Skip to main content

Transcriptional Regulation: When 1+1≠2

  • Chapter
  • First Online:
Dynamics of Mathematical Models in Biology

Abstract

One of the fascinating questions in biology is to understand how an identical genome can give rise to distinct tissues with different functions, for example, brain and muscle. A key role in selectively decoding the genome is played by transcription factors (TFs), which bind to specific DNA sequences to help specify if and how much of a gene is expressed in a particular tissue. In a simple scenario, binding of TFs near a gene would result in activation of gene expression whereas in the absence of binding the gene would not be expressed. One of the objectives of computational biology is to use the genomic sequence to predict where TFs bind and to both qualitatively and quantitatively predict which genes it regulates. In this chapter, we will discuss how the information encoded in the genome in the form of DNA can serve as a discreet code where combinations of As, Ts, Cs, and Gs specify which TFs can bind. Further, structural features of DNA can be read by proteins to influence their structure and fine-tune their activity towards target genes. In practice, predicting genome-wide binding patterns of TFs based on sequence is problematic and even when we know where TFs bind, all bets appear to be off regarding the effect of TF binding on the regulation of genes. At the moment it sometimes seems as if 1 + 1 ≠ 2 when studying gene regulation. However, this mostly reflects our lack of understanding of the signaling inputs that specify if a gene is activated and at which level it is expressed. For example, in this chapter we will discuss how taking the three-dimensional organization of the genome and the chromatin context in which these binding sites are embedded into account can improve the link between binding of TFs and the regulation of genes. Eventually, by adding more and more pieces of the puzzle, we hope to identify what is missing in our current equations to model gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiang, C., et al.: Manifestation of the limb prepattern: limb development in the absence of sonic hedgehog function. Dev. Biol. 236(2), 421–435 (2001)

    Article  Google Scholar 

  2. Struhl, G.: A homoeotic mutation transforming leg to antenna in Drosophila. Nature 292(5824), 635–638 (1981)

    Article  Google Scholar 

  3. Donehower, L.A., et al.: Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356(6366), 215–221 (1992)

    Article  Google Scholar 

  4. Consortium, E.P.: An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414), 57–74 (2012)

    Article  Google Scholar 

  5. Bulger, M., Groudine, M.: Functional and mechanistic diversity of distal transcription enhancers. Cell 144(3), 327–339 (2011)

    Article  Google Scholar 

  6. de Laat, W., Duboule, D.: Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 502(7472), 499–506 (2013)

    Article  Google Scholar 

  7. Calo, E., Wysocka, J.: Modification of enhancer chromatin: what, how, and why? Mol. Cell 49(5), 825–837 (2013)

    Article  Google Scholar 

  8. Meijsing, S.H.: Mechanisms of glucocorticoid-regulated gene transcription. Adv. Exp. Med. Biol. 872, 59–81 (2015)

    Article  Google Scholar 

  9. Zhang, Z., et al.: Evolutionary optimization of transcription factor binding motif detection. Adv. Exp. Med. Biol. 827, 261–274 (2015)

    Article  Google Scholar 

  10. Zhang, C., et al.: A clustering property of highly-degenerate transcription factor binding sites in the mammalian genome. Nucleic Acids Res. 34(8), 2238–2246 (2006)

    Article  Google Scholar 

  11. Wu, J., Bresnick, E.H.: Glucocorticoid and growth factor synergism requirement for Notch4 chromatin domain activation. Mol. Cell Biol. 27(6), 2411–2422 (2007)

    Article  Google Scholar 

  12. Rao, N.A., et al.: Coactivation of GR and NFKB alters the repertoire of their binding sites and target genes. Genome Res. 21(9), 1404–1416 (2011)

    Article  Google Scholar 

  13. Biddie, S.C., et al.: Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol. Cell 43(1), 145–155 (2011)

    Article  Google Scholar 

  14. West, J.A., et al.: Nucleosomal occupancy changes locally over key regulatory regions during cell differentiation and reprogramming. Nat. Commun. 5, 4719 (2014)

    Article  Google Scholar 

  15. He, H.H., et al.: Differential DNase I hypersensitivity reveals factor-dependent chromatin dynamics. Genome Res. 22(6), 1015–1025 (2012)

    Article  Google Scholar 

  16. Gertz, J., et al.: Distinct properties of cell-type-specific and shared transcription factor binding sites. Mol. Cell 52(1), 25–36 (2013)

    Article  Google Scholar 

  17. Morikawa, M., et al.: ChIP-seq reveals cell type-specific binding patterns of BMP-specific Smads and a novel binding motif. Nucleic Acids Res. 39(20), 8712–8727 (2011)

    Article  Google Scholar 

  18. Kvon, E.Z., et al.: Genome-scale functional characterization of Drosophila developmental enhancers in vivo. Nature 512(7512), 91–95 (2014)

    Google Scholar 

  19. Weirauch, M.T., et al.: Evaluation of methods for modeling transcription factor sequence specificity. Nat. Biotechnol. 31(2), 126–134 (2013)

    Article  Google Scholar 

  20. Cusanovich, D.A., et al.: The functional consequences of variation in transcription factor binding. PLoS Genet. 10(3), e1004226 (2014)

    Article  Google Scholar 

  21. Gitter, A., et al.: Backup in gene regulatory networks explains differences between binding and knockout results. Mol. Syst. Biol. 5, 276 (2009)

    Article  Google Scholar 

  22. Creyghton, M.P., et al.: Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl. Acad. Sci. U. S. A. 107(50), 21931–21936 (2010)

    Article  Google Scholar 

  23. Heintzman, N.D., et al.: Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39(3), 311–318 (2007)

    Article  Google Scholar 

  24. Hardison, R.C., Taylor, J.: Genomic approaches towards finding cis-regulatory modules in animals. Nat. Rev. Genet. 13(7), 469–483 (2012)

    Article  Google Scholar 

  25. Kwasnieski, J.C., et al.: High-throughput functional testing of ENCODE segmentation predictions. Genome Res. 24(10), 1595–1602 (2014)

    Article  Google Scholar 

  26. Frankel, N., et al.: Phenotypic robustness conferred by apparently redundant transcriptional enhancers. Nature 466(7305), 490–493 (2010)

    Article  Google Scholar 

  27. Spivakov, M.: Spurious transcription factor binding: non-functional or genetically redundant? Bioessays 36(8), 798–806 (2014)

    Article  Google Scholar 

  28. So, A.Y., et al.: Determinants of cell- and gene-specific transcriptional regulation by the glucocorticoid receptor. PLoS Genet. 3(6), e94 (2007)

    Article  Google Scholar 

  29. Amano, T., et al.: Chromosomal dynamics at the Shh locus: limb bud-specific differential regulation of competence and active transcription. Dev. Cell 16(1), 47–57 (2009)

    Article  Google Scholar 

  30. Levings, P.P., Bungert, J.: The human beta-globin locus control region. Eur. J. Biochem. 269(6), 1589–1599 (2002)

    Article  Google Scholar 

  31. Hilton, I.B., et al.: Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33(5), 510–517 (2015)

    Article  Google Scholar 

  32. Tolhuis, B., et al.: Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol. Cell 10(6), 1453–1465 (2002)

    Article  Google Scholar 

  33. Dekker, J., et al.: Capturing chromosome conformation. Science 295(5558), 1306–1311 (2002)

    Article  Google Scholar 

  34. Dekker, J., Marti-Renom, M.A., Mirny, L.A.: Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet. 14(6), 390–403 (2013)

    Article  Google Scholar 

  35. Dixon, J.R., et al.: Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398), 376–380 (2012)

    Article  Google Scholar 

  36. Zuin, J., et al.: Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc. Natl. Acad. Sci. 111(3), 996–1001 (2014)

    Article  Google Scholar 

  37. Nagano, T., et al.: Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502(7469), 59–64 (2013)

    Article  Google Scholar 

  38. Rao, S.S., et al.: A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159(7), 1665–1680 (2014)

    Article  Google Scholar 

  39. Fang, F., et al.: Coactivators p300 and CBP maintain the identity of mouse embryonic stem cells by mediating long-range chromatin structure. Stem Cells 32(7), 1805–1816 (2014)

    Article  Google Scholar 

  40. Drissen, R., et al.: The active spatial organization of the beta-globin locus requires the transcription factor EKLF. Genes Dev. 18(20), 2485–2490 (2004)

    Article  Google Scholar 

  41. Bouwman, B.A., de Laat, W.: Getting the genome in shape: the formation of loops, domains and compartments. Genome Biol. 16, 154 (2015)

    Article  Google Scholar 

  42. Vakoc, C.R., et al.: Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. Mol. Cell 17(3), 453–462 (2005)

    Article  Google Scholar 

  43. Jin, F., et al.: A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503(7475), 290–294 (2013)

    Google Scholar 

  44. Kilpinen, H., et al.: Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription. Science 342(6159), 744–747 (2013)

    Article  Google Scholar 

  45. Corradin, O., et al.: Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits. Genome Res. 24(1), 1–13 (2014)

    Article  Google Scholar 

  46. Wang, J., et al.: In vitro DNA-binding profile of transcription factors: methods and new insights. J. Endocrinol. 210(1), 15–27 (2011)

    Article  Google Scholar 

  47. Slattery, M., et al.: Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins. Cell 147(6), 1270–1282 (2011)

    Article  Google Scholar 

  48. Stella, S., Cascio, D., Johnson, R.C.: The shape of the DNA minor groove directs binding by the DNA-bending protein Fis. Genes Dev. 24(8), 814–826 (2010)

    Article  Google Scholar 

  49. Ramos, A.I., Barolo, S.: Low-affinity transcription factor binding sites shape morphogen responses and enhancer evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1632), 20130018 (2013)

    Article  Google Scholar 

  50. Crocker, J., et al.: Low affinity binding site clusters confer hox specificity and regulatory robustness. Cell 160(1-2), 191–203 (2015)

    Article  Google Scholar 

  51. He, X., Duque, T.S., Sinha, S.: Evolutionary origins of transcription factor binding site clusters. Mol. Biol. Evol. 29(3), 1059–1070 (2012)

    Article  Google Scholar 

  52. Gao, R., Stock, A.M.: Temporal hierarchy of gene expression mediated by transcription factor binding affinity and activation dynamics. mBio 6(3), e00686-15 (2015)

    Google Scholar 

  53. Bain, D.L., et al.: Glucocorticoid receptor-DNA interactions: binding energetics are the primary determinant of sequence-specific transcriptional activity. J. Mol. Biol. 422(1), 18–32 (2012)

    Article  MathSciNet  Google Scholar 

  54. Segal, E., et al.: Predicting expression patterns from regulatory sequence in Drosophila segmentation. Nature 451(7178), 535–540 (2008)

    Article  Google Scholar 

  55. Garcia, H.G., et al.: Operator sequence alters gene expression independently of transcription factor occupancy in bacteria. Cell Rep. 2(1), 150–161 (2012)

    Article  Google Scholar 

  56. Meijsing, S.H., et al.: DNA binding site sequence directs glucocorticoid receptor structure and activity. Science 324(5925), 407–410 (2009)

    Article  Google Scholar 

  57. Hammar, P., et al.: Direct measurement of transcription factor dissociation excludes a simple operator occupancy model for gene regulation. Nat. Genet. 46(4), 405–408 (2014)

    Article  Google Scholar 

  58. Zhang, J., et al.: DNA binding alters coactivator interaction surfaces of the intact VDR-RXR complex. Nat. Struct. Mol. Biol. 18(5), 556–563 (2011)

    Article  Google Scholar 

  59. Rohs, R., et al.: Nuance in the double-helix and its role in protein-DNA recognition. Curr. Opin. Struct. Biol. 19(2), 171–177 (2009)

    Article  MathSciNet  Google Scholar 

  60. Meyer, M.B., Benkusky, N.A., Pike, J.W.: Selective distal enhancer control of the Mmp13 gene identified through clustered regularly interspaced short palindromic repeat (CRISPR) genomic deletions. J. Biol. Chem. 290(17), 11093–11107 (2015)

    Article  Google Scholar 

  61. Diamond, M.I., et al.: Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science 249(4974), 1266–1272 (1990)

    Article  Google Scholar 

  62. John, S., et al.: Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat. Genet. 43(3), 264–268 (2011)

    Article  Google Scholar 

  63. Arnold, C.D., et al.: Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 339(6123), 1074–1077 (2013)

    Article  Google Scholar 

  64. Zabidi, M.A., et al.: Enhancer-core-promoter specificity separates developmental and housekeeping gene regulation. Nature 518(7540), 556–559 (2015)

    Article  Google Scholar 

  65. Dupin, C., et al.: Treatment of head and neck paragangliomas with external beam radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 89(2), 353–359 (2014)

    Article  Google Scholar 

  66. Korkmaz, G., et al.: Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nat. Biotechnol. 34(2), 192–198 (2016)

    Article  MathSciNet  Google Scholar 

  67. Maeder, M.L., et al.: CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10(10), 977–979 (2013)

    Article  Google Scholar 

  68. Mendenhall, E.M., et al.: Locus-specific editing of histone modifications at endogenous enhancers. Nat. Biotechnol. 31(12), 1133–1136 (2013)

    Article  Google Scholar 

  69. Lupianez, D.G., et al.: Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161(5), 1012–1025 (2015)

    Article  Google Scholar 

  70. Zhang, X., et al.: Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers. Nat. Genet. 48(2), 176–182 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastiaan H. Meijsing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Thormann, V., Borschiwer, M., Meijsing, S.H. (2016). Transcriptional Regulation: When 1+1≠2. In: Rogato, A., Zazzu, V., Guarracino, M. (eds) Dynamics of Mathematical Models in Biology . Springer, Cham. https://doi.org/10.1007/978-3-319-45723-9_1

Download citation

Publish with us

Policies and ethics