Skip to main content

Pulmonary Vascular Disease in Patients with Fontan-Type Circulation

  • Chapter
  • First Online:
Pulmonary Hypertension in Adult Congenital Heart Disease

Part of the book series: Congenital Heart Disease in Adolescents and Adults ((CHDAA))

Abstract

Functionally univentricular hearts represent 3–5% of all congenital heart diseases, including patient post-surgical palliation with a Fontan-type circulation. In this situation, the only functional ventricle is used to sustain systemic output. Consequently, there is no sub-pulmonary ventricle, and pulmonary blood flow is mainly passive and dependent of elevated systemic venous pressure and negative intrathoracic pressure during inspiration as the driving forces. A low pulmonary vascular resistance is crucial for the optimal functioning of the Fontan circulation. However, pulmonary vascular resistance may be elevated due to neonatal cyanosis as well as pulmonary hyper- or hypo-perfusion. Furthermore, non-pulsatile pulmonary blood flow among other factors in the Fontan-type circulation may cause an increase in pulmonary vascular resistance over time. Modulation of pulmonary blood flow is challenging. Conventional heart failure therapy fails to improve cardiac output in most Fontan patients, whereas direct modulation of pulmonary vascular resistance by the three different pathways of prostacyclin, nitric oxide and endothelin pathway may improve haemodynamics to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACE:

angiotensin converting enzyme

BDG:

bidirectional Glenn

BSA:

body surface area

CHD:

congenital heart disease

HTx:

heart transplantation

ICD:

implantable cardioverter defibrillator

IVIG:

intravenous immunoglobulin

IVC:

inferior vena cava

MCT:

medium-chained triglyceride

MPA:

main pulmonary artery

MRI:

magnetic resonance imaging

PA:

pulmonary artery

PVR:

pulmonary vascular resistance

RA:

right atrium

SVC:

superior vena cava

TCPC:

total cavopulmonary connection

UVH:

univentricular heart

References

  1. Idorn L, Olsen M, Jensen AS, Juul K, Reimers JI, Sorensen K, Johnsen SP, Sondergaard L (2013) Univentricular hearts in Denmark 1977 to 2009: incidence and survival. Int J Cardiol 167:1311–1316

    Article  CAS  PubMed  Google Scholar 

  2. Moons P, Sluysmans T, De WD, Massin M, Suys B, Benatar A, Gewillig M (2009) Congenital heart disease in 111 225 births in Belgium: birth prevalence, treatment and survival in the 21st century. Acta Paediatr 98:472–477

    Article  PubMed  Google Scholar 

  3. Ghanayem NS, Berger S, Tweddell JS (2007) Medical management of the failing Fontan. Pediatr Cardiol 28:465–471

    Article  CAS  PubMed  Google Scholar 

  4. Jacobs ML, Anderson RH (2006) Nomenclature of the functionally univentricular heart. Cardiol Young 16(Suppl 1):3–8

    Article  PubMed  Google Scholar 

  5. Fontan F, Baudet E (1971) Surgical repair of tricuspid atresia. Thorax 26:240–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fixler DE, Nembhard WN, Salemi JL, Ethen MK, Canfield MA (2010) Mortality in first 5 years in infants with functional single ventricle born in Texas, 1996 to 2003. Circulation 121:644–650

    Article  PubMed  Google Scholar 

  7. d’Udekem Y, Iyengar AJ, Cochrane AD, Grigg LE, Ramsay JM, Wheaton GR, Penny DJ, Brizard CP (2007) The Fontan procedure: contemporary techniques have improved long-term outcomes. Circulation 116:I157–I164

    PubMed  Google Scholar 

  8. Driscoll DJ (2007) Long-term results of the Fontan operation. Pediatr Cardiol 28:438–442

    Article  CAS  PubMed  Google Scholar 

  9. Choussat A, Fontan F, Besse P, Vallot F, Chauve A, Bricaud H (1978) Selection criteria for Fontan’s procedure. In: Andersson RH, Shinebourne EA (eds) Pediatric cardiology, 1977. Churchill Livingstone, Edingburgh, pp 559–566

    Google Scholar 

  10. Kreutzer G, Galindez E, Bono H, De PC, Laura JP (1973) An operation for the correction of tricuspid atresia. J Thorac Cardiovasc Surg 66:613–621

    CAS  PubMed  Google Scholar 

  11. Bjork VO, Olin CL, Bjarke BB, Thoren CA (1979) Right atrial-right ventricular anastomosis for correction of tricuspid atresia. J Thorac Cardiovasc Surg 77:452–458

    CAS  PubMed  Google Scholar 

  12. Driscoll DJ, Offord KP, Feldt RH, Schaff HV, Puga FJ, Danielson GK (1992) Five- to fifteen-year follow-up after Fontan operation. Circulation 85:469–496

    Article  CAS  PubMed  Google Scholar 

  13. Duncan BW, Desai S (2003) Pulmonary arteriovenous malformations after cavopulmonary anastomosis. Ann Thorac Surg 76:1759–1766

    Article  PubMed  Google Scholar 

  14. de Leval MR, Kilner P, Gewillig M, Bull C (1988) Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations. Experimental studies and early clinical experience. J Thorac Cardiovasc Surg 96:682–695

    PubMed  Google Scholar 

  15. Marcelletti C, Corno A, Giannico S, Marino B (1990) Inferior vena cava-pulmonary artery extracardiac conduit. A new form of right heart bypass. J Thorac Cardiovasc Surg 100:228–232

    CAS  PubMed  Google Scholar 

  16. Deal BJ, Mavroudis C, Backer CL (2007) Arrhythmia management in the Fontan patient. Pediatr Cardiol 28:448–456

    Article  CAS  PubMed  Google Scholar 

  17. Azakie A, McCrindle BW, Van AG, Benson LN, Coles J, Hamilton R, Freedom RM, Williams WG (2001) Extracardiac conduit versus lateral tunnel cavopulmonary connections at a single institution: impact on outcomes. J Thorac Cardiovasc Surg 122:1219–1228

    Article  CAS  PubMed  Google Scholar 

  18. Robbers-Visser D, Miedema M, Nijveld A, Boersma E, Bogers AJ, Haas F, Helbing WA, Kapusta L (2010) Results of staged total cavopulmonary connection for functionally univentricular hearts; comparison of intra-atrial lateral tunnel and extracardiac conduit. Eur J Cardiothorac Surg 37:934–941

    Article  PubMed  Google Scholar 

  19. Stewart RD, Pasquali SK, Jacobs JP, Benjamin DK, Jaggers J, Cheng J, Mavroudis C, Jacobs ML (2012) Contemporary Fontan operation: association between early outcome and type of cavopulmonary connection. Ann Thorac Surg 93:1254–1260

    Article  PubMed  PubMed Central  Google Scholar 

  20. Stephenson EA, Lu M, Berul CI, Etheridge SP, Idriss SF, Margossian R, Reed JH, Prakash A, Sleeper LA, Vetter VL, Blaufox AD (2010) Arrhythmias in a contemporary fontan cohort: prevalence and clinical associations in a multicenter cross-sectional study. J Am Coll Cardiol 56:890–896

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bridges ND, Lock JE, Castaneda AR (1990) Baffle fenestration with subsequent transcatheter closure. Modification of the Fontan operation for patients at increased risk. Circulation 82:1681–1689

    Article  CAS  PubMed  Google Scholar 

  22. Kim SJ, Kim WH, Lim HG, Lee JY (2008) Outcome of 200 patients after an extracardiac Fontan procedure. J Thorac Cardiovasc Surg 136:108–116

    Article  PubMed  Google Scholar 

  23. Airan B, Sharma R, Choudhary SK, Mohanty SR, Bhan A, Chowdhari UK, Juneja R, Kothari SS, Saxena A, Venugopal P (2000) Univentricular repair: is routine fenestration justified? Ann Thorac Surg 69:1900–1906

    Article  CAS  PubMed  Google Scholar 

  24. Lemler MS, Scott WA, Leonard SR, Stromberg D, Ramaciotti C (2002) Fenestration improves clinical outcome of the fontan procedure: a prospective, randomized study. Circulation 105:207–212

    Article  PubMed  Google Scholar 

  25. Baumgartner H, Bonhoeffer P, De Groot NM, de HF DJE, Galie N, Gatzoulis MA, Gohlke-Baerwolf C, Kaemmerer H, Kilner P, Meijboom F, Mulder BJ, Oechslin E, Oliver JM, Serraf A, Szatmari A, Thaulow E, Vouhe PR, Walma E (2010) ESC Guidelines for the management of grown-up congenital heart disease (new version 2010). Eur Heart J 31:2915–2957

    Article  PubMed  Google Scholar 

  26. Goff DA, Blume ED, Gauvreau K, Mayer JE, Lock JE, Jenkins KJ (2000) Clinical outcome of fenestrated Fontan patients after closure: the first 10 years. Circulation 102:2094–2099

    Article  CAS  PubMed  Google Scholar 

  27. Ono M, Boethig D, Goerler H, Lange M, Westhoff-Bleck M, Breymann T (2006) Clinical outcome of patients 20 years after Fontan operation—effect of fenestration on late morbidity. Eur J Cardiothorac Surg 30:923–929

    Article  PubMed  Google Scholar 

  28. Jacobs ML, Rychik J, Rome JJ, Apostolopoulou S, Pizarro C, Murphy JD, Norwood WI Jr (1996) Early reduction of the volume work of the single ventricle: the hemi-Fontan operation. Ann Thorac Surg 62:456–461

    Article  CAS  PubMed  Google Scholar 

  29. Norwood WI, Jacobs ML (1993) Fontan’s procedure in two stages. Am J Surg 166:548–551

    Article  CAS  PubMed  Google Scholar 

  30. Ghanayem NS, Tweddell JS, Hoffman GM, Mussatto K, Jaquiss RD (2006) Optimal timing of the second stage of palliation for hypoplastic left heart syndrome facilitated through home monitoring, and the results of early cavopulmonary anastomosis. Cardiol Young 16(Suppl 1):61–66

    Article  PubMed  Google Scholar 

  31. Jaquiss RD, Ghanayem NS, Hoffman GM, Fedderly RT, Cava JR, Mussatto KA, Tweddell JS (2004) Early cavopulmonary anastomosis in very young infants after the Norwood procedure: impact on oxygenation, resource utilization, and mortality. J Thorac Cardiovasc Surg 127:982–989

    Article  PubMed  Google Scholar 

  32. Petrucci O, Khoury PR, Manning PB, Eghtesady P (2010) Outcomes of the bidirectional Glenn procedure in patients less than 3 months of age. J Thorac Cardiovasc Surg 139:562–568

    Article  PubMed  Google Scholar 

  33. Tanoue Y, Sese A, Ueno Y, Joh K, Hijii T (2001) Bidirectional Glenn procedure improves the mechanical efficiency of a total cavopulmonary connection in high-risk fontan candidates. Circulation 103:2176–2180

    Article  CAS  PubMed  Google Scholar 

  34. Kaulitz R, Hofbeck M (2005) Current treatment and prognosis in children with functionally univentricular hearts. Arch Dis Child 90:757–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ciliberti P, Schulze-Neick I, Giardini A (2012) Modulation of pulmonary vascular resistance as a target for therapeutic interventions in Fontan patients: focus on phosphodiesterase inhibitors. Futur Cardiol 8:271–284

    Article  Google Scholar 

  36. Sidi D (2005) Cardiac and pulmonary physiology in the functionally univentricular circulation with reference to the total cavo-pulmonary connection. Cardiol Young 15(Suppl 3):26–30

    Article  PubMed  Google Scholar 

  37. Gewillig M, Brown SC, Heying R, Eyskens B, Ganame J, Boshoff DE, Budts W, Gorenflo M (2010) Volume load paradox while preparing for the Fontan: not too much for the ventricle, not too little for the lungs. Interact Cardiovasc Thorac Surg 10:262–265

    Article  PubMed  Google Scholar 

  38. Sluysmans T, Sanders SP, van der Velde M, Matitiau A, Parness IA, Spevak PJ, Mayer JE Jr, Colan SD (1992) Natural history and patterns of recovery of contractile function in single left ventricle after Fontan operation. Circulation 86:1753–1761

    Article  CAS  PubMed  Google Scholar 

  39. Cilliers A, Gewillig M (2002) Fontan procedure for univentricular hearts: have changes in design improved outcome? Cardiovasc J S Afr 13:111–116

    PubMed  Google Scholar 

  40. Gewillig M, Daenen W, Aubert A, Van der Hauwaert L (1992) Abolishment of chronic volume overload. Implications for diastolic function of the systemic ventricle immediately after Fontan repair. Circulation 86:II93–II99

    CAS  PubMed  Google Scholar 

  41. Gewillig M, Brown SC, Eyskens B, Heying R, Ganame J, Budts W, La GA, Gorenflo M (2010) The Fontan circulation: who controls cardiac output? Interact Cardiovasc Thorac Surg 10:428–433

    Article  PubMed  Google Scholar 

  42. Schmitt B, Steendijk P, Ovroutski S, Lunze K, Rahmanzadeh P, Maarouf N, Ewert P, Berger F, Kuehne T (2010) Pulmonary vascular resistance, collateral flow, and ventricular function in patients with a Fontan circulation at rest and during dobutamine stress. Circ Cardiovasc Imaging 3:623–631

    Article  PubMed  Google Scholar 

  43. Beghetti M (2010) Fontan and the pulmonary circulation: a potential role for new pulmonary hypertension therapies. Heart 96:911–916

    Article  PubMed  Google Scholar 

  44. Gentles TL, Mayer JE Jr, Gauvreau K, Newburger JW, Lock JE, Kupferschmid JP, Burnett J, Jonas RA, Castaneda AR, Wernovsky G (1997) Fontan operation in five hundred consecutive patients: factors influencing early and late outcome. J Thorac Cardiovasc Surg 114:376–391

    Article  CAS  PubMed  Google Scholar 

  45. Griffiths ER, Kaza AK, Wyler von Ballmoos MC, Loyola H, Valente AM, Blume ED, del Nido P (2009) Evaluating failing Fontans for heart transplantation: predictors of death. Ann Thorac Surg 88:558–563

    Article  PubMed  PubMed Central  Google Scholar 

  46. Redington AN (2006) The physiology of the Fontan circulation. Prog Pediatr Cardiol 22:179–186

    Article  Google Scholar 

  47. Zongtao Y, Huishan W, Zengwei W, Hongyu Z, Minhua F, Xinmin L, Nanbin Z, Hongguang H (2010) Experimental study of nonpulsatile flow perfusion and structural remodeling of pulmonary microcirculation vessels. Thorac Cardiovasc Surg 58:468–472

    Article  CAS  PubMed  Google Scholar 

  48. Henaine R, Vergnat M, Bacha EA, Baudet B, Lambert V, Belli E, Serraf A (2013) Effects of lack of pulsatility on pulmonary endothelial function in the Fontan circulation. J Thorac Cardiovasc Surg 146:522–529

    Article  CAS  PubMed  Google Scholar 

  49. Kurotobi S, Sano T, Kogaki S, Matsushita T, Miwatani T, Takeuchi M, Matsuda H, Okada S (2001) Bidirectional cavopulmonary shunt with right ventricular outflow patency: the impact of pulsatility on pulmonary endothelial function. J Thorac Cardiovasc Surg 121:1161–1168

    Article  CAS  PubMed  Google Scholar 

  50. Idorn L, Hanel B, Jensen AS, Juul K, Reimers JI, Nielsen KG, Sondergaard L (2014) New insights into the aspects of pulmonary diffusing capacity in Fontan patients. Cardiol Young 24:311–320

    Article  PubMed  Google Scholar 

  51. Jaryszak EM, Baumgartner WA Jr, Peterson AJ, Presson RG Jr, Glenny RW, Wagner WW Jr (2000) Selected contribution: measuring the response time of pulmonary capillary recruitment to sudden flow changes. J Appl Physiol (1985) 89:1233–1238

    CAS  Google Scholar 

  52. Khambadkone S, Li J, de Leval MR, Cullen S, Deanfield JE, Redington AN (2003) Basal pulmonary vascular resistance and nitric oxide responsiveness late after Fontan-type operation. Circulation 107:3204–3208

    Article  CAS  PubMed  Google Scholar 

  53. Varma C, Warr MR, Hendler AL, Paul NS, Webb GD, Therrien J (2003) Prevalence of “silent” pulmonary emboli in adults after the Fontan operation. J Am Coll Cardiol 41:2252–2258

    Article  PubMed  Google Scholar 

  54. Kovacs G, Berghold A, Scheidl S, Olschewski H (2009) Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J 34:888–894

    Article  CAS  PubMed  Google Scholar 

  55. Gewillig M (2005) The Fontan circulation. Heart 91:839–846

    Article  PubMed  PubMed Central  Google Scholar 

  56. Humbert M, Sitbon O, Simonneau G (2004) Treatment of pulmonary arterial hypertension. N Engl J Med 351:1425–1436

    Article  CAS  PubMed  Google Scholar 

  57. Yamagishi M, Kurosawa H, Hashimoto K, Nomura K, Kitamura N (2002) The role of plasma endothelin in the Fontan circulation. J Cardiovasc Surg 43:793–797

    CAS  Google Scholar 

  58. Inai K, Nakanishi T, Nakazawa M (2005) Clinical correlation and prognostic predictive value of neurohumoral factors in patients late after the Fontan operation. Am Heart J 150:588–594

    Article  PubMed  Google Scholar 

  59. Cerro MJ, Abman S, Diaz G, Freudenthal AH, Freudenthal F, Harikrishnan S, Haworth SG, Ivy D, Lopes AA, Raj JU, Sandoval J, Stenmark K, Adatia I (2011) A consensus approach to the classification of pediatric pulmonary hypertensive vascular disease: report from the PVRI Pediatric Taskforce, Panama 2011. Pulm Circ 1:286–298

    Article  PubMed  PubMed Central  Google Scholar 

  60. Vella CA, Robergs RA (2005) A review of the stroke volume response to upright exercise in healthy subjects. Br J Sports Med 39:190–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Argiento P, Chesler N, Mule M, D’Alto M, Bossone E, Unger P, Naeije R (2010) Exercise stress echocardiography for the study of the pulmonary circulation. Eur Respir J 35:1273–1278

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Søndergaard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Idorn, L., Søndergaard, L. (2017). Pulmonary Vascular Disease in Patients with Fontan-Type Circulation. In: Dimopoulos, K., Diller, GP. (eds) Pulmonary Hypertension in Adult Congenital Heart Disease. Congenital Heart Disease in Adolescents and Adults. Springer, Cham. https://doi.org/10.1007/978-3-319-46028-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46028-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46026-0

  • Online ISBN: 978-3-319-46028-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics