Skip to main content

Nonstoichiometric Phases—Composition, Properties and Phase Transitions

  • Chapter
  • First Online:
Thermal Physics and Thermal Analysis

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 11))

  • 2095 Accesses

Abstract

Nonstoichiometric phases constitute a large family of technologically important materials. Among them, the inorganic materials whose variable stoichiometry of some components originates from their exchange with surrounding atmosphere represent particular thermodynamic systems referred to a partly open system. The phase equilibria in these systems including the homogeneous crystallochemical reactions of the involved crystal defects can be effectively treated using the thermodynamic potential called hyper-free energy derived from the Gibbs free energy by Legendre transformation with respect to the amounts of free components. In this chapter, we focus on general thermodynamic description of systems with variable content of components shared with a dynamical atmosphere, their essential material quantities being influenced by variable stoichiometry, conditions for homogeneous crystallochemical equilibria as well as for phase transitions. The influence of variable stoichiometry on material properties such as isobaric thermal expansion, isothermal compressibility and in particular heat capacity is analyzed and divided into two parts: the direct effect on conventional isoplethal quantities due to deviation from stoichiometry, and so-called saturation contributions determining the difference in material properties measured under isoplethal and isodynamical conditions (constant activities of free components). In the last part, the construction of phase diagrams of partly open systems is demonstrated on several examples of oxide systems, and the relevant phase transitions are classified and discussed.

Pavel Holba—Deceased

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoitsema C (1895) Palladium und Wasserstoff. Z Phys Chem 17:1–42

    CAS  Google Scholar 

  2. Wald F (1897) Elementare chemische Betrachtungen. Z Phys Chem 24:633–650

    CAS  Google Scholar 

  3. Wald F (1899) Was ist ein chemisches Individuum. Z Phys Chem 28:13–16

    CAS  Google Scholar 

  4. Holba P (2015) Termodynamický popis tepelných kapacit v nestechiometrických fázích (In Czech). Chemické Listy 109:113–116

    CAS  Google Scholar 

  5. Šesták J, Holba P, Gavrichev K (2014) Reinstatement of thermal analysis tradition in Russia and related East European interactions. J Therm Anal Cal 119:779–784

    Google Scholar 

  6. Kurnakov NS (1914) Compound and chemical individuum. Bull Acad Imp Sci de St Pétersbourhg 321–328

    Google Scholar 

  7. Chaudron G (1921) Reversible reactions of hydrogen and carbon monoxide on metallic oxides. Ann Chem 16:221–281

    CAS  Google Scholar 

  8. Schenck R, Dingmann T (1927) Gleichgewichtsuntersuchungen bei der Reduktions, Oxydations und Kohlungsvorgänge beim Eisen III. Z Anorg Chem 166:113–154

    Article  CAS  Google Scholar 

  9. Schottky W, Wagner C (1930) Theorie der geordneten Mischphasen. Z Phys Chem (Leipzig) B 11:163–220

    Google Scholar 

  10. Darken LS, Gurry RW (1945) The system iron–oxygen. I. The Wüstite field and related equilibria. J Am Chem Soc 67:1398–1412

    Article  CAS  Google Scholar 

  11. Darken LS, Gurry RW (1946) The system iron–oxygen. II. Equilibrium and thermodynamics of liquid oxide and other phases. J Am Chem Soc 68:798–816

    Article  CAS  Google Scholar 

  12. Aricò AS, Bruce P, Scrosati B, Tarascon J-M, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  Google Scholar 

  13. O’regan B, Grätze M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  14. Ohta H, Hosono H (2004) Transparent oxide optoelectronics. Mater Today 7(6):42–51

    Article  CAS  Google Scholar 

  15. Keller F, Hunter M, Robinson D (1953) Structural features of oxide coatings on aluminum. J Electrochem Soc 100:411–419

    Article  CAS  Google Scholar 

  16. Weckhuysen BM, Keller DE (2003) Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis. Catal Today 78:25–46

    Article  CAS  Google Scholar 

  17. Holba P (1992) Thermodynamics of partially open systems. Czech J Phys B 42:549–575

    Article  CAS  Google Scholar 

  18. Sedmidubský D, Strejc A, Nevřiva M, Leitner J, Martin C (2003) Structural and phase relations in the Sr–Mn–O system. Solid State Phenom 90–91:427–432

    Article  Google Scholar 

  19. Holba P, Sedmidubský D (2013) Heat capacity equations for nonstoichiometric solids. J Therm Anal Calorim 113:239–245

    Article  CAS  Google Scholar 

  20. Sedmidubský D, Holba P (2015) Material properties of nonstoichiometric solids. J Therm Anal Calorim 1120:183–188

    Article  Google Scholar 

  21. Holba P, Sedmidubský D (2013) Crystal defects and nonstoichiometry contributions to heat capacity of solids, Chapter 3 in book: thermal analysis of micro- nano- and non-crystalline materials: transformation, crystallization, kinetics and thermodynamics. In: Šesták J, Šimon P (eds) Springer, pp 53–74

    Google Scholar 

  22. Jankovský O, Sedmidubský D, Sofer Z, Rubešová K, Růžička K, Svoboda P (2014) Oxygen non-stoichiometry and thermodynamic properties of Bi2Sr2CoO6+δ ceramics. J Eur Ceram Soc 34:1219–1225

    Article  Google Scholar 

  23. Sedmidubský D, Leitner J, Knížek K, Strejc A, Veverka M (2000) Phase equilibria in Hg–Ba–Cu–O systém. Phys C 329:191–197

    Article  Google Scholar 

  24. Voňka P, Leitner J, Sedmidubský D (2008) Topology of potential phase diagrams of partially open condensed systems. Collect Czech Chem Commun 73(3):372–387

    Article  Google Scholar 

  25. Sedmidubský D, Jakeš V, Jankovský O, Leitner J, Sofer Z, Hejtmánek J (2012) Phase equilibria in Ca–Co–O system. J Sol St Chem 194:199–205

    Article  Google Scholar 

Download references

Acknowledgements

P. Holba acknowledges the support of Ministry of Education of the Czech Republic in the framework of CENTEM PLUS project (LO1402) operated under the “National Sustainability Programme I.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Sedmidubský .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sedmidubský, D., Holba, P. (2017). Nonstoichiometric Phases—Composition, Properties and Phase Transitions. In: Šesták, J., Hubík, P., Mareš, J. (eds) Thermal Physics and Thermal Analysis. Hot Topics in Thermal Analysis and Calorimetry, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-45899-1_8

Download citation

Publish with us

Policies and ethics