Skip to main content

Adhesive Secretions in Echinoderms: A Review

  • Chapter
  • First Online:
Biological Adhesives

Abstract

Echinoderms are quite exceptional in the sense that most species belonging to this group use adhesive secretions extensively. Two different adhesive systems may be recognised in these animals: the tube feet, organs involved in attachment to the substratum or food capture, and the Cuvierian tubules, organs involved in defence. These two systems rely on different types of adhesion and therefore differ in the way they operate, in their structure and in the composition of their adhesive. Although tube feet are present in every extant echinoderm species, only those of asteroids and regular echinoids have been studied in detail in terms of adhesion. These organs are involved in temporary adhesion, functioning as duo-gland adhesive systems in which adhesive cells release a proteinaceous secretion, while de-adhesive cells allow detachment. To date, only two adhesive proteins have been characterized in echinoderm tube feet, i.e., Sfp1 in sea stars and Nectin in sea urchins. These two proteins do not appear to be related, but they share similar protein–carbohydrate interaction domains. Cuvierian tubules occur only in some holothuroid species. These single-use organs rely on instantaneous adhesion, their contact with a surface triggering the release of the protein-based adhesive from a single cell type. Some proteins have been identified in the adhesive, but no confirmation of their adhesive function has been provided so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ameye L, Hermann R, Dubois P, Flammang P (2000) Ultrastructure of the echinoderm cuticle after fast freezing/freeze substitution and conventional chemical fixation. Microsc Res Tech 48:385–393

    Article  CAS  PubMed  Google Scholar 

  • Baranowska M, Schloßmacher U, McKenzie JD, Muller WEG, Schroder HC (2011) Isolation and characterization of adhesive secretion from cuvierian tubules of sea cucumber Holothuria forskali (Echinodermata: Holothuroidea). Evid Based Complement Alternat Med 2011:486845

    Article  PubMed  PubMed Central  Google Scholar 

  • Becker P, Flammang P (2010) Unravelling the sticky threads of sea cucumbers. A comparative study on Cuvierian tubule morphology and histochemistry. In: von Byern J, Grunwald I (eds) Biological adhesive systems—from nature to technical and medical application. Springer, Wien, pp 87–98

    Google Scholar 

  • Cameron RA, Samanta M, Yuan A, He D, Davidson E (2009) SpBase: the sea urchin genome database and web site. Nucl Acids Res 37(Suppl 1):D750–D754

    Article  CAS  PubMed  Google Scholar 

  • Chaet AB (1965) Invertebrate adhering surfaces: secretions of the starfish, Asterias forbesi, and the coelenterate, Hydra pirardi. Ann N Y Acad Sci 118:921–992

    Article  CAS  PubMed  Google Scholar 

  • Chaet AB, Philpott DE (1964) A new subcellular particle secreted by the starfish. J Ultrastruct Res 11:354–362

    Article  CAS  PubMed  Google Scholar 

  • Costa C, Cavalcante C, Zito F, Yokota Y, Matranga V (2010) Phylogenetic analysis and homology modelling of Paracentrotus lividus nectin. Mol Divers 14:653–665

    Article  CAS  PubMed  Google Scholar 

  • David B, Mooi R (1998) Major events in the evolution of echinoderms viewed by the light of embryology. In: Mooi R, Telford M (eds) Echinoderms: San Francisco. Balkema, Rotterdam, pp 21–28

    Google Scholar 

  • Davies MS, Jones HD, Hawkins SJ (1990) Seasonal variation in the composition of pedal mucus from Patella vulgata L. J Exp Mar Biol Ecol 144:101–112

    Article  Google Scholar 

  • De Moor S, Waite JH, Jangoux M, Flammang P (2003) Characterization of the adhesive from the Cuvierian tubules of the sea cucumber Holothuria forskali (Echinodermata, Holothuroidea). Mar Biotechnol 5:37–44

    Article  Google Scholar 

  • Defretin R (1952) Etude histochimique des mucocytes des pieds ambulacraires de quelques échinodermes. Recueil des travaux de la Station Marine d’Endoume 6:31–33

    Google Scholar 

  • Delmeudre M, Chinh Ngo T, Hennebert E, Wattiez R, Leclère P, Flammang P (2014) Instantaneous adhesion of Cuvierian tubules in the sea cucumber Holothuria forskali. Biointerphases 9(2):029016

    Article  Google Scholar 

  • Endean R (1957) The Cuvierian tubules of Holothuria leucospilota. Q J Micros Sci 98:455–472

    Google Scholar 

  • Engster MS, Brown SC (1972) Histology and ultrastructure of the tube foot epithelium in the phanerozonian starfish, Astropecten. Tissue Cell 4:503–518

    Article  CAS  PubMed  Google Scholar 

  • Flammang P (1996) Adhesion in echinoderms. In: Jangoux M, Lawrence JM (eds) Echinoderm studies, vol 5. Balkema, Rotterdam, pp 1–60

    Google Scholar 

  • Flammang P (2006) Adhesive secretions in echinoderms: an overview. In: Smith AM, Callow JA (eds) Biological adhesives. Springer, Berlin, Heidelberg, pp 183–206

    Chapter  Google Scholar 

  • Flammang P, Jangoux M (1992) Functional morphology of the locomotory podia of Holothuria forskali (Echinodermata, Holothuroidea). Zoomorphology 11:167–178

    Article  Google Scholar 

  • Flammang P, Jangoux M (1993) Functional morphology of coronal and peristomeal podia in Sphaerechinus granularis (Echinodermata, Echinoida). Zoomorphology 113:47–60

    Article  Google Scholar 

  • Flammang P, Walker G (1997) Measurement of the adhesion of the podia in the asteroid Asterias rubens (Echinodermata). J Mar Biol Ass UK 77:1251–1254

    Article  Google Scholar 

  • Flammang P, Demeuleneare S, Jangoux M (1994) The role of podial secretions in adhesion in two species of sea stars (Echinodermata). Biol Bull 187:35–47

    Article  Google Scholar 

  • Flammang P, Michel A, Van Cauwenberge A, Alexandre H, Jangoux M (1998) A study of the temporary adhesion of the podia in the sea star Asterias rubens (Echinodermata, Asteroidea) through their footprints. J Exp Biol 201:2383–2395

    PubMed  Google Scholar 

  • Flammang P, Ribesse J, Jangoux M (2002) Biomechanics of adhesion in sea cucumber Cuvierian tubules (Echinodermata, Holothuroidea). Integr Comp Biol 42:1107–1115

    Article  PubMed  Google Scholar 

  • Flammang P, Santos R, Haesaerts D (2005) Echinoderm adhesive secretions: from experimental characterization to biotechnological applications. In: Matranga V (ed) Marine molecular biotechnology: echinodermata. Springer, Berlin, pp 201–220

    Google Scholar 

  • Flammang P, Lambert A, Bailly P, Hennebert E (2009) Polyphosphoprotein-containing marine adhesives. J Adhes 85:447–464

    Article  CAS  Google Scholar 

  • Gohad NV, Aldred N, Hartshorn CM, Jong Lee Y, Cicerone MT, Orihuela B, Clare AS, Rittschof D, Mount AS (2014) Synergistic roles for lipids and proteins in the permanent adhesive of barnacle larvae. Nat Commun 5:4414

    Article  CAS  PubMed  Google Scholar 

  • Grenon JF, Walker G (1980) Biochemical and rheological properties of the pedal mucus of the limpet, Patella vulgata L. Comp Biochem Physiol B 66:451–458

    Google Scholar 

  • Grenon JF, Walker G (1981) The tenacity of the limpet, Patella vulgata L.: An experimental approach. J Exp Mar Biol Ecol 54:277–308

    Article  Google Scholar 

  • Hamel J-F, Mercier A (2000) Cuvierian tubules in tropical holothurians: usefulness and efficiency as a defence mechanism. Mar Fresh Behav Physiol 33:115–139

    Article  Google Scholar 

  • Hennebert E, Viville P, Lazzaroni R, Flammang P (2008) Micro- and nanostructure of the adhesive material secreted by the tube feet of the sea star Asterias rubens. J Struct Biol 164:108–118

    Article  CAS  PubMed  Google Scholar 

  • Hennebert E, Haesaerts D, Dubois P, Flammang P (2010) Evaluation of the different forces brought into play during tube foot activities in sea stars. J Exp Biol 213:1162–1174

    Article  PubMed  Google Scholar 

  • Hennebert E, Wattiez R, Flammang P (2011) Characterisation of the carbohydrate fraction of the temporary adhesive secreted by the tube feet of the sea star Asterias rubens. Mar Biotechnol 13:484–495

    Article  CAS  PubMed  Google Scholar 

  • Hennebert E, Santos R, Flammang P (2012a) Echinoderms don’t suck: evidence against the involvement of suction in tube foot attachment. In: Kroh A, Reich M (eds) Echinoderms 2010: proceedings of the 7th European Conference on echinoderms, Zoosymposia, vol 7., pp 25–32

    Google Scholar 

  • Hennebert E, Wattiez R, Waite JH, Flammang P (2012b) Characterization of the protein fraction of the temporary adhesive secreted by the tube feet of the sea star Asterias rubens. Biofouling 28:289–303

    Article  CAS  PubMed  Google Scholar 

  • Hennebert E, Wattiez R, Demeuldre M, Ladurner P, Hwang DS, Waite JH, Flammang P (2014) Sea star tenacity mediated by a protein that fragments, then aggregates. Proc Natl Acad Sci USA 111:6317–6322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennebert E, Leroy B, Wattiez R, Ladurner P (2015a) An integrated transcriptomic and proteomic analysis of sea star epidermal secretions identifies proteins involved in defense and adhesion. J Proteomics 128:83–91

    Article  CAS  PubMed  Google Scholar 

  • Hennebert E, Maldonado B, Ladurner P, Flammang P, Santos R (2015b) Experimental strategies for the identification and characterization of adhesive proteins in animals: a review. Interface Focus 5:20140064

    Article  PubMed  PubMed Central  Google Scholar 

  • Hermans CO (1983) The duo-gland adhesive system. Oceanogr Mar Biol Ann Rev 21:281–339

    Google Scholar 

  • Higgins LJ, Mostaert AS (2013) Qualitative and quantitative study of spiny starfish (Marthasterias glacialis) footprints using atomic force microscopy. In: Santos R, Aldred N, Gorb S, Flammang P (eds) Biological and biomimetic adhesives: challenges and opportunities. RSC Publishing, Cambridge, pp 26–37

    Chapter  Google Scholar 

  • Janies DA, Witter Z, Linchangco GV, Foltz DW, Miller AK, Kerr AM, Jay J, Reid RW, Wray GA (2016) EchinoDB, an application for comparative transcriptomics of deeply-sampled clades of echinoderms. BMC Bioinf. doi:10.1186/s12859-016-0883-2

    Google Scholar 

  • Lawrence JM (1987) A functional biology of echinoderms. Croom Helm, London

    Google Scholar 

  • Lawrence JM (2001) Function of eponymous structures in echinoderms: a review. Can J Zool 79:1251–1264

    Article  Google Scholar 

  • Lebesgue N, da Costa G, Ribeiro RM, Ribeiro-Silva C, Martins GG, Matranga V, Scholten A, Cordeiro C, Heck AJR, Santos R (2016) Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach. J Proteomics 138:61–71

    Article  CAS  PubMed  Google Scholar 

  • Marchalonis JJ, Weltman JK (1971) Relatedness among proteins: a new method of estimation and its application to immunoglobins. Comp Biochem Physiol B 38:609–625

    CAS  Google Scholar 

  • Matranga V, Di Ferro D, Zito F, Cervello M, Nakano E (1992) A new extracellular matrix protein of the sea urchin embryo with properties of a substrate adhesion molecule. Roux’s Arch Dev Biol 201:173–178

    Article  CAS  Google Scholar 

  • McKenzie JD (1988) The ultrastructure of tube foot epidermal cells and secretions: Their relationship to the duo-glandular hypothesis and the phylogeny of the echinoderm classes. In: Paul CRC, Smith AB (eds) Echinoderm phylogeny and evolutionary biology. Clarendon, Oxford, pp 287–298

    Google Scholar 

  • Naldrett MJ (1993) The importance of sulphur cross-links and hydrophobic interactions in the polymerization of barnacle cement. J Mar Biol Assoc UK 73:689–702

    Article  CAS  Google Scholar 

  • Nichols D (1966) Functional morphology of the water vascular system. In: Boolootian RA (ed) Physiology of echinodermata. Interscience Publishers, New York, pp 219–244

    Google Scholar 

  • Paine VL (1926) Adhesion of the tube feet in starfishes. J Exp Zool 45:361–366

    Article  Google Scholar 

  • Peng YY, Glattauer V, Skewes TD, White JF, Nairn KM, McDevitt AN, Elvin CM, Werkmeister JA, Graham LD, Ramshaw JAM (2011) Biomimetic materials as potential medical adhesives—Composition and adhesive properties of the material coating the Cuvierian tubules expelled by Holothuria dofleinii. In: Pignatello R (ed) Biomaterials- physics and chemistry. InTech Press, Rijeka, pp 245–258

    Google Scholar 

  • Peng YY, Glattauer V, Skewes TD, McDevitt A, Elvin CM, Werkmeister JA, Graham LD, Ramshaw JAM (2014) Identification of proteins associated with adhesive prints from Holothuria dofleinii Cuvierian tubules. Mar Biotechnol 16:695–706

    Article  CAS  PubMed  Google Scholar 

  • Perpeet C, Jangoux M (1973) Contribution á l’etude des pieds et des ampoules ambulacraires d’Asterias rubens (Echinodermata, Asteroides). Forma et functio 6:191–209

    Google Scholar 

  • Ruppert EE, Fox RS, Barnes RD (2003) Invertebrate zoology: a functional evolutionary approach. Saunders College Publishers, Fort Worth

    Google Scholar 

  • Santos R, Flammang P (2006) Morphology and tenacity of tube foot disc of three common European sea urchin species: a comparative study. Biofouling 22:187–200

    Article  PubMed  Google Scholar 

  • Santos R, Flammang P (2008) Estimation of the attachment strength of the shingle sea urchin, Colobocentrotus atratus, and comparison with three sympatric echinoids. Mar Biol 154:37–49

    Article  Google Scholar 

  • Santos R, Flammang P (2012) Is the adhesive material secreted by sea urchin tube feet species-specific? J Morphol 273:40–48

    Article  PubMed  Google Scholar 

  • Santos R, Gorb S, Jamar V, Flammang P (2005a) Adhesion of echinoderm tube feet to rough surfaces. J Exp Biol 208:2555–2567

    Article  PubMed  Google Scholar 

  • Santos R, Haesaerts D, Jangoux M, Flammang P (2005b) Comparative histological and immunohistochemical study of sea star tube feet (Echinodermata, Asteroidea). J Morphol 263:259–269

    Article  PubMed  Google Scholar 

  • Santos R, Hennebert E, Varela Coelho A, Flammang P (2009a) The echinoderm tube foot and its involvement in temporary underwater adhesion. In: Gorb S (ed) Functional surfaces in biology, vol 2. Springer, Netherlands, pp 9–41

    Chapter  Google Scholar 

  • Santos R, da Costa G, Franco C, Gomes-Alves P, Flammang P, Coelho AV (2009b) First insights into the biochemistry of tube foot adhesive from the sea urchin Paracentrotus lividus (Echinoidea, Echinodermata). Mar Biotechnol 11:686–698

    Article  CAS  PubMed  Google Scholar 

  • Santos R, Barreto A, Franco C, Coelho AV (2013) Mapping sea urchins tube feet proteome—a unique hydraulic mechano-sensory adhesive organ. J Proteomics 79:100–113

    Article  CAS  PubMed  Google Scholar 

  • Smith AM, Morin MC (2002) Biochemical differences between trail mucus and adhesive mucus from marsh periwinkle snail. Biol Bull 203:338–346

    Article  CAS  PubMed  Google Scholar 

  • Smith AM, Quick TJ, St Peter RL (1999a) Differences in the composition of adhesive and non-adhesive mucus from the limpet Lottia limatula. Biol Bull 196:34–44

    Article  CAS  PubMed  Google Scholar 

  • Smith BL, Schäffer TE, Viani M, Thompson JB, Frederick NA, Kindt J, Belcher A, Stucky GD, Morse DE, Hansma PK (1999b) Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399:761–763

    Article  CAS  Google Scholar 

  • Souza Santos H, Silva Sasso W (1968) Morphological and histochemical studies on the secretory glands of starfish tube feet. Acta Anat 69:41–51

    Article  PubMed  Google Scholar 

  • Tatham AS, Shewry PR (2000) Elastomeric proteins: biological roles, structures and mechanisms. Trends Biochem Sci 25:567–571

    Article  CAS  PubMed  Google Scholar 

  • Thomas LA, Hermans CO (1985) Adhesive interactions between the tube feet of a starfish, Leptasterias hexactis, and substrata. Biol Bull 169:675–688

    Article  Google Scholar 

  • Toubarro D, Gouveia A, Ribeiro RM, Simões N, da Costa G, Cordeiro C, Santos R (2016) Cloning, characterization and expression levels of the Nectin gene from the tube feet of the sea urchin Paracentrotus lividus. Mar Biotechnol 18:372–383

    Google Scholar 

  • Tyler S (1988) The role of function in determination of homology and convergence—examples from invertebrates adhesive organs. Fortsch Zool 36:331–347

    Google Scholar 

  • Van Dyck S, Gerbaux P, Flammang P (2010) Qualitative and quantitative saponin contents in five sea cucumbers from the Indian Ocean. Mar Drugs 8:173–189

    Article  PubMed  PubMed Central  Google Scholar 

  • VandenSpiegel D, Jangoux M (1987) Cuvierian tubules of the holothuroid Holothuria forskali (Echinodermata): a morphofunctional study. Mar Biol 96:263–275

    Article  Google Scholar 

  • Vandenspiegel D, Jangoux M (1993) Fine structure and behaviour of the so-called Cuvierian organs in the holothuroid genus Actinopyga (Echinodermata). Acta Zool 74:43–50

    Article  Google Scholar 

  • VandenSpiegel D, Jangoux M, Flammang P (2000) Maintaining the line of defense: Regeneration of Cuvierian tubules in the holothuroid Holothuria forskali (Echinodermata). Biol Bull 198:34–49

    Article  CAS  PubMed  Google Scholar 

  • Waite JH (1983) Adhesion in byssally attached bivalves. Biol Rev 58:209–231

    Article  CAS  Google Scholar 

  • Waite JH (1987) Nature’s underwater adhesive specialist. Int J Adhes Adhes 7:9–14

    Article  CAS  Google Scholar 

  • Waite JH (2002) Adhesion à la moule. Integr Comp Biol 42:1172–1180

    Article  CAS  PubMed  Google Scholar 

  • Walker G (1987) Marine organisms and their adhesion. In: Wake WC (ed) Synthetic adhesives and sealants. John Wiley & Sons, Chichester, pp 112–135

    Google Scholar 

  • Whittington ID, Cribb BW (2001) Adhesive secretions in the Platyhelminthes. Adv Parasitol 48:101–224

    Article  CAS  PubMed  Google Scholar 

  • Young GA, Crisp DJ (1982) Marine animals and adhesion. In: Allen KW (ed) Adhesion, vol 6. Applied Sciences, London, pp 19–39

    Google Scholar 

  • Yule AB, Walker G (1987) Adhesion in barnacles. In: Southward AJ (ed) Crustacean issues, vol 5, Biology of Barnacles. Balkema, Rotterdam, pp 389–402

    Google Scholar 

  • Zahn RK, Müller WEG, Michaelis M (1973) Sticking mechanisms in adhesive organs from a Holothuria. Res Mol Biol 2:47–88

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Fund for Scientific Research of Belgium (F.R.S.–FNRS), by the ‘Service Public de Wallonie—Programme Winnomat 2’, by the ‘Communauté française de Belgique—Actions de Recherche Concertées’ and by COST Action TD0906. P.F. is Research Director of the F.R.S.-FNRS. RS is supported by Fundação para a Ciência e Tecnologia through a post-doctoral grant (SFRH/BPD/109081/2015). This study is a contribution from the ‘Centre Interuniversitaire de Biologie Marine’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Flammang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Flammang, P., Demeuldre, M., Hennebert, E., Santos, R. (2016). Adhesive Secretions in Echinoderms: A Review. In: Smith, A. (eds) Biological Adhesives. Springer, Cham. https://doi.org/10.1007/978-3-319-46082-6_9

Download citation

Publish with us

Policies and ethics