Skip to main content

Abstract

A solid oxide fuel cell (SOFC) is a complex system consisting of different components, in which interconnected physical phenomena occur simultaneously and contribute to determine the global thermo-electrochemical response of the system. The simulation and prediction of the response of an SOFC are of paramount importance for the analysis of possible applications without resorting to extensive experimental investigations. Simulating the SOFC response requires to develop reliable models that can describe the significant phenomena occurring in the system. Different approaches can be followed for the SOFC modeling, depending on the goals of the model. This chapter will provide an introduction to SOFC modeling focusing on a macroscopic, physically based approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a :

Thermodynamic activity

B p :

Permeability (m2)

C f :

Drag constant

C p :

Specific heat at constant pressure (J kg−1 K−1)

d :

Molecule, particle, pore diameter (m, μm)

D :

Diffusion coefficient (m2 s−1, cm2 s−1)

D T :

Thermal diffusion coefficient (kg m−1 s−1)

E :

Equilibrium, electrode potential (V)

E act :

Activation energy (J mol−1)

E b :

Emissive power of black body (W m−2)

f :

Volume fraction of ionic/electronic phase in the electrode

f :

Body forces acting on the fluid (m s−2)

F :

Faraday’s constant (C mol−1)

F :

Volume force (N m−3)

F ij :

View factor between i and j surface elements

\(\bar{g}\) :

Molar Gibbs free energy variation (J mol−1)

\(\bar{h}\) :

Molar enthalpy (J mol−1)

H 0 :

Incident irradiation (W m−2)

i :

Current density (A m−2)

i 0 :

Exchange current density (A m−2)

i v :

Volumetric current density (A m−3)

i TPB :

Current per unit of TPB length (A m−1)

I :

Current (A)

\(\vec{j}\) :

Mass flux (kg m−2 s−1)

k :

Thermal conductivity (W m−1 K−1)

k B :

Boltzmann constant (J K−1)

K r :

Equilibrium constant of r reaction

L p :

Characteristic size of the pore (m)

M n :

Molecular weight (kg mol−1)

n :

Number of electrons involved in redox reactions

p :

Pressure (Pa, bar)

P :

Percolation probability

q :

Rate of charge-transfer reaction (mol m−1 s−1)

\(\vec{q}\) :

Heat flux (W m−2)

Q :

Volumetric heat source (W m−3)

r :

Reaction rate (mol m−3 s−1)

R :

Ideal gas constant (J mol−1 K−1)

R con :

Contact resistance (Ω cm2)

\(\bar{s}\) :

Molar entropy (J mol−1 K−1)

\(\dot{s}_{k}\) :

Molar rate of k species (mol cm−2 s−1)

S :

Mass source term (kg m−3 s−1)

t :

Time (s)

T :

Temperature (K)

u :

Fluid velocity vector (m s−1)

\(\bar{\varvec{u}}\) :

Superficial velocity (m s−1)

V :

Cell voltage (V)

V a :

Atomic diffusion volumes (cm3 mol−1)

x :

Mass fraction

[X]:

Molar concentration (mol m−3, mol m−2)

y :

Molar fraction

α :

Symmetry coefficient of Butler–Volmer equation

β :

Symmetry coefficient of charge-transfer reaction

\(\beta_{\text{e}}\) :

Extinction coefficient of the medium (m−1)

γ :

Pre-exponential activation parameter (A cm−2)

\(\gamma_{\text{s}}\) :

Scaling factor (1 or m−1)

\(\gamma_{0i}\) :

Sticking coefficient of i-reaction

Γ :

Surface site density (mol cm−2)

ε :

Porosity

η :

Overpotential (V)

\(\theta_{k}\) :

Surface coverage of k species

λ :

Mean free path (m)

\(\lambda_{\text{TPB}}\) :

Volumetric TPB density (m−2)

μ :

Gas viscosity (Pa s)

v :

Stoichiometric coefficient

ξ :

Surface emissivity

ρ :

Density (kg m−3)

σ :

Electronic, ionic conductivity (S m−1)

\(\sigma_{\text{B}}\) :

Stefan–Boltzmann constant (W m−2 K−4)

\(\sigma_{k}\) :

Coordination number of k species

\(\sigma_{\alpha \beta }\) :

Average collision diameter (Å)

\(\tau_{\text{g}}\) :

Tortuosity

\({\vec{\tau }}\) :

Stress tensor (Pa)

\(\phi\) :

Electronic, ionic potential (V)

\(\phi_{\text{v}}\) :

Viscous dissipation (kg m−1 s−3)

\(\chi\) :

Volumetric charge density (C m−3)

\(\psi\) :

Volumetric charge source (C s−1 m−3)

\(\varOmega_{\alpha \beta }\) :

Collision integral

act:

Activation

adv:

Advection

an:

Anode

cat:

Cathode

chem:

Chemical

con:

Contact

conc:

Concentration

diff:

Diffusion

eff:

Effective

eq:

Equilibrium

irr:

Irreversible

mol:

Molecular

oc:

Open-circuit

ohm:

Ohmic

rad:

Radiative

react:

Reaction

res:

Resistance

rev:

Reversible

BV:

Butler–Volmer

DGM:

Dusty gas model

SMM:

Stefan–Maxwell model

SOFC:

Solid oxide fuel cell

SRU:

Stack repeating unit

TPB:

Three phase boundary

References

  • Achenbach, E., & Riensche, E. (1994). Methane/steam reforming kinetics for solid oxide fuel cells. Journal of Power Sources, 52(2), 283–288.

    Article  Google Scholar 

  • Ahmed, K., & Foger, K. (2000). Kinetics of internal steam reforming of methane on Ni/YSZ-based anodes for solid oxide fuel cells. Catalysis Today, 63(2), 479–487.

    Article  Google Scholar 

  • Amhalhel, G., & Furmański, P. (1997). Problems of modeling flow and heat transfer in porous media. Journal of Power Technologies, 85, 55–88.

    Google Scholar 

  • Andersson, M., Yuan, J., & Sundén, B. (2010). Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells. Applied Energy, 87(5), 1461–1476.

    Article  Google Scholar 

  • Andersson, M., Yuan, J., & Sundén, B. (2012). SOFC modeling considering electrochemical reactions at the active three phase boundaries. International Journal of Heat and Mass Transfer, 55(4), 773–788.

    Article  MATH  Google Scholar 

  • Andersson, M., Yuan, J., & Sundén, B. (2013). SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants. Journal of Power Sources, 232, 42–54.

    Article  Google Scholar 

  • Bagotsky, V. S. (Ed.). (2005). Fundamentals of electrochemistry (2nd ed., Vol. 44). New York: John Wiley & Sons.

    Google Scholar 

  • Bear, J. (1972). Dynamics of fluids in porous media. New York: American Elsevier.

    MATH  Google Scholar 

  • Belyaev, V. D., Politova, T. I., Mar’ina, O. A., & Sobyanin, V. A. (1995). Internal steam reforming of methane over Ni-based electrode in solid oxide fuel cells. Applied Catalysis, A: General, 133(1), 47–57.

    Article  Google Scholar 

  • Bertei, A., & Nicolella, C. (2015). Common inconsistencies in modeling gas transport in porous electrodes: The dusty-gas model and the Fick law. Journal of Power Sources, 279, 133–137.

    Article  Google Scholar 

  • Bird, R., Steward, W., & Lightfoot, E. (2006). Transport phenomena. Amsterdam: John Wiley & Sons. (Revised 2nd edn).

    Google Scholar 

  • Brinkman, H. C. (1949a). A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Applied Scientific Research, 1(1), 27–34.

    MATH  Google Scholar 

  • Brinkman, H. C. (1949b). On the permeability of media consisting of closely packed porous particles. Applied Scientific Research, 1(1), 81–86.

    Google Scholar 

  • Bruggeman, D. A. G. (1935). Calculation of the various physical constants of heterogeneous substances. Dielectric constants and conductivities of mixtures of isotropic substances. Annual Physik, 24, 636–664.

    Article  Google Scholar 

  • Brus, G., Miyawaki, K., Iwai, H., Saito, M., & Yoshida, H. (2014). Tortuosity of an SOFC anode estimated from saturation currents and a mass transport model in comparison with a real micro-structure. Solid State Ionics, 265, 13–21.

    Article  Google Scholar 

  • Cai, Q., Adjiman, C. S., & Brandon, N. P. (2011). Investigation of the active thickness of solid oxide fuel cell electrodes using a 3D microstructure model. Electrochimica Acta, 56(28), 10809–10819.

    Article  Google Scholar 

  • Carman, P. C. (1956). Flow of gases through porous media. Waltham: Academic Press.

    MATH  Google Scholar 

  • Cayan, F. N., Pakalapati, S. R., Elizalde-Blancas, F., & Celik, I. (2009). On modeling multi-component diffusion inside the porous anode of solid oxide fuel cells using Fick’s model. Journal of Power Sources, 192(2), 467–474.

    Article  Google Scholar 

  • Chan, S. H., Khor, K. A., & Xia, Z. T. (2001). Journal of Power Sources, 93(1), 130–140.

    Article  Google Scholar 

  • Costamagna, P., Costa, P., & Antonucci, V. (1998). Micro-modelling of solid oxide fuel cell electrodes. Electrochimica Acta, 43(3), 375–394.

    Article  Google Scholar 

  • Costamagna, P., & Honegger, K. (1998). Modeling of solid oxide heat exchanger integrated stacks and simulation at high fuel utilization. Journal of the Electrochemical Society, 145(11), 3995–4007.

    Article  Google Scholar 

  • Costamagna, P., Selimovic, A., Del Borghi, M., & Agnew, G. (2004). Electrochemical model of the integrated planar solid oxide fuel cell (IP-SOFC). Chemical Engineering Journal, 102(1), 61–69.

    Article  Google Scholar 

  • Curtiss, C. F., & Bird, R. B. (1999). Multicomponent diffusion. Industrial and Engineering Chemistry Research, 38(7), 2515–2522.

    Article  Google Scholar 

  • Damm, D. L., & Fedorov, A. G. (2004). Spectral radiative heat transfer analysis of the planar SOFC. In Proceedings of the ASME IMECE, Anaheim, CA, November 13–19, 2004. Paper No. IMECE2004-60142.

    Google Scholar 

  • Damm, D. L., & Fedorov, A. G. (2005). Radiation heat transfer in SOFC materials and components. Journal of Power Sources, 143(1), 158–165.

    Article  Google Scholar 

  • Damm, D. L., & Fedorov, A. G. (2006). Local thermal non-equilibrium effects in porous electrodes of the hydrogen-fueled SOFC. Journal of Power Sources, 159(2), 1153–1157.

    Article  Google Scholar 

  • Désilets, M., Proulx, P., & Soucy, G. (1997). Modeling of multicomponent diffusion in high temperature flows. International Journal of Heat and Mass Transfer, 40(18), 4273–4278.

    Article  MATH  Google Scholar 

  • Dicks, A. L., Pointon, K. D., & Siddle, A. (2000). Intrinsic reaction kinetics of methane steam reforming on a nickel/zirconia anode. Journal of Power Sources, 86(1), 523–530.

    Article  Google Scholar 

  • Drescher, I., Lehnert, W., & Meusinger, J. (1998). Structural properties of SOFC anodes and reactivity. Electrochimica Acta, 43(19), 3059–3068.

    Article  Google Scholar 

  • Elizalde-Blancas, F., Celik, I. B., Rangel-Hernandez, V., Hernandez-Guerrero, A., & Riesco-Avila, J. M. (2013). Numerical modeling of SOFCs operating on biogas from biodigesters. International Journal of Hydrogen Energy, 38(1), 377–384.

    Article  Google Scholar 

  • Ferguson, J. R., Fiard, J. M., & Herbin, R. (1996). Three-dimensional numerical simulation for various geometries of solid oxide fuel cells. Journal of Power Sources, 58(2), 109–122.

    Article  Google Scholar 

  • Ferrero, D., Lanzini, A., Leone, P., & Santarelli, M. (2015). Reversible operation of solid oxide cells under electrolysis and fuel cell modes: Experimental study and model validation. Chemical Engineering Journal, 274, 143–155.

    Article  Google Scholar 

  • Froment, G. F., Bischoff, K. B., & De Wilde, J. (1990). Chemical reactor analysis and design (Vol. 2). New York: Wiley.

    Google Scholar 

  • Fuller, E. N., Schettler, P. D., & Giddings, J. C. (1966). New method for prediction of binary gas-phase diffusion coefficients. Industrial and Engineering Chemistry, 58(5), 18–27.

    Article  Google Scholar 

  • Funahashi, Y., Shimamori, T., Suzuki, T., Fujishiro, Y., & Awano, M. (2007). Fabrication and characterization of components for cube shaped micro tubular SOFC bundle. Journal of Power Sources, 163(2), 731–736.

    Article  Google Scholar 

  • García-Camprubí, M. (2011). Multiphysics models for the simulation of solid oxide fuel cells. (Ph.D., dissertation). University of Zaragoza.

    Google Scholar 

  • García-Camprubí, M., Sánchez-Insa, A., & Fueyo, N. (2010). Multimodal mass transfer in solid-oxide fuel-cells. Chemical Engineering Science, 65(5), 1668–1677.

    Article  Google Scholar 

  • Geisler, H., Kromp, A., Weber, A., & Ivers-Tiffée, E. (2014). Stationary FEM model for performance evaluation of planar solid oxide fuel cells connected by metal interconnectors I. Model framework and validation. Journal of the Electrochemical Society, 161(6), F778–F788.

    Article  Google Scholar 

  • Goldin, G. M., Zhu, H., Kee, R. J., Bierschenk, D., & Barnett, S. A. (2009). Multidimensional flow, thermal, and chemical behavior in solid-oxide fuel cell button cells. Journal of Power Sources, 187(1), 123–135.

    Article  Google Scholar 

  • Goodwin, D. G., Zhu, H., Colclasure, A. M., & Kee, R. J. (2009). Modeling electrochemical oxidation of hydrogen on Ni–YSZ pattern anodes. Journal of the Electrochemical Society, 156(9), B1004–B1021.

    Article  Google Scholar 

  • Greene, E. S., Chiu, W. K., & Medeiros, M. G. (2006). Mass transfer in graded microstructure solid oxide fuel cell electrodes. Journal of Power Sources, 161(1), 225–231.

    Article  Google Scholar 

  • Grew, K. N., & Chiu, W. K. (2012). A review of modeling and simulation techniques across the length scales for the solid oxide fuel cell. Journal of Power Sources, 199, 1–13.

    Article  Google Scholar 

  • Gupta, G. K., Hecht, E. S., Zhu, H., Dean, A. M., & Kee, R. J. (2006). Gas-phase reactions of methane and natural-gas with air and steam in non-catalytic regions of a solid-oxide fuel cell. Journal of Power Sources, 156(2), 434–447.

    Article  Google Scholar 

  • Haberman, B. A., & Young, J. B. (2004). Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell. International Journal of Heat and Mass Transfer, 47(17), 3617–3629.

    Article  MATH  Google Scholar 

  • Hajimolana, S. A., Hussain, M. A., Daud, W. A. W., Soroush, M., & Shamiri, A. (2011). Mathematical modeling of solid oxide fuel cells: A review. Renewable and Sustainable Energy Reviews, 15(4), 1893–1917.

    Article  Google Scholar 

  • Hanna, J., Lee, W. Y., Shi, Y., & Ghoniem, A. F. (2014). Fundamentals of electro-and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels. Progress in Energy and Combustion Science, 40, 74–111.

    Article  Google Scholar 

  • Hao, Y., & Goodwin, D. G. (2008). Numerical study of heterogeneous reactions in an SOFC anode with oxygen addition. Journal of the Electrochemical Society, 155(7), B666–B674.

    Article  Google Scholar 

  • He, W., Lu, W., & Dickerson, J. H. (2014a). Chapter 2: Gas diffusion in porous media gas transport in solid oxide fuel cells (1st ed., pp. 9–17). New York: Springer.

    Google Scholar 

  • He, W., Lu, W., & Dickerson, J. H. (2014b). Gas transport in solid oxide fuel cells. New York: Springer.

    Google Scholar 

  • Hecht, E. S., Gupta, G. K., Zhu, H., Dean, A. M., Kee, R. J., Maier, L., et al. (2005). Methane reforming kinetics within a Ni–YSZ SOFC anode support. Applied Catalysis, A: General, 295(1), 40–51.

    Article  Google Scholar 

  • Hernández-Pacheco, E., Singh, D., Hutton, P. N., Patel, N., & Mann, M. D. (2004). A macro-level model for determining the performance characteristics of solid oxide fuel cells. Journal of Power Sources, 138(1), 174–186.

    Article  Google Scholar 

  • Hirschfelder, J. O., Curtiss, C. F., Bird, R. B., & Mayer, M. G. (1954). Molecular theory of gases and liquids (Vol. 26, p. 10). New York: Wiley.

    MATH  Google Scholar 

  • Ho, T. X., Kosinski, P., Hoffmann, A. C., & Vik, A. (2008). Numerical modeling of solid oxide fuel cells. Chemical Engineering Science, 63(21), 5356–5365.

    Article  Google Scholar 

  • Ho, T. X., Kosinski, P., Hoffmann, A. C., & Vik, A. (2009). Modeling of transport, chemical and electrochemical phenomena in a cathode-supported SOFC. Chemical Engineering Science, 64(12), 3000–3009.

    Article  Google Scholar 

  • Hofmann, P., Panopoulos, K. D., Fryda, L. E., & Kakaras, E. (2009). Comparison between two methane reforming models applied to a quasi-two-dimensional planar solid oxide fuel cell model. Energy, 34(12), 2151–2157.

    Article  Google Scholar 

  • Hosoi, T., Yonekura, T., Sunada, K., & Sasaki, K. (2015). Exchange current density of SOFC electrodes: Theoretical relations and partial pressure dependencies rate-determined by electrochemical reactions. Journal of the Electrochemical Society, 162(1), F136–F152.

    Article  Google Scholar 

  • Hou, K., & Hughes, R. (2001). The kinetics of methane steam reforming over a Ni/α-Al2O catalyst. Chemical Engineering Journal, 82(1), 311–328.

    Article  Google Scholar 

  • Hsu, C. T., & Cheng, P. (1990). Thermal dispersion in a porous medium. International Journal of Heat and Mass Transfer, 33(8), 1587–1597.

    Article  MATH  Google Scholar 

  • Hussain, M. M., Li, X., & Dincer, I. (2005). Multi-component mathematical model of solid oxide fuel cell anode. International Journal of Energy Research, 29(12), 1083–1101.

    Article  Google Scholar 

  • Iwai, H., Shikazono, N., Matsui, T., Teshima, H., Kishimoto, M., Kishida, R., et al. (2010). Quantification of SOFC anode microstructure based on dual beam FIB-SEM technique. Journal of Power Sources, 195(4), 955–961.

    Article  Google Scholar 

  • Janardhanan, V. M., & Deutschmann, O. (2006). CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes. Journal of Power Sources, 162(2), 1192–1202.

    Article  Google Scholar 

  • Janardhanan, V. M., & Deutschmann, O. (2007). Numerical study of mass and heat transport in solid-oxide fuel cells running on humidified methane. Chemical Engineering Science, 62(18), 5473–5486.

    Article  Google Scholar 

  • Janardhanan, V. M., Heuveline, V., & Deutschmann, O. (2008). Three-phase boundary length in solid-oxide fuel cells: A mathematical model. Journal of Power Sources, 178(1), 368–372.

    Article  Google Scholar 

  • Jiang, Y., & Virkar, A. V. (2003). Fuel composition and diluent effect on gas transport and performance of anode-supported SOFCs. Journal of the Electrochemical Society, 150(7), A942–A951.

    Article  Google Scholar 

  • Joos, J., Carraro, T., Weber, A., & Ivers-Tiffée, E. (2011). Reconstruction of porous electrodes by FIB/SEM for detailed microstructure modeling. Journal of Power Sources, 196(17), 7302–7307.

    Article  Google Scholar 

  • Jung, H. Y., Kim, W. S., Choi, S. H., Kim, H. C., Kim, J., Lee, H. W., et al. (2006). Effect of cathode current-collecting layer on unit-cell performance of anode-supported solid oxide fuel cells. Journal of Power Sources, 155(2), 145–151.

    Article  Google Scholar 

  • Kast, W., & Hohenthanner, C. R. (2000). Mass transfer within the gas-phase of porous media. International Journal of Heat and Mass Transfer, 43(5), 807–823.

    Article  MATH  Google Scholar 

  • Kerkhof, P. J. (1996). A modified Maxwell–Stefan model for transport through inert membranes: The binary friction model. The Chemical Engineering Journal and the Biochemical Engineering Journal, 64(3), 319–343.

    Article  Google Scholar 

  • Kim, J. H., Liu, W. K., & Lee, C. (2009). Multi-scale solid oxide fuel cell materials modeling. Computational Mechanics, 44(5), 683–703.

    Article  MathSciNet  MATH  Google Scholar 

  • Kishimoto, M., Iwai, H., Saito, M., & Yoshida, H. (2011). Quantitative evaluation of solid oxide fuel cell porous anode microstructure based on focused ion beam and scanning electron microscope technique and prediction of anode overpotentials. Journal of Power Sources, 196(10), 4555–4563.

    Article  Google Scholar 

  • Klein, J. M., Bultel, Y., Georges, S., & Pons, M. (2007). Modeling of a SOFC fuelled by methane: From direct internal reforming to gradual internal reforming. Chemical Engineering Science, 62(6), 1636–1649.

    Article  Google Scholar 

  • Kong, W., Zhu, H., Fei, Z., & Lin, Z. (2012). A modified dusty gas model in the form of a Fick’s model for the prediction of multicomponent mass transport in a solid oxide fuel cell anode. Journal of Power Sources, 206, 171–178.

    Article  Google Scholar 

  • Krishna, R., & Wesselingh, J. A. (1997). The Maxwell–Stefan approach to mass transfer. Chemical Engineering Science, 52(6), 861–911.

    Article  Google Scholar 

  • Lage, J. L. (1993). Natural convection within a porous medium cavity: Predicting tools for flow regime and heat transfer. International Communications in Heat and Mass Transfer, 20(4), 501–513.

    Article  Google Scholar 

  • Lanzini, A., Leone, P., & Asinari, P. (2009). Microstructural characterization of solid oxide fuel cell electrodes by image analysis technique. Journal of Power Sources, 194(1), 408–422.

    Article  Google Scholar 

  • Laurencin, J., Kane, D., Delette, G., Deseure, J., & Lefebvre-Joud, F. (2011). Modelling of solid oxide steam electrolyser: Impact of the operating conditions on hydrogen production. Journal of Power Sources, 196(4), 2080–2093.

    Article  Google Scholar 

  • Lee, A. L., Zabransky, R. F., & Huber, W. J. (1990). Internal reforming development for solid oxide fuel cells. Industrial and Engineering Chemistry Research, 29(5), 766–773.

    Article  Google Scholar 

  • Lee, K. T., Vito, N. J., & Wachsman, E. D. (2013). Comprehensive quantification of Ni–Gd0.1Ce0.9O1.95 anode functional layer microstructures by three-dimensional reconstruction using a FIB/SEM dual beam system. Journal of Power Sources, 228, 220–228.

    Article  Google Scholar 

  • Lehnert, W., Meusinger, J., & Thom, F. (2000). Modelling of gas transport phenomena in SOFC anodes. Journal of Power Sources, 87(1), 57–63.

    Article  Google Scholar 

  • Leonide, A. (2010). SOFC modelling and parameter identification by means of impedance spectroscopy (Ph.D. dissertation). Karlsruher Institut für Technologie.

    Google Scholar 

  • Li, Y., Gemmen, R., & Liu, X. (2010). Oxygen reduction and transportation mechanisms in solid oxide fuel cell cathodes. Journal of Power Sources, 195(11), 3345–3358.

    Article  Google Scholar 

  • Mason, E. A., & Malinauskas, A. P. (1983). Gas transport in porous media: The dusty-gas model (pp. 1–202). New York: Elsevier.

    Google Scholar 

  • Matsuzaki, K., Shikazono, N., & Kasagi, N. (2011). Three-dimensional numerical analysis of mixed ionic and electronic conducting cathode reconstructed by focused ion beam scanning electron microscope. Journal of Power Sources, 196(6), 3073–3082.

    Article  Google Scholar 

  • Menon, V., Janardhanan, V. M., Tischer, S., & Deutschmann, O. (2013). Internal multi-physics phenomena of SOFC with direct internal reforming. ECS Transactions, 57(1), 2475–2484.

    Article  Google Scholar 

  • Modest, M. F. (2013). Radiative heat transfer (3rd ed.). New York: Academic Press.

    Google Scholar 

  • Moon, H., Kim, S. D., Park, E. W., Hyun, S. H., & Kim, H. S. (2008). Characteristics of SOFC single cells with anode active layer via tape casting and co-firing. International Journal of Hydrogen Energy, 33(11), 2826–2833.

    Article  Google Scholar 

  • Murthy, S., & Fedorov, A. G. (2003). Radiation heat transfer analysis of the monolith type solid oxide fuel cell. Journal of Power Sources, 124(2), 453–458.

    Article  Google Scholar 

  • Nagel, F. P., Schildhauer, T. J., Biollaz, S. M., & Stucki, S. (2008). Charge, mass and heat transfer interactions in solid oxide fuel cells operated with different fuel gases—a sensitivity analysis. Journal of Power Sources, 184(1), 129–142.

    Article  Google Scholar 

  • Nam, J. H., & Jeon, D. H. (2006). A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells. Electrochimica Acta, 51(17), 3446–3460.

    Article  Google Scholar 

  • Ni, M. (2009). Computational fluid dynamics modeling of a solid oxide electrolyzer cell for hydrogen production. International Journal of Hydrogen Energy, 34(18), 7795–7806.

    Article  Google Scholar 

  • Ni, M. (2013). Modeling and parametric simulations of solid oxide fuel cells with methane carbon dioxide reforming. Energy Conversion and Management, 70, 116–129.

    Article  Google Scholar 

  • Ni, M., Leung, M. K., & Leung, D. Y. (2007). Parametric study of solid oxide fuel cell performance. Energy Conversion and Management, 48(5), 1525–1535.

    Article  Google Scholar 

  • Nield, D. A., & Bejan, A. (2006). Chapter 1: Mechanics of fluid flow through a porous medium—convection in porous media (3rd ed., pp. 1–26). New York: Springer.

    Google Scholar 

  • Noren, D. A., & Hoffman, M. A. (2005). Clarifying the Butler–Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models. Journal of Power Sources, 152, 175–181.

    Article  Google Scholar 

  • Novaresio, V., García-Camprubí, M., Izquierdo, S., Asinari, P., & Fueyo, N. (2012). An open-source library for the numerical modeling of mass-transfer in solid oxide fuel cells. Computer Physics Communications, 183(1), 125–146.

    Article  MATH  Google Scholar 

  • Park, E. W., Moon, H., Park, M. S., & Hyun, S. H. (2009). Fabrication and characterization of Cu–Ni–YSZ SOFC anodes for direct use of methane via Cu-electroplating. International Journal of Hydrogen Energy, 34(13), 5537–5545.

    Article  Google Scholar 

  • Poling, B. E., Prausnitz, J. M., & O’connell, J. P. (2001). The properties of gases and liquids (Vol. 5, pp. 11.5–11.9). New York: McGraw-Hill.

    Google Scholar 

  • Pollard, W. G., & Present, R. D. (1948). On gaseous self-diffusion in long capillary tubes. Physical Review, 73(7), 762.

    Article  Google Scholar 

  • Qu, Z., Aravind, P. V., Boksteen, S. Z., Dekker, N. J. J., Janssen, A. H. H., Woudstra, N., et al. (2011). Three-dimensional computational fluid dynamics modeling of anode-supported planar SOFC. International Journal of Hydrogen Energy, 36(16), 10209–10220.

    Article  Google Scholar 

  • Ramshaw, J. D. (1990). Self-consistent effective binary diffusion in multicomponent gas mixtures. Journal of Non-Equilibrium Thermodynamics, 15(3), 295–300.

    Article  MATH  Google Scholar 

  • Sanchez, D., Chacartegui, R., Munoz, A., & Sanchez, T. (2008). On the effect of methane internal reforming modelling in solid oxide fuel cells. International Journal of Hydrogen Energy, 33(7), 1834–1844.

    Article  Google Scholar 

  • Sánchez, D., Munoz, A., & Sánchez, T. (2007). An assessment on convective and radiative heat transfer modelling in tubular solid oxide fuel cells. Journal of Power Sources, 169(1), 25–34.

    Article  Google Scholar 

  • Santarelli, M., Quesito, F., Novaresio, V., Guerra, C., Lanzini, A., & Beretta, D. (2013). Direct reforming of biogas on Ni-based SOFC anodes: Modelling of heterogeneous reactions and validation with experiments. Journal of Power Sources, 242, 405–414.

    Article  Google Scholar 

  • Shi, Y., Cai, N., & Li, C. (2007). Numerical modeling of an anode-supported SOFC button cell considering anodic surface diffusion. Journal of Power Sources, 164(2), 639–648.

    Article  Google Scholar 

  • Shi, Y., Li, C., & Cai, N. (2011). Experimental characterization and mechanistic modeling of carbon monoxide fueled solid oxide fuel cell. Journal of Power Sources, 196(13), 5526–5537.

    Article  Google Scholar 

  • Suwanwarangkul, R., Croiset, E., Fowler, M. W., Douglas, P. L., Entchev, E., & Douglas, M. A. (2003). Performance comparison of Fick’s, dusty-gas and Stefan–Maxwell models to predict the concentration overpotential of a SOFC anode. Journal of Power Sources, 122(1), 9–18.

    Article  Google Scholar 

  • Tseronis, K., Kookos, I. K., & Theodoropoulos, C. (2008). Modelling mass transport in solid oxide fuel cell anodes: A case for a multidimensional dusty gas-based model. Chemical Engineering Science, 63(23), 5626–5638.

    Article  Google Scholar 

  • Veldsink, J. W., Van Damme, R. M. J., Versteeg, G. F., & Van Swaaij, W. P. M. (1995). The use of the dusty-gas model for the description of mass transport with chemical reaction in porous media. The Chemical Engineering Journal and the Biochemical Engineering Journal, 57(2), 115–125.

    Article  Google Scholar 

  • Walters, K. M., Dean, A. M., Zhu, H., & Kee, R. J. (2003). Homogeneous kinetics and equilibrium predictions of coking propensity in the anode channels of direct oxidation solid-oxide fuel cells using dry natural gas. Journal of Power Sources, 123(2), 182–189.

    Article  Google Scholar 

  • Wang, K., Hissel, D., Péra, M. C., Steiner, N., Marra, D., Sorrentino, M., et al. (2011a). A review on solid oxide fuel cell models. International Journal of Hydrogen Energy, 36(12), 7212–7228.

    Article  Google Scholar 

  • Wang, S., Worek, W. M., & Minkowycz, W. J. (2012). Performance comparison of the mass transfer models with internal reforming for solid oxide fuel cell anodes. International Journal of Heat and Mass Transfer, 55(15), 3933–3945.

    Article  Google Scholar 

  • Wang, Y., Weng, S., & Weng, Y. (2011b). Numerical investigation of the chemical and electrochemical characteristics of planar solid oxide fuel cell with direct internal reforming. Frontiers in Energy, 5(2), 195–206.

    Article  Google Scholar 

  • Webb, S. W., & Pruess, K. (2003). The use of Fick’s law for modeling trace gas diffusion in porous media. Transport in Porous Media, 51(3), 327–341.

    Article  Google Scholar 

  • Welty, J. R., Wicks, C. E., Rorrer, G., & Wilson, R. E. (2001). Fundamentals of momentum, heat, and mass transfer (4th ed.). New York: John Wiley & Sons.

    Google Scholar 

  • Wilke, C. R. (1950a). A viscosity equation for gas mixtures. The Journal of Chemical Physics, 18(4), 517–519.

    Article  Google Scholar 

  • Wilke, C. R. (1950b). Diffusional properties of multicomponent gases. Chemical Engineering Progress, 46, 95–104.

    Google Scholar 

  • Wilson, J. R., Cronin, J. S., & Barnett, S. A. (2011). Linking the microstructure, performance and durability of Ni-yttria-stabilized zirconia solid oxide fuel cell anodes using three-dimensional focused ion beam–scanning electron microscopy imaging. Scripta Materialia, 65(2), 67–72.

    Article  Google Scholar 

  • Wu, W., Wang, G. L., Guan, W. B., Zhen, Y. F., & Wang, W. G. (2013). Effect of contact method between interconnects and electrodes on area specific resistance in planar solid oxide fuel cells. Fuel Cells, 13(5), 743–750.

    Google Scholar 

  • Xu, J., & Froment, G. F. (1989). Methane steam reforming, methanation and water–gas shift: I. Intrinsic kinetics. AIChE Journal, 35(1), 88–96.

    Article  Google Scholar 

  • Yakabe, H., Hishinuma, M., Uratani, M., Matsuzaki, Y., & Yasuda, I. (2000). Evaluation and modeling of performance of anode-supported solid oxide fuel cell. Journal of Power Sources, 86(1), 423–431.

    Article  Google Scholar 

  • Yakabe, H., Ogiwara, T., Hishinuma, M., & Yasuda, I. (2001). 3-D model calculation for planar SOFC. Journal of Power Sources, 102(1), 144–154.

    Article  Google Scholar 

  • Zheng, K., Sun, Q., & Ni, M. (2013). Local non-equilibrium thermal effects in solid oxide fuel cells with various fuels. Energy Technology, 1(1), 35–41.

    Article  Google Scholar 

  • Zhu, H., & Kee, R. J. (2003). A general mathematical model for analyzing the performance of fuel-cell membrane-electrode assemblies. Journal of Power Sources, 117(1), 61–74.

    Article  Google Scholar 

  • Zhu, H., & Kee, R. J. (2008). Modeling distributed charge-transfer processes in SOFC membrane electrode assemblies. Journal of the Electrochemical Society, 155(7), B715–B729.

    Article  Google Scholar 

  • Zhu, H., Kee, R. J., Janardhanan, V. M., Deutschmann, O., & Goodwin, D. G. (2005). Modeling elementary heterogeneous chemistry and electrochemistry in solid-oxide fuel cells. Journal of the Electrochemical Society, 152(12), A2427–A2440.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Santarelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Ferrero, D., Lanzini, A., Santarelli, M. (2017). Solid Oxide Fuel Cells Modeling. In: Boaro, M., Salvatore, A. (eds) Advances in Medium and High Temperature Solid Oxide Fuel Cell Technology. CISM International Centre for Mechanical Sciences, vol 574. Springer, Cham. https://doi.org/10.1007/978-3-319-46146-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46146-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46145-8

  • Online ISBN: 978-3-319-46146-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics