Skip to main content

Replicating the Stroop Effect Using a Developmental Spatial Neuroevolution System

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XIV (PPSN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9921))

Included in the following conference series:

Abstract

We present an approach to the study of cognitive phenomena by using evolutionary computation. To this end we use a spatial, developmental, neuroevolution system. We use our system to evolve ANNs to perform simple abstractions of the cognitive tasks of color perception and color reading. We define these tasks to explore the nature of the Stroop effect. We show that we can evolve it to perform a variety of cognitive tasks, and also that evolved networks exhibit complex interference behavior when dealing with multiple tasks and incongruent data. We also show that this interference behavior can be manipulated by changing the learning parameters, a method that we successfully use to create a Stroop like interference pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cantlon, J.F., Platt, M.L., Brannon, E.M.: Beyond the number domain. Trends Cogn. Sci. 13(2), 83–91 (2009)

    Article  Google Scholar 

  2. Eriksen, B.A., Eriksen, C.W.: Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 16(1), 143–149 (1974)

    Article  MathSciNet  Google Scholar 

  3. Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures to learning. Evol. Intel. 1(1), 47–62 (2008)

    Article  Google Scholar 

  4. Gruau, F.: Automatic definition of modular neural networks. Adapt. Behav. 3(2), 151–183 (1994)

    Article  Google Scholar 

  5. Henik, A., Tzelgov, J.: Is three greater than five: the relation between physical and semantic size in comparison tasks. Mem. Cogn. 10(4), 389–395 (1982). http://dx.doi.org/10.3758/BF03202431

    Article  Google Scholar 

  6. Kashtan, N., Alon, U.: Spontaneous evolution of modularity and network motifs. Proc. Natl. Acad. Sci. USA 102(39), 13773–13778 (2005)

    Article  Google Scholar 

  7. Kashtan, N., Noor, E., Alon, U.: Varying environments can speed up evolution. Proc. Natl. Acad. Sci. 104(34), 13711–13716 (2007)

    Article  Google Scholar 

  8. Katz, G., Benbassat, A., Diesendruck, L., Sipper, M., Henik, A.: From size perception to counting: an evolutionary computation point of view. In: Proceedings of 15th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 1675–1678. ACM (2013)

    Google Scholar 

  9. Kitano, H.: Designing neural networks using genetic algorithms with graph generation system. Complex Syst. J. 4, 461–476 (1990)

    MATH  Google Scholar 

  10. Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011)

    Article  Google Scholar 

  11. Secretan, J., Beato, N., Ambrosio, D., Rodriguez, D.B., Campbell, A., Stanley, K.O.: Picbreeder: evolving pictures collaboratively online. In: Proceedings of SIGCHI Conference on Human Factors in Computing Systems, pp. 1759–1768. ACM (2008)

    Google Scholar 

  12. Simon, J.R., Rudell, A.P.: Auditory sr compatibility: the effect of an irrelevant cue on information processing. J. Appl. Psychol. 51(3), 300 (1967)

    Article  Google Scholar 

  13. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  14. Stroop, J.R.: Studies of interference in serial verbal reactions. J. Exp. Psychol. 18(6), 643 (1935)

    Article  Google Scholar 

  15. Yosinski, J., Clune, J., Hidalgo, D., Nguyen, S., Zagal, J., Lipson, H.: Evolving robot gaits in hardware: the hyperneat generative encoding vs. parameter optimization. In: Proceedings of 20th European Conference on Artificial Life, pp. 890–897 (2011)

    Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement number 295644.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Benbassat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Benbassat, A., Henik, A. (2016). Replicating the Stroop Effect Using a Developmental Spatial Neuroevolution System. In: Handl, J., Hart, E., Lewis, P., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds) Parallel Problem Solving from Nature – PPSN XIV. PPSN 2016. Lecture Notes in Computer Science(), vol 9921. Springer, Cham. https://doi.org/10.1007/978-3-319-45823-6_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45823-6_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45822-9

  • Online ISBN: 978-3-319-45823-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics