Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 574))

Abstract

The present contribution describes the electrochemical testing and characterization of electrodes, cells, and short stacks. To achieve the maximum insight and results from testing of electrodes and cells, it is obviously necessary to have a good understanding of the fundamental principles of electrochemistry, but it also requires proper test geometries and set up, well-chosen operating conditions for different test purposes, correct probing of voltages and temperatures, and solid knowledge on benefits and drawbacks of different characterization techniques to obtain reliable, accurate, and reproducible electrochemical measurements, and this will be the focus of this chapter. First, the important issue of understanding potential differences and measurements of potentials, which is linked to the choice of proper electrode geometries and test set up configurations for electrode and cell testing, is presented. Then probing of voltages and temperatures, choice of sealing and contacting, as well as considerations regarding the choice of operating conditions for different purposes mainly for single cell testing are outlined. Having considered optimization of test set up, geometries, and the selection of optimal operating conditions, the details of measurement of the electrochemical performance of the electrode, cell, or stack are explained. As part of this, the concept of area specific resistance (ASR) and how DC and AC methods can be used and optimized to provide not only the total ASR, but also the electrochemical characterization of specific parts (electrolyte, each electrode) in a full cell are described. Some experimental results are provided including illustrative examples of breakdown of losses in full cells and determination of their temperature and gas composition dependencies, and finally, challenging issues, such as the effects of impurities and the problem of leakage in cell testing, are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler, S. B. (2002). Reference electrode placement in thin solid electrolytes. Journal of the Electrochemical Society, 149(5), E166–E172.

    Google Scholar 

  • Backhaus-Ricoult, M. (2008). SOFC-a playground for solid state chemistry. Solid State Sciences, 10(6), 670–688.

    Google Scholar 

  • Barfod, R., Mogensen, M., Klemenso, T., Hagen, A., Liu, Y. L., & Hendriksen, P. V. (2007). Detailed characterization of anode-supported SOFCs by impedance spectroscopy. Journal of the Electrochemical Society, 154(4), B371–B378.

    Google Scholar 

  • Barfod, R., Hagen, A., Ramousse, S., Hendriksen, P. V., & Mogensen, M. (2006). Break down of losses in thin electrolyte SOFCs. Fuel Cells, 6(2), 141–145.

    Google Scholar 

  • Bessler, W. (2005). Gas dynamics impedance of solid oxide fuel cells. Proceedings of the 26th Risoe international symposium on materials science. Roskilde, Denmark: Risø National Laboratory.

    Google Scholar 

  • Birkl, C. (2012). Effect of anode sintering temperature on microstructure and performance of multilayer tape cast SOFC. M.Sc. Engineering, Technical University of Denmark. Denmark: M.Sc. Thesis, Technical University of Denmark.

    Google Scholar 

  • Bockris, J. O. M. (1970). Modern electrochemistry. An introduction to an interdisciplinary area (Vol. 1). New York: Plenum Press.

    Google Scholar 

  • Boukamp, B. A. (2004). Electrochemical impedance spectroscopy in solid state ionics: recent advances. Solid State Ionics, 169, 65–73.

    Google Scholar 

  • Cai, Z., Yener, K., Jeong, W. H., Yan, C., & Bilge, Y. (2011). Surface electronic structure transitions at high temperature on perovskite oxides: the case of strained La0. 8Sr0. 2CoO3 thin films. Journal of the American Chemical Society, 133(44), 17696–17704.

    Google Scholar 

  • Carter, C. B. (2013). Ceramic materials: Science and engineering. Berlin: Springer.

    Google Scholar 

  • Chen, M., Liu, Y. L., Bentzen, J. J., Zhang, W., Sun, X., Hauch, A., et al. (2013). Microstructural degradation of Ni/YSZ electrodes in solid oxide electrolysis cells under high current. Journal of the Electrochemical Society, 160(8), F883–F891.

    Google Scholar 

  • Chou, Y.-S., Jeffry, W. S., & Robert, N. G. (2007). Novel alkaline earth silicate sealing glass for SOFC. Journal of Power Sources, 168(2), 426–433.

    Google Scholar 

  • Cronin, J. S., James, R. W., & Scott, A. B. (2011). Impact of pore microstructure evolution on polarization resistance of Ni-Yttria-stabilized zirconia fuel cell anodes. Journal of Power Sources, 196(5), 2640–2643.

    Google Scholar 

  • Ebbesen, S. D., Graves, C., Hauch, A., Jensen, S. H., & Mogensen, M. (2010). Poisoning of solid oxide electrolysis cells by impurities. Journal of the Electrochemical Society, 157(10), B1419.

    Google Scholar 

  • Ebbesen, S. D., & Mogensen, M. (2010). Exceptional durability of solid oxide cells. Electrochemical and Solid State Letters, 13(9), D106–D108.

    Google Scholar 

  • Ebbesen, S. D., & Mogensen, M. (2013). Kinetics of oxidation of H2 and reduction of H2O in Ni-YSZ based solid oxide cells. ECS Transactions, 50(49), 167–182.

    Google Scholar 

  • Erning, J. W., Schaffrath, W., Stimming, U., Syskakis, E., & Wipperman, K. (1995). Improvement in the performance of screen printed SOFC cathodes by noble metal catalysts. Proceedings of SOFC IV. (p.492). Pennington, New Jersey, USA: The Electrochemical Society Inc. ISBN1-56677-095-5.

    Google Scholar 

  • Faes, A., Hessler-Wyser, A., Presvytes, D., Vayenas, C. G., & Van Herle, J. (2009). Nickel–zirconia anode degradation and triple phase boundary quantification from microstructural analysis. Fuel Cells, 9(6), 841–851. ISI:000273394400008.

    Google Scholar 

  • Gödickemeier, M., Sasaki, K., & Gauckler, L. J. (1995). Current-voltage characterics of fuel cells with ceria-based electrolytes. In M. Dokiya, O. Yamamoto, H. Tagawa, & S. C. Singhal (Eds.), Solid oxide fuel cells IV, Electrochemical society proceedings series, PV 95-1:1072. Pennington, NJ, USA: The Electrochemical Society Inc.

    Google Scholar 

  • Graves, C., Ebbesen, S. D., Jensen, S. H., Simonsen, S. B., & Mogensen, M. B. (2015). Eliminating degradation in solid oxide electrochemical cells by reversible operation. Nature Materials, 14(2), 239–244.

    Google Scholar 

  • Greef, R. (1985). Instrumental methods in electrochemistry. Chichester: Ellis Horwood.

    Google Scholar 

  • Hagen, A., Barfod, R., Hendriksen, P. V., Liu, Y. L., & Ramousse, S. (2006). Degradation of anode supported SOFCS as a function of temperature and current load. Journal of the Electrochemical Society, 153(6), A1165–A1171.

    Google Scholar 

  • Hamann, C. H. (1998). Electrochemistry. Weinheim: Wiley-VCH.

    Google Scholar 

  • Hansen, K. V., Kion, N., & Mogens, M. (2006). TOF-SIMS studies of yttria-stabilised zirconia. Surface and Interface Analysis, 38(5), 911–916.

    Google Scholar 

  • Hansen, K. V., Norrman, K., & Mogensen, M. (2004). H-2-H2O-Ni-YSZ electrode performance-effect of segregation to the interface. Journal of the Electrochemical Society, 151(9), A1436–A1444. ISI:000223622000021.

    Google Scholar 

  • Hansen, K. V., Wu, Y., Jacobsen, T., Mogensen, M. B., & Theil Kuhn, L. (2013). Improved controlled atmosphere high temperature scanning probe microscope. Review of Scientific Instruments, 84(7), 073701.

    Google Scholar 

  • Hauch, A., Birkl, C., Brodersen, K., & Jørgensen, P. S. (2012). Multilayer tape cast SOFC - effect of sintering temperature. Proceedings—10th European Solid Oxide Fuel Cell Forum Chapter 8 (pp. 62–71). Switzerland: Lucerne.

    Google Scholar 

  • Hauch, A., Bowen, J. R., Kuhn, L. T., & Mogensen, M. (2008). Nanoscale chemical analysis and imaging of solid oxide cells. Electrochemical and Solid-State Letters, 11(3), B38.

    Google Scholar 

  • Hauch, A., Hagen, A., Hjelm, J., & Ramos, T. (2014). Sulfur poisoning of SOFC anodes: effect of overpotential on long-term degradation. Journal of the Electrochemical Society, 161(6), F734–F743.

    Google Scholar 

  • Hauch, A., Jensen, S. H., Bilde-Soerensen, J. B., & Mogensen, M. (2007). Silica Segregation in the Ni/YSZ Electrode. Journal of the Electrochemical Society, 154(7), A619.

    Google Scholar 

  • Hauch, A., Jørgensen, P. S., Brodersen, K., & Mogensen, M. (2011a). Ni/YSZ anode-effect of pre-treatments on Cell degradation and microstructures. Journal of Power Sources, 196(21), 8931–8941.

    Google Scholar 

  • Hauch, A., Mogensen, M., & Hagen, A. (2011b). Ni/YSZ electrode degradation studied by impedance spectroscopy-effect of p(H2O). Solid State Ionics, 192, 547–551.

    Google Scholar 

  • Hauch, A., K. Brodersen, M. Chen, and M.B. Mogensen. (2016). “Ni/YSZ Electrodes Structures Optimized for Increased Electrolysis Performance and Durability. Solid State Ionics, 293, 27–36.

    Google Scholar 

  • Hendriksen, P. V., Koch, S., & Mogensen, M. (2003). Break-down of losses in thin electrolyte SOFCs. In S. C. Singhal & M. Dokiya (Eds.), Solid Oxide Fuel Cells VI, PV2003-07 (p. 1147). Pennington, NJ, USA: The Electrochemical Society Proceedings Series.

    Google Scholar 

  • Hjalmarsson, P., Sun, X., Liu, Y.-L., & Chen, M. (2013). Influence of the oxygen electrode and inter-diffusion barrier on the degradation of solid oxide electrolysis cells. Journal of Power Sources, 223, 349–357.

    Google Scholar 

  • Holze, R. (2007). Electrochemistry. Berlin: Springer.

    Google Scholar 

  • Holzer, L., Iwanschitz, B., Hocker, T., Münch, B., Prestat, M., Wiedenmann, D., et al. (2011). Microstructure degradation of cermet anodes for solid oxide fuel cells: Quantification of nickel grain growth in dry and in humid atmospheres. Journal of Power Sources, 196, 1279–1294.

    Google Scholar 

  • Horita, T., Cho, D.-H., Wang, F., Shimonosono, T., Kishimoto, H., Yamaji, K., et al. (2012). Correlation between degradation of cathode performance and chromium concentration in (La,Sr)MnO3 cathode. Solid state Ionics 18 proceedings of the 18th international conference on solid state Ionics Warsaw, Poland, July 3–8, 2011 (Vol. 225(0), pp. 151–156).

    Google Scholar 

  • Huang, Q. A., Hui, R., Wang, B. W., & Zhang, H. J. (2007). A review of AC impedance modeling and validation in SOFC diagnosis. Electrochimica Acta, 52(28), 8144–8164.

    Google Scholar 

  • Ibach, H. (2009). Solid-state physics: An introduction to principles of materials science. Berlin: Springer.

    Google Scholar 

  • Iwanschitz, B., Holzer, L., Mai, A., & Schuetze, M. (2012). Nickel agglomeration in solid oxide fuel cells: the influence of temperature. Solid State Ionics, 211, 69–73.

    Google Scholar 

  • Jacobsen, T., Chatzichristodoulou, C., & Mogensen, M. B. (2014). Fermi potential across working solid oxide cells with zirconia or ceria electrolytes. ECS Transactions, 61(1), 203–214.

    Google Scholar 

  • Jacobsen, T., Hendriksen, P. V., & Koch, S. (2008). Diffusion and conversion impedance in solid oxide fuel cells. Electrochimica Acta, 53(25), 7500–7508.

    Google Scholar 

  • Jacobsen, T., & Mogensen, M. (2008). The course of oxygen partial pressure and electric potentials across an oxide electrolyte cell. ECS Transactions, 13(26), 259.

    Google Scholar 

  • Jacobsen, T., & Skou, E. (1997). Proceedings of IEA workshop on materials and processes. Les Diablerets: Schweiz.

    Google Scholar 

  • Jeangros, Q., Hansen, T. W., Wagner, J. B., Damsgaard, C. D., Dunin-Borkowski, R. E., Hébert, C., et al. (2012). Nickel oxide reduction studied by environmental TEM. Proceedings of 10th European SOFC Forum 2012, Chapter 14 (p. 25). Switzerland: Lucerne.

    Google Scholar 

  • Jensen, S. H., Hauch, A., Hendriksen, P. V., & Mogensen, M. (2009a). Advanced test method of solid oxide cells in a plug-flow setup. Journal of the Electrochemical Society, 156(6), B757.

    Google Scholar 

  • Jensen, S. H., Hauch, A., Hendriksen, P. V., Mogensen, M., Bonanos, N., & Jacobsen, T. (2007). A method to separate process contributions in impedance spectra by variation of test conditions. Journal of the Electrochemical Society, 154(12), B1325.

    Google Scholar 

  • Jensen, S. H., Hjelm, J., Hagen, A., & Mogensen, M. (2009b). Electrochemical impedance spectroscopy as diagnostic tool. In W. Vielstich, H. Yokokawa, & H. A. Gasteiger (Eds.), Handbook of fuel cells—fundamental, technology and applications (Vol. 6, pp. 1090–1102). Hoboken: John Wiley & Sons Ltd.

    Google Scholar 

  • Jensen, S. H., Sun, X., Ebbesen, S. D., Knibbe, R., & Mogensen, M. (2010). Hydrogen and synthetic fuel production using pressurized solid oxide electrolysis cells. International Journal of Hydrogen Energy, 35(18), 9544–9549.

    Google Scholar 

  • Jiao, Z., & Shikazono, N. (2015). Quantitative study on the correlation between solid oxide fuel cell Ni-YSZ composite anode performance and reduction temperature based on three-dimensional reconstruction. Journal of the Electrochemical Society, 162(6), F571–F578.

    Google Scholar 

  • Jørgensen, M. J., Primdahl S., & Mogensen, M. (1999). Characterization of composite sofc cathodes using electrochemical impedance spectroscopy. Electrochimica Acta, 44(24), 4195–4201.

    Google Scholar 

  • Jørgensen, P. S., Ebbehøj, S. L., & Hauch, A. (2015). Triple phase boundary specific pathway analysis for quantitative characterization of solid oxide cell electrode microstructure. Journal of Power Sources, 279(April), 686–693.

    Google Scholar 

  • Jørgensen, P S, K V Hansen, R Larsen, and J R Bowen. (2010). A Framework for Automatic Segmentation in Three Dimensions of Microstructural Tomography Data. Ultramicroscopy, 110(3), 216–28.

    Google Scholar 

  • Khabibulakh, K., Yildiz, B., Kavaipatti, B., & Salvador, P. (2009). Correlations of electronic and chemical state on la. ECS Transactions, 25, 2309–2318.

    Google Scholar 

  • Kharton, V. V. (2009). Solid state electrochemistry I : Fundamentals, materials and their applications. Germany: Wiley-VCH.

    Google Scholar 

  • Kharton, V. V. (2011). Solid state electrochemistry/2, electrodes, interfaces and ceramic membranes. Germany: Wiley-VCH.

    Google Scholar 

  • Kiebach, R., Norrman, K., Chatzichristodoulou, C., Chen, M., Sun, X., Ebbesen, S. D., et al. (2014). TOF-SIMS characterization of impurity enrichment and redistribution in solid oxide electrolysis cells during operation. Dalton Transactions, 43(40), 14949–14958.

    Google Scholar 

  • Kishimoto, H., Yashiro, K., Shimonosono, T., Brito, M. E., Yamaji, K., Horita, T., et al. (2012). In situ analysis on the electrical conductivity degradation of NiO doped yttria stabilized zirconia electrolyte by micro-Raman spectroscopy. Electrochemical Frontiers in Global Environment and Energy, 82, 263–267.

    Google Scholar 

  • Kleinlogel, C., Gödickemeier, M., Honneger, K., & Gauckler, L. J. (1997). Solid oxide fuel cells operating with cathode supported thin film electrolyte. In T. A. Ramanarayanan, W. L. Worrell, H. L. Tuller, A. C. Khandkar, M. Mogensen, & W. Göpel (Eds.), Third international symposium on ionic and mixed conducting ceramics, PV-97-24 (p. 1072). Pennington, NJ, USA: The Electrochemical Society Inc.

    Google Scholar 

  • Knibbe, R., Traulsen, M. L., Hauch, A., Ebbesen, S. D., & Mogensen, M. (2010). Solid oxide electrolysis cells: degradation at high current densities. Journal of the Electrochemical Society, 157(8), B1209.

    Google Scholar 

  • Kornely, M., Leonide, A., Weber, A., & Ivers-Tiffée, E. (2011). Performance limiting factors in anode-supported cells originating from metallic interconnector design. Journal of Power Sources, 196(17), 7209–7216.

    Google Scholar 

  • Kromp, A., Dierickx, S., Leonide, A., Weber, A., & Ivers-Tiffee, E. (2012). Electrochemical analysis of sulfur-poisoning in anode supported SOFCs fuelled with a model reformate. Journal of the Electrochemical Society, 159(5), B597–B601.

    Google Scholar 

  • Kromp, A., Leonide, A., Weber, A., & Ivers-Tiffee, E. (2011). Electrochemical analysis of reformate-fuelled anode supported SOFC. Journal of the Electrochemical Society, 158(8), B980–B986.

    Google Scholar 

  • Lawlor, V. (2013). Experimental and numerical study of various MT-SOFC flow manifold techniques: single MT-SOFC analysis. Journal of Fuel Cell Science and Technology, 10(1), 011003.

    Google Scholar 

  • Leng, Yang. (2008). Materials characterization. Chichester, UK: John Wiley & Sons Ltd.

    Google Scholar 

  • Leonide, A., Sonn, V., Weber, A., & Ivers-Tiffee, E. (2008). Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells. Journal of the Electrochemical Society, 155(1), B36–B41. ISI:000251241400020.

    Google Scholar 

  • Li, X., Blinn, K., Fang, Y., Liu, M., Mahmoud, M. A., Cheng, S., et al. (2012). Application of surface enhanced raman spectroscopy to the study of SOFC electrode surfaces. Physical Chemistry Chemical Physics: PCCP, 14(17), 5919–5923.

    Google Scholar 

  • Liu, Y.-L., & Jiao, C. (2005). Microstructure degradation of an anode/electrolyte interface in SOFC studied by transmission electron microscopy. Solid State Ionics, 176, 435–442.

    Google Scholar 

  • Macdonald, J. R., & Barsoukov, E. (2005). Impedance spectroscopy. Theory, experiment, and applications (Vol. 2). Hoboken, US: John Wiley & Sons Inc.

    Google Scholar 

  • McIntyre, M. D., Traulsen, M. L., Norrman, K., Sanna, S., & Walker, R. A. (2015). Polarization Induced Changes in LSM Thin Film Electrode Composition Observed by In Operando Raman Spectroscopy and TOF-SIMS. ECS Transactions, 66(2), 47–59.

    Google Scholar 

  • Mogensen, M. B. (2002). Strategies for testing of solid oxide fuel cells and electrodes. In Proceedings European fuel cell forum (Vol. 2, pp. 893–902). Lucerne, Switzerland.

    Google Scholar 

  • Mogensen, M., & Hendriksen, P. V. (2003). Testing of electrodes, cells and short stacks. In S. C. Singhal & K. Kendall (Eds.), High temperature solid oxide fuel cells—fundamentals, design and applications (Vol. 1, pp. 261–289). London: Elsevier.

    Google Scholar 

  • Mogensen, M., & Jacobsen, T. (2009). Electromotive potential distribution and electronic leak currents in working YSZ based SOCs. ECS Transactions, 25, 1315–1320.

    Google Scholar 

  • Mogensen, M., Larsen, P. H., Hendriksen, P. V., Kindl, B., Bagger, C., & Linderoth, S. (1999). Solid oxide fuel cell testing: results and interpretation. In S. C. Singhal & M. Dokiya (Eds.), Proceedings—the electrochemical society SOFC-VI, PV 99-19:904–15.

    Google Scholar 

  • Mosbaek, R. R., Hjelm, J., Barfod, R., Høgh, J., & Hendriksen, P. V. (2013). Electrochemical characterization and degradation analysis of large SOFC stacks by impedance spectroscopy. Fuel Cells, 13(4), 605–611.

    Google Scholar 

  • Nagata, M., Itoh, Y., & Iwaraha, H. (1994). Dependence of observed overvoltages on the positioning of the reference electrode on the solid electrolyte. Solid State Ionics, 67(3–4), 215–224.

    Google Scholar 

  • Nielsen, J., Hagen, A., & Liu, Y. L. (2010). Effect of cathode gas humidification on performance and durability of solid oxide fuel cells. Solid State Ionics, 181(11–12), 517–524. ISI:000277926000009.

    Google Scholar 

  • Nielsen, J., & Hjelm, J. (2014). A review and a comprehensive case study on the impedance of LSM: YSZ cathodes. Electrochimica Acta, 115, 31–45.

    Google Scholar 

  • Nielsen, J., Jacobsen, T., & Wandel, M. (2011). Impedance of porous IT-SOFC LSCF:CGO composite cathodes. Electrochimia Acta, 56(23), 7963–7974.

    Google Scholar 

  • Nielsen, K. A., Solvang, M., Nielsen, S. B. L., Dinesen, A. R., Beeaff, D., & Larsen, P. H. (2007). Glass composite seals for SOFC application. Journal of the European Ceramic Society, 27(2–3), 1817–1822.

    Google Scholar 

  • Orazem, M. E. (2008). Electrochemical impedance spectroscopy. Hoboken: John Wiley & Sons.

    Google Scholar 

  • Pihlatie, M., Ramos, T., & Kaiser, A. (2009). Testing and improving the redox stability of Ni-based solid oxide fuel cells. Journal of Power Sources, 193(1), 322–330.

    Google Scholar 

  • Primdahl, S., & Mogensen, M. (1998). Gas conversion impedance: a test geometry effect in characterization of solid oxide fuel cell anodes. Journal of the Electrochemical Society, 145(7), 2431–2438.

    Google Scholar 

  • Primdahl, S., & Mogensen, M. (1999). Gas diffusion impedance in characterization of solid oxide fuel cell anodes. Journal of the Electrochemical Society, 146(8), 2827–2833.

    Google Scholar 

  • Ramos, T., Thydén, K., & Mogensen, M. (2010). Electrochemical characterization of Ni/(Sc) YSZ electrodes. ECS Transactions, 28(11), 123.

    Google Scholar 

  • Rasmussen, J. F. B., & Hagen, A. (2010). The effect of H2S on the performance of SOFCs using methane containing fuel. Fuel Cells, 10(6), 1135–1142.

    Google Scholar 

  • Rasmussen, J. F. B., Hendriksen, P. V., & Hagen, A. (2008). Study of internal and external leaks in tests of anode-supported SOFCs. Fuel Cells, 8(6), 385–393.

    Google Scholar 

  • Reinhardt, G., & Göpel, W. (1998). Electrode reactions at solid electrolytes: finite difference calculations to describe geometric and electrtical properties of planar devices. In T. A. Ramanarayanan, W. L. Worrell, H. L. Tuller, A. C. Khandkar, M. Mogensen, & W. Göpel (Eds.), Proceedings of third international symposium on ionic and mixed conducting ceramics (p. 610). Pennington, NJ, USA: The Electrochemical Society Inc.

    Google Scholar 

  • Reis, S. T., Pascual, M. J., Brow, R. K., Ray, C. S., & Zhang, T. (2010). Crystallization and processing of SOFC sealing glasses. Journal of Non-Crystalline Solids, 356(52–54), 3009–3012.

    Google Scholar 

  • Schichlein, H., Muller, A. C., Voigts, M., Krugel, A., & Ivers-Tiffee, E. (2002). Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells. Journal of Applied Electrochemistry, 32(8), 875–882. ISI:000178472100007.

    Google Scholar 

  • Schilm, J. (2010). Sealing glasses for SOFC-degradation behavior. Advances in Solid Oxide Fuel Cells V, 30(4), 185–193.

    Google Scholar 

  • Schmidt, M. S., Hansen, K. V., Norrman, K., & Mogensen, M. (2008). Effects of trace elements at the Ni/ScYSZ interface in a model solid oxide fuel cell anode. Solid State Ionics, 179(27–32), 1436–1441.

    Google Scholar 

  • Shearing, P. R., Brett, D., & Brandon, N. P. (2010a). Towards intelligent engineering of SOFC electrodes: a review of advanced microstructural characterisation techniques. International Materials Reviews, 55, 347.

    Google Scholar 

  • Shearing, P. R., Cai, Q., Golbert, J. I., Yufit, V., Adjiman, C. S., & Brandon, N. P. (2010b). Microstructural analysis of a solid oxide fuel cell anode using focused ion beam techniques coupled with electrochemical simulation. Journal of Power Sources, 195(15), 4804–4810.

    Google Scholar 

  • Shimazu, M., Yamaji, K., Isobe, T., Ueno, A., Kishimoto, H., Katsumata, K., et al. (2011). Stability of Sc2O3 and CeO2 co-doped ZrO2 electrolyte during the operation of solid oxide fuel cells: Part II the influences of Mn, Al and Si. Solid State Ionics, 204–205, 120–128.

    Google Scholar 

  • Shimura, T., Jiao, Z., Hara, S., & Shikazono, N. (2014). Quantitative analysis of solid oxide fuel cell anode microstructure change during redox cycles. Journal of Power Sources, 267, 58–68.

    Google Scholar 

  • Smart, L., & More, E. (1996). Solid state chemistry—An introduction (2nd ed.). Cheltenham, UK: T.J. International Ltd.

    Google Scholar 

  • Solheim, A., Tunold, R., & Ødegård, R. (1991). The relationship between electrical energy output and energy efficiency in plug flow solid oxide fuel cells. In F. Gross, P. Zegers, S. C. Singhal, & O. Yamamoto (Eds.), Solid oxide fuel cells II (p. 297). Luxemburg: European Communities, EUR13564EN.

    Google Scholar 

  • Sonn, V., Leonide, A., & Ivers-Tiffee, E. (2008). Combined deconvolution and CNLS fitting approach applied on the impedance response of technical Ni/8YSZ cermet electrodes. Journal of the Electrochemical Society, 155(7), B675–B679. ISI:000256198900016.

    Google Scholar 

  • Sun, X., Bonaccorso, A. D., Graves, C., Ebbesen, S. D., Jensen, S. H., Hagen, A., et al. (2015). Performance characterization of solid oxide cells under high pressure. Fuel Cells, 15(5), 697–702.

    Google Scholar 

  • Thydén, K., Liu, Y.-L., & Bilde-Sørensen, J. B. (2008). Microstructural characterization of SOFC Ni–YSZ anode composites by low-voltage scanning electron microscopy. Solid State Ionics, 178, 1984–1989.

    Google Scholar 

  • Tietz, F., Sebold, D., Brisse, A., & Schefold, J. (2013). Degradation phenomena in a solid oxide electrolysis cell after 9000 H of operation. Journal of Power Sources, 223, 129–135.

    Google Scholar 

  • Utz, A., Hansen, K. V., Norrman, K., Ivers-Tiffee, E., & Mogensen, M. (2011). Impurity features in Ni-YSZ-H-2-H2O electrodes. Solid State Ionics, 183(1), 60–70.

    Google Scholar 

  • Van Heuveln, F. H., van Berkel, F. P. F., & Huijsmans, J. P. P. (1993). Electrochemical characterization of porous electrodes and application in SOFC. In F. W. Poulsen, J. J. Bentzen, T. Jacobsen, E. Skou, & M. J. L. Østergård (Eds.), 14th Risø international symposium on materials science (p. 53). Roskilde, Denmark: Risø National Laboratory, Roskilde, Denmark.

    Google Scholar 

  • Vels Jensen, K., Primdahl, S., Chorkendorff, I., & Mogensen, M. (2001). Microstructural and chemical changes at the Ni/YSZ interface. Solid State Ionics, 144, 197–209.

    Google Scholar 

  • Wiedenmann, D., Hauch, A., Grobéty, B., Mogensen, M., & Vogt, U. F. (2010). Complementary techniques for solid oxide electrolysis cell characterisation at the micro-and nano-scale. International Journal of Hydrogen Energy, 35(10), 5053–5060.

    Google Scholar 

  • Wilson, J. R., Kobsiriphat, W., Mendoza, R., Chen, H.-Y., Miller, J. M., Miller, D. J., et al. (2006). Three-dimensional reconstruction of a solid-oxide fuel cell anode. Nature Materials, 5, 541–544.

    Google Scholar 

  • Winkler, J., Hendriksen, P. V., Bonanos, N., & Mogensen, M. (1998). Geometric requirements of solid electrolyte cells with a reference electrode. Journal of the Electrochemical Society, 145(4), 1184–1192.

    Google Scholar 

  • Wu, Y., Hansen, K. V., Norrman, K., Jacobsen, T., & Mogensen, M. (2013). Oxygen electrode kinetics and surface composition of dense (La0. 75Sr0. 25) 0.95 MnO3 on YSZ. ECS Transactions, 57(1), 1673–1682.

    Google Scholar 

  • Zhang, H. S. (2012). Performance comparison on cross-flow and counter-flow planar solid oxide fuel cells. Proceedings of the ASME Turbo Expo 2012 (Vol. 3, pp. 91–97).

    Google Scholar 

  • Zhang, W., Chen, M., Theil Kuhn, L., Bowen, J. R., & Bentzen, J. J. (2014). Electrochemistry unlocks wettability: epitaxial growth of oxide nanoparticles on rough metallic surfaces. ChemElectroChem, 1(3), 520–523.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Hauch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Hauch, A., Mogensen, M.B. (2017). Testing of Electrodes, Cells, and Short Stacks. In: Boaro, M., Salvatore, A. (eds) Advances in Medium and High Temperature Solid Oxide Fuel Cell Technology. CISM International Centre for Mechanical Sciences, vol 574. Springer, Cham. https://doi.org/10.1007/978-3-319-46146-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46146-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46145-8

  • Online ISBN: 978-3-319-46146-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics