Skip to main content

A Brief History of the GABAB Receptor

  • Chapter
  • First Online:
GABAB Receptor

Part of the book series: The Receptors ((REC,volume 29))

  • 899 Accesses

Abstract

Discovery of the novel receptor for GABA, GABAB, arose during an attempt to model central primary afferent GABA receptors using sympathetic ganglia. The presence of chloride-dependent GABA receptors on ganglion cell bodies had been established in the early 1970s and this prompted us to consider the possibility that the receptors were also on the efferent nerve fibres of these cells and on the nerve terminal membranes. To pursue this, we examined the influence of GABA and its analogues on the evoked release of radiolabelled noradrenaline from sympathetic nerve fibres innervating rat isolated atria. A reduction in the release of noradrenaline would provide an indirect measure of receptor activation. As predicted, GABA reduced the evoked release but this effect was not blocked by GABA antagonists such as bicuculline and was not mimicked by muscimol but was mimicked by β-chlorophenyl GABA (baclofen). Further studies on the release of radiolabelled noradrenaline from rat brain cortex slices revealed a similar effect. Subsequently, in 1981, we were able to demonstrate the presence of a baclofen-sensitive 3H-GABA binding site on rat cortical membranes. It was at this stage we were able to designate this novel site ‘GABAB’ to contrast with the classical ‘GABAA’ site. The structure of this novel site only emerged some two decades later enabling a greater understanding of the potential physiological and pharmacological roles of the receptor to be made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Hafez, A. A., & Abdel-Wahab, B. A. (2008). 5-(4-Chlorophenyl)-5,6-dihydro-1,3-oxazepin-7(4H)-one derivatives as lipophilic cyclic analogues of baclofen: Design, synthesis, and neuropharmacological evaluation. Bioorganic & Medicinal Chemistry, 16(17), 7983–7991.

    Article  CAS  Google Scholar 

  • Adams, P. R., & Brown, D. A. (1975). Actions of γ-aminobutyric acid on sympathetic ganglion cells. Journal of Physiology (London), 250, 85–120.

    Article  CAS  Google Scholar 

  • Barral, J., Toro, S., Galarraga, E., & Bargas, J. (2000). GABAergic presynaptic inhibition of rat neostriatal afferents is mediated by Q-type Ca++ channels. Neuroscience Letters, 283, 33–36.

    Article  CAS  PubMed  Google Scholar 

  • Bowery, N. G., Bettler, B., Froestl, W., Gallagher, J. P., Marshall, F., Raiteri, M., et al. (2002). Mammalian gamma-aminobutyric acid (B) receptor: Structure and function. Pharmacological Reviews, 54(2), 247–264.

    Article  CAS  PubMed  Google Scholar 

  • Bowery, N. G., & Brown, D. A. (1974). Depolarising actions of γ-aminobutyric acid and related compounds on rat superior cervical ganglia in vitro. British Journal of Pharmacology, 50, 205–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowery, N. G., Doble, A., Hill, D. R., Hudson, A. L., Shaw, J. S., Turnbull, M. J., et al. (1981). Bicuculline-insensitive GABA receptors on peripheral autonomic nerve terminals. European Journal of Pharmacology, 73, 53–70.

    Article  Google Scholar 

  • Bowery, N. G., Hill, D. R., Hudson, A. L., Doble, A., Middlemiss, D. N., Shaw, J., et al. (1980). (−) Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature, 283, 92–94.

    Google Scholar 

  • Bowery, N. G., Hill, D. R., & Hudson, A. L. (1983). Characteristics of GABAB receptor binding sites on rat whole brain synaptic membranes. British Journal of Pharmacology, 78, 191–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowery, N. G., Price, G. W. P., & Hudson, A. L. (1987). GABAA and GABAB receptor site distribution in rat central nervous system. Neuroscience, 20, 365–385.

    Article  CAS  PubMed  Google Scholar 

  • Carai, M. A. M., Colombo, G., Froestl, W., & Gessa, G. L. (2004). In vivo effectiveness of CGP7930, a positive allosteric modulator of the GABAB receptor. European Journal of Pharmacology, 504, 213–216.

    Article  CAS  PubMed  Google Scholar 

  • Charles, K. J., Evans, M. L., Robbins, M. J., Calver, A. R., Leslie, R. A., & Pangalos, M. N. (2001). Comparative immunohistochemical localization of GABAB1a, GABAB1b, GABAB2 subunits in rat brain, spinal cord, and dorsal root ganglion. Neuroscience, 106, 447–467.

    Article  CAS  PubMed  Google Scholar 

  • Chu, D. C. M., Albin, R. L., Young, A. B., & Penney, J. B. (1990). Distribution and kinetics of GABAB binding sites in rat central nervous system: A quantitative autoradiographic study. Neuroscience, 34, 341–357.

    Article  CAS  PubMed  Google Scholar 

  • Cunningham, M., & Enna, S. J. (1997). Cellular and biochemical responses to GABAB receptor activation. In S. J. Enna & N. G. Bowery (Eds.), The GABA receptors (pp. 237–258). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  • Curtis, D. R. (1977). Pre- and non-synaptic activities of GABA and related amino acids in the mammalian nervous system. In F. Fonnum (Ed.), Amino acids as chemical transmitters (pp. 55–86). New York: Plenum Press.

    Google Scholar 

  • Deguchi, Y., Inabe, K., Tomiyasu, K., Nozawa, K., Yamada, S., & Kimura, R. (1995). Study on brain interstitial fluid distribution and blood-brain barrier transport of baclofen in rats by microdialysis. Pharmaceutical Research, 12, 1838–1844.

    Article  CAS  PubMed  Google Scholar 

  • Doze, V. A., Cohen, G. A., & Madison, D. V. (1995). Calcium channel involvement in GABAB receptor-mediated inhibition of GABA release in area CA1 of the rat hippocampus. Journal of Neurophysiology, 74, 43–53.

    CAS  PubMed  Google Scholar 

  • Dunlap, K. (1981). Two types of γ-aminobutyric acid receptor on embryonic sensory neurons. British Journal of Pharmacology, 74, 579–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durkin, M. M., Gunwaldsen, C. A., Borowsky, B., Jones, K. A., & Branchek, T. A. (1999). An in situ hybridization study of the distribution of the GABA(B2) protein mRNA in the rat CNS. Molecular Brain Research, 71, 185–200.

    Article  CAS  PubMed  Google Scholar 

  • Dutar, P., & Nicoll, R. A. (1988). A physiological role for GABAB receptors in the central nervous system. Nature, 332, 156–158.

    Article  CAS  PubMed  Google Scholar 

  • Enna, S. J., & Snyder, S. (1975). Properties of γ-aminobutyric acid (GABA) receptor binding in rat brain membrane fractions. Brain Research, 100, 81–97.

    Article  CAS  PubMed  Google Scholar 

  • Enna, S. J., & Snyder, S. (1977). Influence of ions, enzymes detergents on γ-aminobutyric acid receptor binding in synaptic membranes of rat brain. Molecular Pharmacology, 13, 442–453.

    CAS  PubMed  Google Scholar 

  • Erdo, S. L., & Bowery, N. G. (Eds.). (1986). GABAergic mechanisms in the mammalian periphery. New York: Raven.

    Google Scholar 

  • Froestl, W., Mickel, S. J., Schmutz, M., et al. (1996). Potent, orally active GABAB receptor antagonists. Pharmacology Reviews and Communications, 8, 127–133.

    CAS  Google Scholar 

  • Froestl, W., Mickel, S. J., von Sprecher, G., Diel, P. J., Hall, R. G., Maier, L., et al. (1995). Phosphinic acid analogues of GABA 2. Selective orally active GABAB antagonists. Journal of Medicinal Chemistry, 38, 3313–3331.

    Article  CAS  PubMed  Google Scholar 

  • Gage, P. W. (1992). Activation and modulation of neuronal K+ channels by GABA. Trends in Neurosciences, 15, 46–51.

    Article  CAS  PubMed  Google Scholar 

  • Hill, D. R. (1985). GABAB receptor modulation of adenylatecyclase activity in rat brain slices. British Journal of Pharmacology, 84, 249–257.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hill, D. R., & Bowery, N. G. (1981). 3H-Baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain. Nature, 290, 149–152.

    Article  CAS  PubMed  Google Scholar 

  • Isaacson, J. S. (1998). GABAB receptor-mediated modulation of presynaptic currents and excitatory transmission at a fast central synapse. Journal of Neurophysiology, 80, 1571–1576.

    CAS  PubMed  Google Scholar 

  • Isaacson, J. S., Solis, J. M., & Nicoll, R. A. (1993). Local and diffuse synaptic actions of GABA in the hippocampus. Neuron, 10, 165–175.

    Article  CAS  PubMed  Google Scholar 

  • Iversen, L. L. (1963). The uptake of noradrenaline by the isolated perfused rat heart. British Journal of Pharmacology and Chemotherapy, 21, 523–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang, E. Y., Choe, E. S., Hwang, M., Kim, S. C., Lee, J. R., Kim, S. G., et al. (2008). Isoliquiritigenin suppresses cocaine induced extracellulardopamine release in rat brain through GABA(B) receptor. European Journal of Pharmacology, 587, 124–128.

    Article  CAS  PubMed  Google Scholar 

  • Jones, K. A., Borowsky, B., Tamm, J. A., Craig, D. A., Durkin, M. M., Dai, M., et al. (1998). GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2. Nature, 396, 674–679.

    Article  CAS  PubMed  Google Scholar 

  • Karbon, E. W., Duman, R. S., & Enna, S. J. (1984). GABAB receptors and norepinephrine-stimulated cAMP production in rat brain cortex. Brain Research, 306, 327–332.

    Article  CAS  PubMed  Google Scholar 

  • Kaupmann, K., Malitschek, B., Schuler, V., Heid, J., Froestl, W., Beck, P., et al. (1998). GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature, 396, 683–687.

    Article  CAS  PubMed  Google Scholar 

  • Keberle H. Faigle J.W. and Wilhelm M. (1968, April 11) Procedure for the preparation of new aminoacids. Swiss Patent 449046 (Priority 9 July 1963).

    Google Scholar 

  • Kerr, D. I. B., Ong, J., Johnson, G. A. R., Abbenante, J., & Prager, R. H. (1988). 2-Hydroxy-saclofen: An improved antagonist at central and peripheral GABAB receptors. Neuroscience Letters, 92, 92–96.

    Article  CAS  PubMed  Google Scholar 

  • Kerr, D. I. B., Ong, J., Prager, R. H., Gynther, B. D., & Curtis, D. R. (1987). Phaclofen: A peripheral and central baclofen antagonist. Brain Research, 405, 150–154.

    Article  CAS  PubMed  Google Scholar 

  • Kleinrok, A., & Kilbinger, H. (1983). γ-Aminobutyric acid and cholinergic transmission in the guinea-pig ileum. Naunyn-Schmiedeberg’s Archives of Pharmacology, 322, 216–220.

    Article  CAS  PubMed  Google Scholar 

  • Knight, A. R., & Bowery, N. G. (1996). The pharmacology of adenylyl cyclase modulation by GABAB in rat brain slices. Neuropharmacology, 35, 703–712.

    Article  CAS  PubMed  Google Scholar 

  • Lambert, N. A., & Wilson, W. A. (1996). High-threshold Ca2+ currents in rat hippocampal interneurons and their selective inhibition by activation of GABAB receptors. Journal of Physiology, 492, 115–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann, A., Jensen, J. M., & Boeckxstaens, G. E. (2010). GABAB receptor agonism as a novel therapeutic modality in the treatment of gastroesophageal reflux disease. Advances in Pharmacology, 58, 287–313.

    Article  CAS  PubMed  Google Scholar 

  • Leisen, C., Langguth, P., & Herbert, B. (2003). Lipophilicities of baclofen ester prodrugs correlate with affinities to the ATP-dependent efflux pump P-glycoprotein: Relevance for their permeation across the blood-brain barrier? Pharmaceutical Research, 20, 772–778.

    Article  CAS  PubMed  Google Scholar 

  • Luscher, C., Jan, I. Y., & Stoffel, M. (1997). (1997) G-protein coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron, 19(3), 687–695.

    Article  CAS  PubMed  Google Scholar 

  • Margeta-Metrovic, M., Mitrovic, I., Riley, R. C., Jan, L. Y., & Basbaum, A. I. (1999). Immunohistochemical localization of GABA(B) receptors in the rat central nervous system. Journal of Comparative Neurology, 405, 299–321.

    Article  Google Scholar 

  • Nicoll, R. A. (2004). My close encounter with GABAB receptors. Biochemical Pharmacology, 68, 1667–1674.

    Article  CAS  PubMed  Google Scholar 

  • Odagaki, Y., & Koyama, T. (2001). Identification of G alpha subtype(s) involved in gamma-aminobutyric acid (B) receptor-mediated high-affinity guanosine triphosphate activity in rat cerebral cortical membranes. Neuroscience Letters, 297, 137–141.

    Article  CAS  PubMed  Google Scholar 

  • Olpe, H.-R., Demieville, H., Baltzer, V., Bencze, W. L., Koella, W. P., Wolf, P., et al. (1978). The biological activity of D- and L-baclofen (Lioresal). European Journal of Pharmacology, 52, 133–136.

    Article  CAS  PubMed  Google Scholar 

  • Ong, J., & Kerr, D. I. B. (1983). GABAA- and GABAB-receptor-mediated modification of intestinal motility. European Journal of Pharmacology, 86, 9–17.

    Article  Google Scholar 

  • Penn, R. D., & Kroin, J. S. (1984). Intrathecal baclofen alleviates spinal cord spasticity. Lancet, 323(8385), 1078.

    Article  Google Scholar 

  • Penn, R. D., & Kroin, J. S. (1985). Continuous intrathecal baclofen for severe spasticity. Lancet, 326(8447), 125–127.

    Article  Google Scholar 

  • Santos, A. E., Carvalho, C. M., Macedo, T. A., & Carvalho, A. P. (1995). Regulation of intracellular [Ca2+] GABA release by presynaptic GABAB receptors in rat cerebrocortical synaptosomes. Neurochemistry International, 27, 397–406.

    Article  CAS  PubMed  Google Scholar 

  • Smith, M. A., Yancey, D. I., Morgan, D., Liu, Y., Froestl, W., & Roberts, D. C. (2004). Effects of positive allosteric modulators of the GABAB receptor on cocaine self-administration in rats. Psychopharmacology, 173, 105–111.

    Article  CAS  PubMed  Google Scholar 

  • Trendelenburg, A. U., Sutel, I., Wahl, C. A., Molderings, G. J., Rump, L. C., & Starke, K. (1997). A re-investigation of Questionable subclassifications of presynaptic alpha2-autoreceptors: Rat vena cava, rat atria, human kidney and guinea-pig urethra. Naunyn-Schmiedeberg’s Archives of Pharmacology, 356, 721–737.

    Article  CAS  PubMed  Google Scholar 

  • Urwyler, S., Mosbacher, J., Lingenhoehl, K., Heid, J., Hofstetter, K., Froestl, W., et al. (2001). Positive allosteric modulation of native and recombinant γ-aminobutyric acidB receptors by 2,6-di-tert-butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol (CGP7930) and its aldehyde analog CGP13501. Molecular Pharmacology, 60, 963–971.

    CAS  PubMed  Google Scholar 

  • Van Bree, J. B., Heijligers-Feijen, C. D., De Boer, A. G., Danhof, M., & Breimer, D. D. (1991). Stereoselective transport of baclofen across the blood-brain barrier in rats as determined by the unit impulse response methodology. Pharmaceutical Research, 8, 259–262.

    Article  PubMed  Google Scholar 

  • Wagner, P. G., & Deakin, M. S. (1993). GABAB receptors are coupled to a barium-insensitive outward rectifying potassium conductance in premotor respiratory neurons. Journal of Neurophysiology, 69, 286–289.

    CAS  PubMed  Google Scholar 

  • White, J. H., Wise, A., Main, M., Green, A., Fraser, N. J., Disney, G. H., et al. (1998). Heterodimerization is required for the formation of a functional GABAB receptor. Nature, 396, 679–682.

    Article  CAS  PubMed  Google Scholar 

  • Wu, I. G., & Saggau, P. (1995). GABAB receptor-mediated presynaptic inhibition in guinea-pig hippocampus is caused by reduction of presynaptic Ca++ influx. Journal of Physiology, 485, 649–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, F., Peng, G., Phan, T., Dilip, U., Chen, J. L., Chernov-Rogan, T., et al. (2011). Discovery of novel potent GABA(B) receptor agonist. Bioorganic & Medicinal Chemistry Letters, 21(21), 6582–6585.

    Article  CAS  Google Scholar 

  • Xu, J., & Wojcik, W. J. (1986). Gamma aminobutyric acid B receptor-mediated inhibition of adenylatecyclase in cultured cerebellar granule cells. Blockade by islet-activating protein. Journal of Pharmacology and Experimental Therapeutics, 239, 568–573.

    CAS  PubMed  Google Scholar 

  • Zukin, S., Young, A., & Snyder, S. (1974). Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system. Proceedings of the National Academy of Sciences of the United States of America, 71, 4802–4807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman G. Bowery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bowery, N.G. (2016). A Brief History of the GABAB Receptor. In: Colombo, G. (eds) GABAB Receptor. The Receptors, vol 29. Humana Press, Cham. https://doi.org/10.1007/978-3-319-46044-4_1

Download citation

Publish with us

Policies and ethics