Skip to main content

Testosterone and Endocrine Disruptors: Influence of Endocrine Disruptors on Male Reproductive Tract

  • Chapter
  • First Online:
Testosterone

Abstract

A wide variety of chemical compounds with endocrine disruptor (EDC) activity have been recognized for environmental control agencies worldwide, including pesticides, pollutants, and substances used in the production of plastics. Biomonitoring studies have identified the compounds in adults, children, pregnant women, and fetuses. EDCs are contributing to the increased prevalence of chronic diseases, including those related to the reproductive system. Initially, it was assumed that EDCs exert their adverse effects by binding to hormone receptors and transcription factors, but it is currently known that they may also alter the expression of enzymes involved in the steroid synthesis and/or catabolism or cause epigenetic changes. The true impact of endocrine disruptors on human health is difficult to assess because specific end points may be differentially affected at different ages. Humans are exposed to east hundreds of environmental chemicals and a major limitation of epidemiologic studies is that usually they measured the human exposure to a single EDC. The EDCs are an international problem and the public, the media, politicians, and governmental agencies should be educated on ways to avoid EDC exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Diamanti-Kandarakis E, Bourguignon J-P, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009;30(4):293–342.

    CAS  PubMed Central  Google Scholar 

  2. Gore A, Chappell V, Fenton S, Flaws J, Nadal A, Prins G, Toppari J, Zoeller R. EDC-2: the Endocrine Society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36:e1–150.

    CAS  PubMed Central  Google Scholar 

  3. Bigsby R, Chapin RE, Daston GP, Davis BJ, Gorski J, Gray LE, Howdeshell KL, Zoeller RT, vom Saal FS. Evaluating the effects of endocrine disruptors on endocrine function during development. Environ Health Perspect. 1999;107 Suppl 4:613.

    PubMed Central  Google Scholar 

  4. Maffini MV, Rubin BS, Sonnenschein C, Soto AM. Endocrine disruptors and reproductive health: the case of bisphenol-A. Mol Cell Endocrinol. 2006;254:179–86.

    Google Scholar 

  5. Biles J, McNeal T, Begley T, Hollifield H. Determination of bisphenol-A in reusable polycarbonate food-contact plastics and migration to food-simulating liquids. J Agric Food Chem. 1997;45(9):3541–4.

    CAS  Google Scholar 

  6. Michałowicz J. Bisphenol A–sources, toxicity and biotransformation. Environ Toxicol Pharmacol. 2014;37(2):738–58.

    Google Scholar 

  7. Takeuchi T, Tsutsumi O. Serum bisphenol A concentrations showed gender differences, possibly linked to androgen levels. Biochem Biophys Res Commun. 2002;291(1):76–8.

    CAS  Google Scholar 

  8. Ikezuki Y, Tsutsumi O, Takai Y, Kamei Y, Taketani Y. Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod. 2002;17(11):2839–41.

    CAS  Google Scholar 

  9. Schönfelder G, Flick B, Mayr E, Talsness C, Paul M, Chahoud I. In utero exposure to low doses of bisphenol A lead to long-term deleterious effects in the vagina. Neoplasia. 2002;4(2):98–102.

    PubMed Central  Google Scholar 

  10. Sun Y, Irie M, Kishikawa N, Wada M, Kuroda N, Nakashima K. Determination of bisphenol A in human breast milk by HPLC with column‐switching and fluorescence detection. Biomed Chromatogr. 2004;18(8):501–7.

    CAS  Google Scholar 

  11. Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Ekong J, Needham LL. Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environ Health Perspect. 2005;113:391–5.

    CAS  Google Scholar 

  12. Arakawa C, Fujimaki K, Yoshinaga J, Imai H, Serizawa S, Shiraishi H. Daily urinary excretion of bisphenol A. Environ Health Prev Med. 2004;9(1):22–6.

    CAS  PubMed Central  Google Scholar 

  13. Wetherill YB, Fisher NL, Staubach A, Danielsen M, de Vere White RW, Knudsen KE. Xenoestrogen action in prostate cancer: pleiotropic effects dependent on androgen receptor status. Cancer Res. 2005;65(1):54–65.

    CAS  Google Scholar 

  14. Iso T, Watanabe T, Iwamoto T, Shimamoto A, Furuichi Y. DNA damage caused by bisphenol A and estradiol through estrogenic activity. Biol Pharm Bull. 2006;29(2):206–10.

    CAS  Google Scholar 

  15. Ziv-Gal A, Craig ZR, Wang W, Flaws JA. Bisphenol A inhibits cultured mouse ovarian follicle growth partially via the aryl hydrocarbon receptor signaling pathway. Reprod Toxicol. 2013;42:58–67.

    CAS  Google Scholar 

  16. Wetherill YB, Akingbemi BT, Kanno J, McLachlan JA, Nadal A, Sonnenschein C, Watson CS, Zoeller RT, Belcher SM. In vitro molecular mechanisms of bisphenol A action. Reprod Toxicol. 2007;24(2):178–98.

    CAS  Google Scholar 

  17. Gupta C. Reproductive malformation of the male offspring following maternal exposure to estrogenic chemicals. Proc Soc Exp Biol Med. 2000;224(2):61–8.

    CAS  Google Scholar 

  18. Timms BG, Howdeshell KL, Barton L, Bradley S, Richter CA, Vom Saal FS. Estrogenic chemicals in plastic and oral contraceptives disrupt development of the fetal mouse prostate and urethra. Proc Natl Acad Sci U S A. 2005;102(19):7014–9.

    CAS  PubMed Central  Google Scholar 

  19. Vom Saal FS, Cooke PS, Buchanan DL, Palanza P, Thayer KA, Nagel SC, Parmigiani S, Welshons WV. A physiologically based approach to the study of bisphenol A and other estrogenic chemicals on the size of reproductive organs, daily sperm production, and behavior. Toxicol Ind Health. 1998;14(1-2):239–60.

    CAS  Google Scholar 

  20. Ramos JG, Varayoud J, Sonnenschein C, Soto AM, de Toro MM, Luque EH. Prenatal exposure to low doses of bisphenol A alters the periductal stroma and glandular cell function in the rat ventral prostate. Biol Reprod. 2001;65(4):1271–7.

    CAS  Google Scholar 

  21. Savchuk I, Söder O, Svechnikov K. Mouse leydig cells with different androgen production potential are resistant to estrogenic stimuli but responsive to bisphenol a which attenuates testosterone metabolism. PLoS One. 2013;15(8):e71722.

    Google Scholar 

  22. Nanjappa MK, Ahuja M, Dhanasekaran M, Coleman ES, Braden TD, Bartol FF, Bird RC, Wanders D, Judd RL, Akingbemi BT. Bisphenol A regulation of testicular endocrine function in male rats is affected by diet. Toxicol Lett. 2014;225(3):479–87.

    CAS  Google Scholar 

  23. Chouhan S, Yadav SK, Prakash J, Westfall S, Ghosh A, Agarwal NK, Singh SP. Increase in the expression of inducible nitric oxide synthase on exposure to bisphenol A: a possible cause for decline in steroidogenesis in male mice. Environ Toxicol Pharmacol. 2015;39(1):405–16.

    CAS  Google Scholar 

  24. Maamar MB, Lesné L, Desdoits-Lethimonier C, Coiffec I, Lassurguère J, Lavoué V, Deceuninck Y, Antignac J-P, Le Bizec B, Perdu E. An investigation of the endocrine-disruptive effects of bisphenol A in human and rat fetal testes. PLoS One. 2015;10(2):e0117226.

    PubMed Central  Google Scholar 

  25. De Vries GJ, Simerly RB. Anatomy, development, and function of sexually dimorphic neural circuits in the mammalian brain. Horm Brain Behav. 2002;4:137–91.

    Google Scholar 

  26. Rubin BS, Lenkowski JR, Schaeberle CM, Vandenberg LN, Ronsheim PM, Soto AM. Evidence of altered brain sexual differentiation in mice exposed perinatally to low, environmentally relevant levels of bisphenol A. Endocrinology. 2006;147(8):3681–91.

    CAS  Google Scholar 

  27. Funabashi T, Kawaguchi M, Furuta M, Fukushima A, Kimura F. Exposure to bisphenol A during gestation and lactation causes loss of sex difference in corticotropin-releasing hormone-immunoreactive neurons in the bed nucleus of the stria terminalis of rats. Psychoneuroendocrinology. 2004;29(4):475–85.

    CAS  Google Scholar 

  28. Kubo K, Arai O, Omura M, Watanabe R, Ogata R, Aou S. Low dose effects of bisphenol A on sexual differentiation of the brain and behavior in rats. Neurosci Res. 2003;45(3):345–56.

    CAS  Google Scholar 

  29. Meeker JD, Calafat AM, Hauser R. Urinary bisphenol A concentrations in relation to serum thyroid and reproductive hormone levels in men from an infertility clinic. Environ Sci Technol. 2009;44(4):1458–63.

    Google Scholar 

  30. Doherty LF, Bromer JG, Zhou Y, Aldad TS, Taylor HS. In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Horm Cancer. 2010;1(3):146–55.

    CAS  PubMed Central  Google Scholar 

  31. Clayton R, Erin M, Todd M, Dowd JB, Aiello AE. The impact of bisphenol A and triclosan on immune parameters in the U. S. population, NHANES 2003–2006. Environ Health Perspect. 2010;119(3):390–6.

    Google Scholar 

  32. Hassan ZK, Elobeid MA, Virk P, Omer SA, ElAmin M, Daghestani MH, AlOlayan EM. Bisphenol A induces hepatotoxicity through oxidative stress in rat model. Oxid Med Cell Longev. 2012;2012:194829.

    PubMed Central  Google Scholar 

  33. Teppala S, Madhavan S, Shankar A. Bisphenol A and metabolic syndrome: results from NHANES. Int J Endocrinol. 2012;2012:598180.

    PubMed Central  Google Scholar 

  34. Shankar A, Teppala S, Sabanayagam C. Bisphenol A and peripheral arterial disease: results from the NHANES. Environ Health Perspect. 2012;120(9):1297.

    PubMed Central  Google Scholar 

  35. Xing L, Xu Y, Xiao Y, Shang L, Liu R, Wei X, Jiang J, Hao W. Embryotoxic and teratogenic effects of the combination of bisphenol A and genistein on in vitro cultured postimplantation rat embryos. Toxicol Sci. 2010;115:577.

    CAS  Google Scholar 

  36. Mably TA, Moore RW, Peterson RE. In utero and lactational exposure of male rats to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin: I. Effects on androgenic status. Toxicol Appl Pharmacol. 1992;114(1):97–107.

    CAS  Google Scholar 

  37. Petersen M, Halling J, Weihe P, Jensen T, Grandjean P, Nielsen F, Jørgensen N. Spermatogenic capacity in fertile men with elevated exposure to polychlorinated biphenyls. Environ Res. 2015;138:345–51.

    CAS  PubMed Central  Google Scholar 

  38. Ruder AM, Hein MJ, Hopf NB, Waters MA. Mortality among 24,865 workers exposed to polychlorinated biphenyls (PCBs) in three electrical capacitor manufacturing plants: a ten-year update. Int J Hyg Environ Health. 2014;217(2):176–87.

    CAS  Google Scholar 

  39. Khan IA, Thomas P. Disruption of neuroendocrine control of luteinizing hormone secretion by Aroclor 1254 involves inhibition of hypothalamic tryptophan hydroxylase activity. Biol Reprod. 2001;64(3):955–64.

    CAS  Google Scholar 

  40. Dickerson SM, Cunningham SL, Gore AC. Prenatal PCBs disrupt early neuroendocrine development of the rat hypothalamus. Toxicol Appl Pharmacol. 2011;252(1):36–46.

    CAS  PubMed Central  Google Scholar 

  41. Vested A, Giwercman A, Bonde JP, Toft G. Persistent organic pollutants and male reproductive health. Asian J Androl. 2014;16(1):71.

    Google Scholar 

  42. Sharpe RM. Environmental/lifestyle effects on spermatogenesis. Phil Trans Roy Soc B Biol Sci. 2010;365(1546):1697–712.

    CAS  Google Scholar 

  43. Doyle TJ, Bowman JL, Windell VL, McLean DJ, Kim KH. Transgenerational effects of di-(2-ethylhexyl) phthalate on testicular germ cell associations and spermatogonial stem cells in mice. Biol Reprod. 2013;88(5):112.

    PubMed Central  Google Scholar 

  44. Chen J, Wu S, Wen S, Shen L, Peng J, Yan C, Cao X, Zhou Y, Long C, Lin T. The mechanism of environmental endocrine disruptors (DEHP) induces epigenetic transgenerational inheritance of cryptorchidism. PLoS One. 2015;10(6):e0126403.

    PubMed Central  Google Scholar 

  45. Foster P. Disruption of reproductive development in male rat offspring following in utero exposure to phthalate esters. Int J Androl. 2006;29(1):140–7.

    CAS  Google Scholar 

  46. Joensen UN, Veyrand B, Antignac J-P, Jensen MB, Petersen JH, Marchand P, Skakkebæk NE, Andersson A-M, Le Bizec B, Jørgensen N. PFOS (perfluorooctanesulfonate) in serum is negatively associated with testosterone levels, but not with semen quality, in healthy men. Hum Reprod. 2013;28(3):599–608.

    CAS  Google Scholar 

  47. López-Doval S, Salgado R, Pereiro N, Moyano R, Lafuente A. Perfluorooctane sulfonate effects on the reproductive axis in adult male rats. Environ Res. 2014;134:158–68.

    Google Scholar 

  48. Sierra-Santoyo A, Hernandez M, Albores A, Cebrian ME. DDT increases hepatic testosterone metabolism in rats. Arch Toxicol. 2005;79(1):7–12.

    CAS  Google Scholar 

  49. Ye L, Su Z-J, Ge R-S. Inhibitors of testosterone biosynthetic and metabolic activation enzymes. Molecules. 2011;16(12):9983–10001.

    CAS  PubMed Central  Google Scholar 

  50. Bhosle NB, Garg A, Jadhav S, Harjee R, Sawant SS, Venkat K, Anil A. Butyltins in water, biofilm, animals and sediments of the west coast of India. Chemosphere. 2004;57(8):897–907.

    CAS  Google Scholar 

  51. Lo S, Alléra A, Albers P, Heimbrecht J, Jantzen E, Klingmüller D, Steckelbroeck S. Dithioerythritol (DTE) prevents inhibitory effects of triphenyltin (TPT) on the key enzymes of the human sex steroid hormone metabolism. J Steroid Biochem Mol Biol. 2003;84(5):569–76.

    CAS  Google Scholar 

  52. Ohno S, Nakajima Y, Nakajin S. Triphenyltin and Tributyltin inhibit pig testicular 17β-hydroxysteroid dehydrogenase activity and suppress testicular testosterone biosynthesis. Steroids. 2005;70(9):645–51.

    CAS  Google Scholar 

  53. Doering DD, Steckelbroeck S, Doering T, Klingmüller D. Effects of butyltins on human 5α-reductase type 1 and type 2 activity. Steroids. 2002;67(10):859–67.

    CAS  Google Scholar 

  54. Janer G, Sternberg R, LeBlanc G, Porte C. Testosterone conjugating activities in invertebrates: are they targets for endocrine disruptors? Aquat Toxicol. 2005;71(3):273–82.

    CAS  Google Scholar 

  55. Clement TM, Savenkova MI, Settles M, Anway MD, Skinner MK. Alterations in the developing testis transcriptome following embryonic vinclozolin exposure. Reprod Toxicol. 2010;30(3):353–64.

    CAS  PubMed Central  Google Scholar 

  56. Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308(5727):1466–9.

    CAS  Google Scholar 

  57. Swan SH, Main KM, Liu F, Stewart SL, Kruse RL, Calafat AM, Mao CS, Redmon JB, Ternand CL, Sullivan S. Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ Health Perspect. 2005;113:1056–61.

    CAS  PubMed Central  Google Scholar 

  58. Bay K, Asklund C, Skakkebaek NE, Andersson A-M. Testicular dysgenesis syndrome: possible role of endocrine disrupters. Best Prac Res Clin Endocrinol Metab. 2006;20(1):77–90.

    CAS  Google Scholar 

  59. Gaspari L, Paris F, Philibert P, Audran F, Orsini M, Servant N, Maïmoun L, Kalfa N. Sultan C: ‘Idiopathic’ partial androgen insensitivity syndrome in 28 newborn and infant males: impact of prenatal exposure to environmental endocrine disruptor chemicals? Eur J Endocrinol. 2011;165(4):579–87.

    CAS  Google Scholar 

  60. Hauser R, Skakkebaek NE, Hass U, Toppari J, Juul A, Andersson AM, Kortenkamp A, Heindel JJ, Trasande L. Male reproductive disorders, diseases, and costs of exposure to endocrine-disrupting chemicals in the European Union. J Clin Endocrinol Metab. 2015;100(4):1267–77.

    CAS  PubMed Central  Google Scholar 

  61. Sato T, Matsumoto T, Kawano H, Watanabe T, Uematsu Y, Sekine K, Fukuda T, Aihara K-I, Krust A, Yamada T. Brain masculinization requires androgen receptor function. Proc Natl Acad Sci U S A. 2004;101(6):1673–8.

    CAS  PubMed Central  Google Scholar 

  62. Bakker J, Honda S, Harada N, Balthazart J. The aromatase knockout (ArKO) mouse provides new evidence that estrogens are required for the development of the female brain. Ann N Y Acad Sci. 2003;1007(1):251–62.

    CAS  Google Scholar 

  63. Lichtensteiger W, Bassetti-Gaille C, Faass O, Axelstad M, Boberg J, Christiansen S, Rehrauer H, Georgijevic JK, Hass U, Kortenkamp A. Differential gene expression patterns in developing sexually dimorphic rat brain regions exposed to antiandrogenic, estrogenic, or complex endocrine disruptor mixtures: glutamatergic synapses as target. Endocrinology. 2015;156(4):1477–93.

    CAS  Google Scholar 

  64. Grumbach MM, Styne DM. Puberty: ontogeny, neuroendocrinology, physiology, and disorders. Williams Textb Endocrinol. 1998;9:1509–625.

    Google Scholar 

  65. Zawatski W, Lee MM. Male pubertal development: are endocrine-disrupting compounds shifting the norms? J Endocrinol. 2013;218(2):R1–12.

    CAS  Google Scholar 

  66. Howdeshell KL, Hotchkiss AK, Thayer KA, Vandenbergh JG, Vom Saal FS. Environmental toxins: exposure to bisphenol A advances puberty. Nature. 1999;401(6755):763–4.

    CAS  Google Scholar 

  67. Ge RS, Chen GR, Dong Q, Akingbemi B, Sottas CM, Santos M, Sealfon SC, Bernard DJ, Hardy MP. Biphasic effects of postnatal exposure to diethylhexyl phthalate on the timing of puberty in male rats. J Androl. 2007;28(4):513–20.

    CAS  Google Scholar 

  68. Den Hond E, Schoeters G. Endocrine disrupters and human puberty. Int J Androl. 2006;29(1):264–71.

    Google Scholar 

  69. del Rio Gomez I, Marshall T, Tsai P, Shao Y-S, Guo YL. Number of boys born to men exposed to polychlorinated byphenyls. Lancet. 2002;360(9327):143–4.

    Google Scholar 

  70. Mieritz MG, Frederiksen H, Sørensen K, Aksglaede L, Mouritsen A, Hagen CP, Skakkebaek NE, Andersson AM, Juul A. Urinary phthalate excretion in 555 healthy Danish boys with and without pubertal gynaecomastia. Int J Androl. 2012;35(3):227–35.

    CAS  Google Scholar 

  71. Bujan L, Mansat A, Pontonnier F, Mieusset R. Time series analysis of sperm concentration in fertile men in Toulouse, France between 1977 and 1992. BMJ. 1996;312(7029):471–2.

    CAS  PubMed Central  Google Scholar 

  72. Carlsen E, Giwercman A, Keiding N, Skakkebaek NE. Evidence for decreasing quality of semen during past 50 years. BMJ. 1992;305(6854):609–13.

    CAS  PubMed Central  Google Scholar 

  73. Duty SM, Silva MJ, Barr DB, Brock JW, Ryan L, Chen Z, Herrick RF, Christiani DC, Hauser R. Phthalate exposure and human semen parameters. Epidemiology. 2003;14(3):269–77.

    Google Scholar 

  74. Jönsson BA, Richthoff J, Rylander L, Giwercman A, Hagmar L. Urinary phthalate metabolites and biomarkers of reproductive function in young men. Epidemiology. 2005;16(4):487–93.

    Google Scholar 

  75. Dallinga JW, Moonen EJ, Dumoulin JC, Evers JL, Geraedts JP, Kleinjans JC. Decreased human semen quality and organochlorine compounds in blood. Hum Reprod. 2002;17(8):1973–9.

    CAS  Google Scholar 

  76. Hsu PC, Huang W, Yao WJ, Wu MH, Guo YL, Lambert GH. Sperm changes in men exposed to polychlorinated biphenyls and dibenzofurans. JAMA. 2003;289(22):2943–4.

    CAS  Google Scholar 

  77. Mocarelli P, Gerthoux PM, Patterson Jr DG, Milani S, Limonta G, Bertona M, Signorini S, Tramacere P, Colombo L, Crespi C, Brambilla P, Sarto C, Carreri V, Sampson EJ, Turner WE, Needham LL. Dioxin exposure, from infancy through puberty, produces endocrine disruption and affects human semen quality. Environ Health Perspect. 2008;116(1):70–7.

    CAS  Google Scholar 

  78. Skakkebaek NE, Rajpert-De Meyts E, Jørgensen N, Main KM, Leffers H, Andersson AM, Juul A, Jensen TK, Toppari J. Testicular cancer trends as ‘whistle blowers’ of testicular developmental problems in populations. Int J Androl. 2007;30(4):198–204. discussion 204-205.

    CAS  Google Scholar 

  79. Hemminki K, Li X. Cancer risks in Nordic immigrants and their offspring in Sweden. Eur J Cancer. 2002;38(18):2428–34.

    CAS  Google Scholar 

  80. Hardell L, van Bavel B, Lindström G, Carlberg M, Dreifaldt AC, Wijkström H, Starkhammar H, Eriksson M, Hallquist A, Kolmert T. Increased concentrations of polychlorinated biphenyls, hexachlorobenzene, and chlordanes in mothers of men with testicular cancer. Environ Health Perspect. 2003;111(7):930–4.

    CAS  PubMed Central  Google Scholar 

  81. Zoeller RT, Brown T, Doan L, Gore A, Skakkebaek N, Soto A, Woodruff T, Vom Saal F. Endocrine-disrupting chemicals and public health protection: a statement of principles from The Endocrine Society. Endocrinology. 2012;153(9):4097–110.

    CAS  PubMed Central  Google Scholar 

  82. Gore A, Chappell V, Fenton S, Flaws J, Nadal A, Prins G, Toppari J, Zoeller R. Executive summary to EDC-2: the Endocrine Society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36(6):593–602.

    CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tânia Sanchez Bachega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fontenele, E., Quezado, R., Bachega, T.S. (2017). Testosterone and Endocrine Disruptors: Influence of Endocrine Disruptors on Male Reproductive Tract. In: Hohl, A. (eds) Testosterone. Springer, Cham. https://doi.org/10.1007/978-3-319-46086-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46086-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46084-0

  • Online ISBN: 978-3-319-46086-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics