Skip to main content

Design and Use of a Semantic Similarity Measure for Interoperability Among Agents

  • Conference paper
  • First Online:
Multiagent System Technologies (MATES 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9872))

Included in the following conference series:

Abstract

The capability to identify the sense of polysemic words, i.e. words that have multiple meanings, is an essential part of intelligent systems, e.g. when updating an agent’s beliefs during conversations. This process is also called Word Sense Disambiguation and is approached by applying semantic similarity measures. Within this work, we present an algorithm to create such a semantic similarity measure using marker passing, that: (1) generates a semantic network out of a concepts used e.g. in semantic service descriptions, (2) sends markers through the networks to tag sub-graphs that are of relevance, and (3) uses these markers to create a semantic similarity measure. We will discuss the properties of the algorithm, elaborate its performance, and discuss the lifted properties for the algorithm to be used in WSD. To evaluate our approach, we compare it to state of the art measures using the Rubinstein1965 dataset. It is shown, that our approach outperforms these state of the art measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sometimes referred to as Activation Spreading or Token Passing.

  2. 2.

    Implementation available at: https://gitlab.tubit.tu-berlin.de/johannes_faehndrich/semantic-decomposition. For access contact the first author.

  3. 3.

    Even with contextual information such concepts are not always easy to identify, as shown by Bar-Hillel [3], e.g. “The box is in the pen”.

  4. 4.

    With less symbolic information the marker passing becomes activation spreading, which in the special case of artificial neuronal networks is subject to research.

  5. 5.

    http://projects.csail.mit.edu/jwi/.

  6. 6.

    https://www.ukp.tu-darmstadt.de/software/jwktl/.

  7. 7.

    https://dumps.wikimedia.org/ downloaded on 2015.12.19.

References

  1. Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Paşca, M., Soroa, A.: A study on similarity and relatedness using distributional and WordNet-based approaches. In: NAACL (2009)

    Google Scholar 

  2. Agirre, E., Edmonds, P.G.: Word Sense Disambiguation: Algorithms and Applications. Springer, Heidelberg (2007)

    Book  Google Scholar 

  3. Bar-Hillel, Y.: The present status of automatic translation of languages. In: Advances in Computers, vol. 1 (1960)

    Google Scholar 

  4. Baroni, M., Dinu, G., Kruszewski, G.: Don’t count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, (vol. 1: Long Papers) (2014)

    Google Scholar 

  5. Berthold, M.R., Brandes, U., Kötter, T., Mader, M., Nagel, U., Thiel, K.: Pure spreading activation is pointless. In: CIKM (2009)

    Google Scholar 

  6. Bruni, E., Tran, N.K., Baroni, M.: Multimodal distributional semantics. J. Artif. Intell. Res. (JAIR) 49, 1–47 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Charniak, E.: A neat theory of marker passing. In: AAAI (1986)

    Google Scholar 

  8. Chen, D., Jianzhuo, Y., Liying, F., Bin, S.: Measure semantic distance in wordnet based on directed graph search. In: EEEE 2009 (2009)

    Google Scholar 

  9. Crestani, F.: Application of spreading activation techniques in information retrieval. Artif. Intell. Rev. 11(6), 453–482 (1997)

    Article  Google Scholar 

  10. Erl, T.: SOA Principles of Service Design. Prentice Hall, Upper Saddle River (2007)

    Google Scholar 

  11. Fähndrich, J., Ahrndt, S., Albayrak, S.: Are there semantic primes in formal languages? In: Omatu, S., Bersini, H., Corchado Rodríguez, J.M., González, S.R., Pawlewski, P., Bucciarelli, E. (eds.) Distributed Computing and Artificial Intelligence 11th International Conference. AISC, vol. 290, pp. 397–405. Springer, Heidelberg (2014). (Chapter 46)

    Chapter  Google Scholar 

  12. Fähndrich, J., Ahrndt, S., Albayrak, S.: Formal language decomposition into semantic primes. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 3(8), 56 (2014)

    Google Scholar 

  13. Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., Ruppin, E.: Placing search in context: the concept revisited. ACM Trans. Inf. Syst. 20, 116–131 (2002)

    Article  Google Scholar 

  14. Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia-based explicit semantic analysis. IJCAI 7, 1606–1611 (2007)

    Google Scholar 

  15. Goddard, C., Wierzbicka, A.: Semantic and Lexical Universals: Theory and Empirical Findings. John Benjamins Publishing, Amsterdam (1994)

    Book  Google Scholar 

  16. Hirst, G., St-Onge, D.: Lexical chains as representations of context for the detection and correction of malapropisms (1998)

    Google Scholar 

  17. Hughes, T., Ramage, D.: Lexical semantic relatedness with random graph walks. In: EMNLP-CoNLL (2007)

    Google Scholar 

  18. Ide, N., Veronis, J.: Introduction to the special issue on word sense disambiguation: the state of the art. Comput. Linguist. 24(1), 2–40 (1998)

    Google Scholar 

  19. Jarmasz, M., Szpakowicz, S.: Rogets thesaurus and semantic similarity rogets thesaurus relations as a measure of semantic distance. In: Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2003), pp. 212–219 (2003)

    Google Scholar 

  20. Lastra-Díaz, J.J., García-Serrano, A.: A novel family of IC-based similarity measures with a detailed experimental survey on WordNet. Eng. Appl. Artif. Intell. 46, 140–153 (2015)

    Article  Google Scholar 

  21. Leacock, C., Miller, G.A., Chodorow, M.: Using corpus statistics and WordNet relations for sense identification. Comput. Linguist. 24, 147–165 (1998)

    Google Scholar 

  22. Lin, D.: An information-theoretic definition of similarity. In: ICML (1998)

    Google Scholar 

  23. Luetzenberger, M., Kuester, T., Masuch, N., Fähndrich, J.: Multi-agent system in practice - when research meets reality. In: AAMAS 2016, Singapore (2016)

    Google Scholar 

  24. Luong, M.T., Socher, R., Manning, C.D.: Better word representations with recursive neural networks for morphology. In: CoNLL-2013 (2013)

    Google Scholar 

  25. Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and knowledge-based measures of text semantic similarity. In: AAAI (2006)

    Google Scholar 

  26. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space (2013). arXiv.org

  27. Miller, G.A., Charles, W.G.: Contextual correlates of semantic similarity. Lang. Cogn. Process. 6(1), 1–28 (2007)

    Article  Google Scholar 

  28. Minsky, M.L.: Logical versus analogical or symbolic versus connectionist or neat versus scruffy. AI Mag. 12, 35–51 (1991)

    Google Scholar 

  29. Navigli, R.: Word sense disambiguation: a survey. Comput. Surv. 41, 10 (2009)

    Article  Google Scholar 

  30. Patwardhan, S., Pedersen, T.: Using wordnet-based context vectors to estimate the semantic relatedness of concepts. In: Proceedings of the EACL 2006 Workshop Making Sense of Sense-Bringing Computational Linguistics and Psycholinguistics Together, vol. 1501, pp. 1–8. Citeseer (2006)

    Google Scholar 

  31. Pilehvar, M.T., Navigli, R.: From senses to texts: An all-in-one graph-based approach for measuring semantic similarity. Artif. Intell. 228, 95–128 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Trans. Syst. Man Cybern. 19(1), 17–30 (1989)

    Article  Google Scholar 

  33. Radinsky, K., Agichtein, E., Gabrilovich, E., Markovitch, S.: A word at a time: computing word relatedness using temporal semantic analysis. ACM, New York (2011)

    Google Scholar 

  34. Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. CoRR abs/cmp-lg/9511007 (1995)

    Google Scholar 

  35. Riemer, N.: The Routledge Handbook of Semantics. Routledge, London (2015)

    Google Scholar 

  36. Rubenstein, H., Goodenough, J.B.: Contextual correlates of synonymy. Commun. ACM 8(10), 627–633 (1965)

    Article  Google Scholar 

  37. Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25, 158–176 (2013)

    Article  Google Scholar 

  38. Taieb, M.A.H., Ben Aouicha, M., Ben Hamadou, A.: A new semantic relatedness measurement using WordNet features. Knowl. Inf. Syst. 41(2), 467–497 (2014)

    Article  Google Scholar 

  39. Thiel, K., Berthold, M.R.: Node similarities from spreading activation. In: Berthold, M.R. (ed.) Bisociative Knowledge Discovery. LNCS, vol. 7250, pp. 246–262. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  40. Wierzbicka, A.: Semantics: Primes and Universals. Oxford University Press, Oxford (1996)

    Google Scholar 

  41. Wilbur, W.J., Sirotkin, K.: The automatic identification of stop words. J. Inf. Sci. 18(1), 45–55 (1991)

    Article  Google Scholar 

  42. Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: Proceedings of the 32nd Annual Meeting on Association for Computational Linguistics (1994)

    Google Scholar 

  43. Yampolskiy, R.V.: AI-complete, AI-hard, or AI-easy - classification of problems in AI. In: MAICS, pp. 94–101 (2012)

    Google Scholar 

  44. Yang, D., Powers, D.M.: Measuring semantic similarity in the taxonomy of wordnet. In: Proceedings of the Twenty-eighth Australasian Conference on Computer Science, vol. 38, pp. 315–322. Australian Computer Society, Inc. (2005)

    Google Scholar 

  45. Zesch, T., Gurevych, I.: Analysis of the Wikipedia category graph for NLP applications. In: Proceedings of the TextGraphs-2 (2007)

    Google Scholar 

  46. Zesch, T., Müller, C., Gurevych, I.: Using wiktionary for computing semantic relatedness. In: AAAI (2008)

    Google Scholar 

  47. Zesch, T., Gurevych, I.: Wisdom of crowds versus wisdom of linguists - measuring the semantic relatedness of words. Nat. Lang. Eng. 16(1), 25–59 (2010)

    Article  Google Scholar 

  48. Zhang, Z., Gentile, A.L., Ciravegna, F.: Recent advances in methods of lexical semantic relatedness – a survey. Technical report (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Fähndrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Fähndrich, J., Weber, S., Ahrndt, S. (2016). Design and Use of a Semantic Similarity Measure for Interoperability Among Agents. In: Klusch, M., Unland, R., Shehory, O., Pokahr, A., Ahrndt, S. (eds) Multiagent System Technologies. MATES 2016. Lecture Notes in Computer Science(), vol 9872. Springer, Cham. https://doi.org/10.1007/978-3-319-45889-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45889-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45888-5

  • Online ISBN: 978-3-319-45889-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics