Skip to main content

Surface Plasmon Enhanced Schottky Detectors

  • Chapter
  • First Online:
Quantum Plasmonics

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 185))

Abstract

Surface plasmon Schottky detectors combine a structured metal contact that supports surface plasmons with a semiconductor, forming a rectifying metal-semiconductor junction. Internal photoemission occurs in such junctions via the excitation of hot carriers in the metal due to the absorption of surface plasmons therein, leading to photocurrent collected in the semiconductor. The cut-off wavelength of such detectors is determined by the Schottky barrier height, enabling detection below the bandgap of the semiconductor. The metal contact can be structured as a waveguide, grating or antenna on which surface plasmons are supported. Surface plasmon sub-wavelength confinement and field enhancement lead to significant enhancement of the internal photoelectric effect. The operating principles behind surface plasmon detectors based on internal photoemission are reviewed, the literature on the topic is surveyed, and avenues that appear promising are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer Science+Business Media, New York, 2007)

    Google Scholar 

  2. P. Berini, Adv. Opt. Phot. 1, 484–588 (2009)

    Article  Google Scholar 

  3. W.L. Barnes, T.W. Preist, S.C. Kitson, J.R. Sambles, Phys. Rev. B 54, 6227–6244 (1996)

    Article  ADS  Google Scholar 

  4. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668–677 (2003)

    Article  Google Scholar 

  5. M. Pelton, J. Aizpurua, G. Bryant, Laser Phot. Rev. 2, 136–159 (2008)

    Article  Google Scholar 

  6. P. Bharadwaj, B. Deutsch, L. Novotny, Adv. Opt. Phot. 1, 438–483 (2009)

    Article  Google Scholar 

  7. G. Genet, T.W. Ebbesen, Nature 445, 39–46 (2007)

    Article  ADS  Google Scholar 

  8. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  9. J. Homola, Chem. Rev. 108, 462–493 (2008)

    Article  Google Scholar 

  10. T.W. Ebbesen, C. Genet, S.I. Bozhevolnyi, Phys. Today 61, 44–50 (2008)

    Article  ADS  Google Scholar 

  11. P. Berini, I. De Leon, Nat. Photonics 6, 16–24 (2012)

    Article  ADS  Google Scholar 

  12. P. Berini, Laser Phot. Rev. 8, 197–220 (2014)

    Article  Google Scholar 

  13. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)

    Google Scholar 

  14. M. Casalino, G. Coppola, M. Iodice, I. Rendina, L. Sirleto, Sensors 10, 10571 (2012)

    Article  Google Scholar 

  15. C. Scales, P. Berini, IEEE J. Quantum Electron. 46, 633–643 (2010)

    Article  ADS  Google Scholar 

  16. J. Sipe, J. Becher, J. Opt. Soc. Am. 71, 1286–1288 (1981)

    Article  ADS  Google Scholar 

  17. J. Derov, Y.Y. Teng, A.S. Karakashian, Phys. Lett. A 95, 197–200 (1983)

    Article  ADS  Google Scholar 

  18. C. Daboo, M.J. Baird, H.P. Hughes, N. Apsley, G.A.C. Jones, J.E.F. Frost, D.C. Peacock, D.A. Ritchie, Thin Solid Films 189, 27–38 (1990)

    Article  ADS  Google Scholar 

  19. S.R.J. Brueck, V. Diadiuk, T. Jones, W. Lenth, Appl. Phys. Lett. 46, 915–917 (1985)

    Article  ADS  Google Scholar 

  20. A. Sobhani, M. Knight, Y. Wang, B. Zheng, N.S. King, L.V. Brown, Z. Fang, P. Nordlander, N.J. Halas, Nat. Commun. 4, 1643 (2013)

    Article  ADS  Google Scholar 

  21. M. Alavirad, A. Olivieri, L. Roy, P. Berini, Opt. Express 24, 22544 (2016)

    Google Scholar 

  22. A. Calà Lesina, A. Vaccari, P. Berini, L. Ramunno, Opt. Express 23, 10481–10497 (2015)

    Article  Google Scholar 

  23. H. Zhang, A.O. Govorov, J. Phys. Chem. C 118, 7606–7614 (2014)

    Article  Google Scholar 

  24. R.W. Fathauer, J.M. Iannelli, C.W. Nieh, S. Hashimoto, Appl. Phys. Lett. 57, 1419–1421 (1990)

    Article  ADS  Google Scholar 

  25. R.W. Fathauer, A. Ksendzov, J.M. Iannelli, T. George, Phys. Rev. B. 44, 1345–1348 (1991)

    Article  ADS  Google Scholar 

  26. J.R. Jimenez, L.J. Schowalter, R.W. Fathauer, Mat. Res. Soc. Symp. Proc. 220, 513–518 (1991)

    Article  Google Scholar 

  27. R.W. Fathauer, S.M. Dejewski, T. George, E.W. Jones, T.N. Krabach, A. Ksendzov, Appl. Phys. Lett. 62, 1774–1776 (1993)

    Article  ADS  Google Scholar 

  28. A.C. Warren, J.H. Burroughes, J.M. Woodall, D.T. McInturff, R.T. Hodgson, M.R. Melloch, I.E.E.E. Electr, Dev. Lett. 12, 527–529 (1991)

    Article  Google Scholar 

  29. D.T. McInturff, J.M. Woodall, A.C. Warren, N. Braslau, G.D. Pettit, P.D. Kirshner, M.R. Melloch, Appl. Phys. Lett. 60, 448–450 (1992)

    Article  ADS  Google Scholar 

  30. L. Novotny, N. van Hulst, Nat. Photonics 5, 83–90 (2011)

    Article  ADS  Google Scholar 

  31. M.W. Knight, H. Sobhani, P. Nordlander, N.J. Halas, Science 332, 702–704 (2011)

    Article  ADS  Google Scholar 

  32. S. Siadat Mousavi, P. Berini, D. McNamara, Opt. Express 20, 18044–18065 (2012)

    Article  ADS  Google Scholar 

  33. M. Alavirad, S. Siadat Mousavi, L. Roy, P. Berini, Opt. Express 21, 4328–4347 (2013)

    Google Scholar 

  34. M. Alavirad, L. Roy, P. Berini, IEEE J. Sel. Top. Quant. 20, 7–14 (2014)

    Article  Google Scholar 

  35. M.W. Knight, Y. Wang, A.S. Urban, A. Sobhani, B.Y. Zheng, P. Nordlander, N.J. Halas, Nano Lett. 13, 1687–1692 (2014)

    Article  ADS  Google Scholar 

  36. S. Siadat Mousavi, A. Stöhr, P. Berini, Appl. Phys. Lett. 104, 143112 (2014)

    Article  ADS  Google Scholar 

  37. B. Desiatov, I. Goykhman, N. Mazurski, J.O. Shappir, J.B. Khurgan, U. Levy, Optica 2, 335–338 (2015)

    Article  Google Scholar 

  38. S. Zhu, M.B. Yu, G.Q. Lo, D.L. Kwong, Appl. Phys. Lett. 92, 081103 (2008)

    Article  ADS  Google Scholar 

  39. S. Zhu, G.Q. Lo, M.B. Yu, D.L. Kwong, Appl. Phys. Lett. 93, 071108 (2008)

    Article  ADS  Google Scholar 

  40. A. Akbari, P. Berini, Appl. Phys. Lett. 95, 021104 (2009)

    Article  ADS  Google Scholar 

  41. C. Scales, I. Breukelaar, P. Berini, Opt. Lett. 35, 529–531 (2010)

    Article  ADS  Google Scholar 

  42. A. Akbari, R.N. Tait, P. Berini, Opt. Express 18, 8505–8514 (2010)

    Article  ADS  Google Scholar 

  43. A. Olivieri, A. Akbari, P. Berini, Phys. Stat. Sol. RRL 4, 283–285 (2010)

    Article  Google Scholar 

  44. S. Li, N.G. Tarr, P. Berini, Proc. SPIE 7750, 77501M (2010)

    Article  ADS  Google Scholar 

  45. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, U. Levy, Nano Lett. 11, 2219–2224 (2011)

    Article  ADS  Google Scholar 

  46. C. Scales, I. Breukelaar, R. Charbonneau, P. Berini, J. Lightwave Technol. 29, 1852–1860 (2011)

    Article  ADS  Google Scholar 

  47. S. Zhu, G.Q. Lo, D.L. Kwong, Opt. Express 19, 15843–15854 (2011)

    Article  ADS  Google Scholar 

  48. S. Zhu, H.S. Chu, G.Q. Lo, P. Bai, D.L. Kwong, Appl. Phys. Lett. 100, 061109 (2012)

    Article  ADS  Google Scholar 

  49. D.-S. Ly-Gagnon, K.C. Balram, J.S. White, P. Wahl, M.L. Brongersma, D.A.B. Miller, Nanophotonics 1, 9–16 (2012)

    Article  ADS  Google Scholar 

  50. P. Berini, A. Olivieri, C. Chen, Nanotechnology 23, 444011 (2012)

    Article  Google Scholar 

  51. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, U. Levy, Opt. Express 20, 28594–28602 (2012)

    Article  ADS  Google Scholar 

  52. A. Akbari, A. Olivieri, P. Berini, IEEE J. Sel. Top. Quantum Electron. 19, 4600209 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Berini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Berini, P. (2017). Surface Plasmon Enhanced Schottky Detectors. In: Bozhevolnyi, S., Martin-Moreno, L., Garcia-Vidal, F. (eds) Quantum Plasmonics. Springer Series in Solid-State Sciences, vol 185. Springer, Cham. https://doi.org/10.1007/978-3-319-45820-5_9

Download citation

Publish with us

Policies and ethics