L., Dimon, P., Bohr, J.: Self-organized criticality in fragmenting. Phys. Rev. Lett. 71(19), 3107–3110 (1993)

    Article  ADS  Google Scholar 

  • Oddershede, L., Meibom, A., Bohr, J.: Scaling analysis of meteorite shower mass distributions. Europhys. Lett. 43(5), 598–604 (1998)

    Article  ADS  Google Scholar 

  • Perna, D., Barucci, M.A., Fulchignoni, M.: The near-Earth objects and their potential threat to our planet. Astron. Astrophys. Rev. 21, 65 (2013)

    Google Scholar 

  • Povinec, P.P., Masarik, J., Sýkora, I., Kováčik, A., Beňo, J., Meier, M.M.M., Wieler, R., Laubenstein, M., Porubčan, V.: Cosmogenic nuclides in the Košice meteorite: experimental investigations and Monte Carlo simulations. Meteorit. Planet. Sci. 50, 880–892 (2015). doi:10.1111/maps.12380

    Article  ADS  Google Scholar 

  • Poppe, A., James, D., Horányi, M.: Measurements of the terrestrial dust influx variability by the Cosmic Dust Experiment. Planet. Space Sci. 59(4), 319–326 (2011)

    Article  ADS  Google Scholar 

  • Räbinä, J., Mönkölä, S., Rossi, T., Markkanen, J., Gritsevich, M., Muinonen, K.: Controlled time integration for numerical simulation of meteor radar reflections. J. Quant. Spectrosc. Radiat. Transf. 178, 295–305 (2016)

    Article  ADS  Google Scholar 

  • Reinhardt, J., Chen, X., Liu, W., Manchev, P., Paté-Cornell, M.: Project Fox: Assessing risks posed by asteroids. Amer. Geophys. Union, Fall Meeting 2013, abstract #NH23D-1547 (2013)

    Google Scholar 

  • Renshaw, C.E., Schulson, E.M.: Universal behaviour in compressive failure of brittle materials. Nature 412(6850), 897–900 (2001)

    Article  ADS  Google Scholar 

  • Rivkin, A.S., Bottke, W.F.: Hypovelocity impacts in the asteroid belt. Lunar Planet. Sci. 27, 1077–1078 (1996)

    ADS  Google Scholar 

  • Shustov, B.M.: On coordinated approach to the problem of asteroid-comet impact hazard. Cosmic Res. 48(5), 378–391 (2010)

    Article  ADS  Google Scholar 

  • Silber, E.A., ReVelle, D.O., Brown, P.G., Edwards, W.N.: An estimate of the terrestrial influx of large meteoroids from infrasonic measurements. J. Geophys. Res. 114, E08006 (2009). doi:10.1029/2009JE003334

    Article  ADS  Google Scholar 

  • Silber, E.A., Brown, P.G.: Optical observations of meteors generating infrasound – I: acoustic signal identification and phenomenology. J. Atmos. Sol. Terr. Phys. 119, 116–128 (2014). doi:10.1016/j.jastp.2014.07.005

    Article  ADS  Google Scholar 

  • Silber, E.A., Brown, P.G., Krzeminski, Z.: Optical observations of meteors generating infrasound: weak shock theory and validation. J. Geophys. Res. Planet. 120, 413–428 (2015). doi:10.1002/2014JE004680

    Article  ADS  Google Scholar 

  • Sotolongo-Costa, O., Rodriguez, A.H., Rodgers, G.J.: Tsallis entropy and the transition to scaling in fragmentation. Entropy 2(4), 172–177 (2000)

    Article  ADS  MATH  Google Scholar 

  • Sotolongo-Costa, O., Gamez, R., Luzon. F., Posadas A., Weigandt Beckmann, P.: Non Extensivity in Meteor Showers. arXiv:0710.4963 (2007)

    Google Scholar 

  • Spahn, F., Neto, E.V., Guimarães, A.H.F., Gorban, A.N., Brilliantov, N.V.: A statistical model of aggregate fragmentation. New J. Phys. 16(1), 13031–13041 (2014)

    Article  Google Scholar 

  • Spurný, P., Oberst, J., Heinlein, D.: Photographic observations of Neuschwanstein, a second meteorite from the orbit of the Příbram chondrite. Nature 423, 151–153 (2003)

    Article  ADS  Google Scholar 

  • Spurný, P., Haloda, J., Borovička, J.: Mystery of the Benesov bolide revealed after 20 years. In: Proceedings of the ACM 2012 in Niigata, Japan. LPI Contribution No. 1667, id.6143 (2012)

    Google Scholar 

  • Stulov, V.P.: Interactions of space bodies with atmospheres of planets. Appl. Mech. Rev. 50(11), 671–688 (1997). http://dx.doi.org/10.1115/1.3101678

    Article  ADS  Google Scholar 

  • Tóth, J., Svoreň, J., Borovička, J., Spurný, P., Igaz, A., Kornoš, L., Vereš, P., Husárik, M., Koza, J., Kučera, A., Zigo, P., Gajdoš, Š., Világi, J., Čapek, D., Krišandová, Z., Tomko, D., Šilha, J., Schunová, E., Bodnárová, M., Búzová, D., Krejčová, T.: The Košice meteorite fall: Recovery and strewn field. Meteorit. Planet. Sci. 50(5), 853–863 (2015)

    Article  ADS  Google Scholar 

  • Trigo-Rodríguez, J.M., Llorca, J., Castro-Tirado, A.J., Ortiz, J.L., Docobo, J.A., Fabregat, J.: The Spanish fireball network. Astron. Geophys. 47(2), 26–28 (2006)

    Google Scholar 

  • Trigo-Rodríguez, J.M., Lyytinen, E., Gritsevich, M., Moreno-Ibáñez, M., Bottke, W.F., Williams, I., Lupovka, V., Dmitriev, V., Kohout, T., Grokhovsky, V.: Orbit and dynamic origin of the recently recovered Annama’s H5 chondrite. Mon. Not. Roy. Astron. Soc. 449(2), 2119–2127 (2015)

    Article  ADS  Google Scholar 

  • Turchak, L.I., Gritsevich, M.I.: Meteoroids interaction with the Earth atmosphere. J. Theor. Appl. Mech. 44(4), 15–28 (2014)

    Article  MathSciNet  Google Scholar 

  • Vaubaillon, J., Koten, P., Margonis, A., Tóth, J., Rudawska, R., Gritsevich, M., Zender, J., McAuliffe, J., Pautet, P.D., Jenniskens, P., Koschny, D., Colas, F., Bouley, S., Maquet, L., Leroy, A., Lecacheux, J., Borovicka, J., Watanabe, J., Oberst, J.: The 2011 Draconids: The first European airborne meteor observation campaign. Earth Moon Planet. 114(3–4), 137–157 (2015)

    Article  ADS  Google Scholar 

  • Vinković, D., Gritsevich, M., Srećković, V., Pečnik, B., Szabó, G., Debattista, V., Škoda, P., Mahabal, A., Peltoniemi, J., Mönkölä, S., Mickaelian, A., Turunen, E., Kákona, J., Koskinen, J., Grokhovsky, V.: Big data era in meteor science. In: Roggemans, A., Roggemans, P. (eds.) Proceedings of the International Meteor Conference, pp. 319–329 (2016)

    Google Scholar 

  • Vinnikov, V., Gritsevich, M., Kuznetsova, D., Turchak, L.: Empirical fragment distributions in meteorites, LPSC Abstract # 1439 (2014). http://www.hou.usra.edu/meetings/lpsc2014/pdf/1439.pdf

  • Vinnikov, V., Gritsevich, M., Turchak, L.: Shape estimation for Košice, Almahata Sitta and Bassikounou meteoroids. In: Proceedings of the International Astronomical Union (Cambridge Journals UK), vol. 10, pp. 394–396 (2015)

    Google Scholar 

  • Vinnikov, V.V., Gritsevich, M.I., Kuznetsova, D.V., Turchak, L.I.: Estimation of the initial shape of meteoroids based on statistical distributions of fragment masses. Dokl. Phys. 61(6), 305–308 (2016a). http://dx.doi.org/10.1134/S1028335816060021

    Article  ADS  Google Scholar 

  • Vinnikov, V., Gritsevich, M., Kuznetsova, D., Krivonosova, O., Zhilenko, D., Turchak, L.: Statistical approach to meteoroid shape estimation. In: Roggemans, A., Roggemans, P. (eds.) Proceedings of the International Meteor Conference, Egmond, The Netherlands, 2–5 June 2016b, pp. 330–332

    Google Scholar 

  • Wallace, P.: SOFA: Standards of Fundamental Astronomy. Highlights Astron. 11A, 191 (1998)

    ADS  Google Scholar 

  • Weryk, R.J., Brown, P.G., Domokos, A., Edwards, W.N., Krzeminski, Z., Nudds, S.H., Welch, D.L.: The Southern Ontario All-sky Meteor Camera network. Earth Moon Planet. 102, 241–246 (2008)

    Article  ADS  Google Scholar 

  • Weryk, R.J., Campbell-Brown, M.D., Wiegert, P.A., Brown, P.G., Krzeminski, Z., Musci, R.: The Canadian Automated Meteor Observatory (CAMO): System overview. Icarus 225(1), 614–622 (2013)

    Article  ADS  Google Scholar 

  • Whipple, F.L., Jacchia, L.G.: Reduction methods for photographic meteor trails. SCOA 1, 183–206 (1957)

    ADS  Google Scholar 

  • Zoladek, P.: PyFN—multipurpose meteor software. In: Proceedings of the International Meteor Conference, Sibiu, Romania, 15–18 September, 2011, International Meteor Organization, pp. 53–55 (2011)

    Google Scholar 

  • Zolensky, M., Bland, P., Brown, P., Halliday, I.: Flux of extraterrestrial materials. In: Meteorites and the Early Solar System II, pp. 869–888 (2006)

    Google Scholar 

  • Zuluaga, J., Ferrin, I.: A preliminary reconstruction of the orbit of the Chelyabinsk meteoroid, arXiv:1302.5377 (2013)

    Google Scholar 

  • Zuluaga, J., Ferrin, I., Geens, S.: The orbit of the Chelyabinsk event impactor as reconstructed from amateur and public footage. arXiv:1303.1796 (2013)

    Google Scholar 

Download references

Acknowledgments

This study was supported, in part, by the Academy of Finland project No 260027, by the ERC Advanced Grant No 320773, by the Russian Foundation for Basic Research (project Nos 14-08-00204, 16-05-00004 and 16-07-01072), by the Magnus Ehrnrooth Foundation travel grant, and by the Act 211 of the Government of the Russian Federation (agreement No 02.A03.21.0006). The part of the trajectory reconstruction and the orbit computations were done by Maria Gritsevich, Vasily Dmitriev, Daria Kuznetsova, and Valery Lupovka at MIIGAiK under the support of the Russian Science Foundation, project No 14-22-00197 “Studies of Fundamental Geodetic Parameters and Topography of Planets and Satellites”. The authors acknowledge being a part of the network supported by the COST Action TD1403 “Big Data Era in Sky and Earth Observation”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Gritsevich .

Editor information

Editors and Affiliations

Appendices

Appendix 1: List of Symbols

α:

Ballistic coefficient

β:

Mass loss parameter

γ:

Slope between horizon and the trajectory

λ:

Geodetic longitude of the beginning fireball point

μ:

Shape change coefficient

ρ0 :

Gas density at sea level

ρ a :

Gas density

ρ m :

Meteoroid bulk density

ϕ:

Geodetic latitude of the beginning fireball point

a x , a y , a z :

Dimensionless sizes of prefragmented meteoroid

A :

Shape factor of meteoroid

A e :

Pre-entry shape factor of meteoroid

B 0 :

Power-law scaling exponent

c d :

Drag coefficient

c h :

Heat-transfer coefficient

d :

Shape parameter of meteoroid

F C (m):

Power-law complementary cumulative distribution function, which is an approximation of meteorite fragment distribution

h :

Height

h 0 :

Scale height

H* :

Effective destruction enthalpy

L :

Length along atmospheric trajectory

m i :

Fragment masses

m L :

Minimum fragment mass limit

m U :

Power-law cutoff mass

M :

Meteoroid mass

M e :

Pre-entry meteoroid mass

n :

Number of considered points along the trajectory

N :

Number of fragments

N* :

Piecewise complementary cumulative distribution of meteorite fragments

S :

Head cross section area

S e :

Pre-entry middle section area of meteoroid

t :

Time

V :

Velocity

V e :

Pre-entry velocity

ω:

Argument of periapsis

Ω:

Longitude of the ascending node

a :

Semimajor axis

e :

Eccentricity

i :

Inclination

M :

Mean anomaly at epoch

Appendix 2: Dimensionless Quantities

$$ y=h/{h}_0 $$
$$ v=V/{V}_e $$
$$ m=M/{M}_e $$
$$ {A}_e=\frac{S{\uprho}_m^{2/3}}{M^{2/3}} $$
$$ d=1+2\left({a}_x{a}_y+{a}_y{a}_z+{a}_z{a}_x\right){\left({a}_x^2+{a}_y^2+{a}_z^2\right)}^{-1}\vspace*{8pt} $$
$$ \upalpha =0.5{c}_d\frac{\uprho_0{h}_0{S}_e}{M_e \sin \upgamma}\vspace*{8pt} $$
$$ \upbeta =0.5\left(1-\upmu \right)\frac{c_h{V}_e^2}{c_d{H}^{*}}\vspace*{8pt} $$
$$ \upmu ={ \log}_m\frac{S}{S_e}\vspace*{8pt} $$
$$ \Delta =\overline{\mathrm{E}}\mathrm{i}\left(\upbeta \right)-\overline{\mathrm{E}}\mathrm{i}\left(\upbeta {v}^2\right)\vspace*{8pt} $$
$$ {\Delta}_i=\overline{\mathrm{E}}\mathrm{i}\left(\upbeta \right)-\overline{\mathrm{E}}\mathrm{i}\left(\upbeta {v}_i^2\right)=-2 \ln {v}_i+{\displaystyle \sum_{k=1}^{\infty }}\frac{\upbeta^k}{k\cdot k!}\left(1-{v}_i^{2k}\right) $$
$$ {{\left({\Delta}_i\right)}_{\upbeta}}^{\prime }={\displaystyle \sum\nolimits_{k=1}^{\infty }}\frac{\upbeta^{k-1}}{k!}\left(1-{v}_i^{2k}\right) $$
$$ {{\left({\Delta}_i\right)}_{\upbeta}}^{\prime \prime }={\displaystyle \sum\nolimits_{k=2}^{\infty }}\frac{\upbeta^{k-2}}{\left(k-2\right)!\cdot k}\left(1-{v}_i^{2k}\right) $$

Appendix 3: Special Mathematical Function Ēi(x)

The exponential integral Ēi(x), which is defined for real nonzero values of x as:

$$ \overline{\mathrm{E}}\mathrm{i}(x)={\displaystyle \underset{-\infty }{\overset{x}{\int }}}\frac{e^zdz}{z}. $$

The integral has to be understood in terms of the Cauchy principal value, due to the singularity in the integrand at zero.

Integrating the Taylor series for function \( {e}^{-z}/z \), and extracting the logarithmic singularity, we can derive the following series representation for Ēi(x) for real values of x (see e.g. (Abramovitz and Stegun 1972)):

$$ \overline{\mathrm{E}}\mathrm{i}(x)=c+ \ln x+{\displaystyle \sum\nolimits_{n=1}^{\infty }}\frac{x^n}{n\cdot n!},\kern1.25em x>0, $$

where c is the Euler–Mascheroni constant (also called Euler’s constant). It is defined as the limiting difference between the harmonic series and the natural logarithm:

$$ c=\underset{n\to \infty }{ \lim}\left({\displaystyle \sum\nolimits_{k=1}^n}\frac{1}{k}- \ln n\right)\approx 0.5772. $$

Appendix 4: Relation Between the Shape Factor A and the Shape Parameter d

In our study we use dimensionless shape factor A and dimensionless shape parameter d, defined in Appendix 2. The first one is used in Eq. (7), the second one is derived from Eq. (9). Each of these parameters defines only a subset of objects with the appropriate shape properties. More insights onto the shape of the object may be obtained, if we combine both definitions into the nonlinear system of equations.

The shape factor A can be expressed as follows:

$$ A=k\frac{a_x{a}_y}{{\left({a}_x{a}_y{a}_z\right)}^{2/3}}, $$

where the coefficient k shows how much shape of the considered object differs from the brick-like geometry, for which k = 1, e.g. a spherical object yields k = 1.209.

Since we are looking for the ratio a x  : a y  : a z , and not for the absolute object size, it is convenient to assume that \( {a}_z=1 \) is the smallest size dimension representing a unit length (i.e. the dimensions are normalized by the actual value a z ). Then for the remaining dimensions, a x and a y , we obtain:

$$ \left\{\begin{array}{l}A=k{\left({a}_x{a}_y\right)}^{1/3},\hfill \\ {}d=1+2\frac{a_x{a}_y+{a}_x+{a}_y}{a_x^2+{a}_y^2+1},\hfill \end{array}\right. $$
$$ \left\{\begin{array}{l}{a}_x{a}_y={A}^3{k}^{-3},\hfill \\ {}d=1+2\frac{A^3{k}^{-3}+{a}_x+{a}_y}{{\left({a}_x+{a}_y\right)}^2-2{A}^3{k}^{-3}+1},\hfill \end{array}\right. $$
$$ \left\{\begin{array}{l}{a}_x{a}_y={A}^3{k}^{-3},\hfill \\ {}{\left({a}_x+{a}_y\right)}^2\left(d-1\right)-2\left({a}_x+{a}_y\right)-2{A}^3{k}^{-3}d+d=1,\hfill \end{array}\right. $$

Here we solve this problem for the brick-like shape of an object (as suggested as a general model for a meteoroid shape, e.g. by Halliday et al. 1989, 1996 based on the investigation of the Innisfree meteorite)

$$ \left\{\begin{array}{l}\left(d-1\right){a}_x^4-2{a}_x^3+\left(\left(d-1\right)-2{A}^3\right){a}_x^2-2{A}^3{a}_x+\left(d-1\right){A}^6=0,\hfill \\ {}{a}_y={A}^3{a}_x^{-1}.\hfill \end{array}\right. $$

If \( A=1.5 \) and \( d=2.8 \), then

$$ 0.9{a}_x^4-{a}_x^3+\left(0.9-3.375\right){a}_x^2-3.375{a}_x+10.2515625=0. $$

This equation has two real roots and two complex ones. The real sizes are:

$$ {a}_x=1.69,\;{a}_y=2.0,\kern0.37em \mathrm{or}\kern0.5em {a}_y=2.0,\;{a}_y=1.69. $$

Appendix 5: Results of analyses of cosmogenic radionuclides in the Košice meteorite

After this chapter was sent to the publisher, we discovered another important work with the relevant initial mass estimate by Povinec et al. (2015). The authors have estimated average radius of the meteoroid at 50 cm using both the 60Co and 26Al data, and they provide the pre-atmospheric meteoroid mass estimate of 1840 kg, bringing it extremely close to the presented in this chapter calculations.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Gritsevich, M. et al. (2017). Constraining the Pre-atmospheric Parameters of Large Meteoroids: Košice, a Case Study. In: Trigo-Rodríguez, J., Gritsevich, M., Palme, H. (eds) Assessment and Mitigation of Asteroid Impact Hazards. Astrophysics and Space Science Proceedings, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-46179-3_8

Download citation

Publish with us

Policies and ethics