Skip to main content

Future Perspectives of Bioactive Glasses for the Clinical Applications

  • Chapter
  • First Online:
Bioactive Glasses

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

Tissue engineering is continuously evolving as an exciting and multidisciplinary field aiming to develop biological substitutes to restore, replace, or regenerate defective tissues. Scaffolds, cells, and growth-stimulating signals are the basic components of tissue engineering. However, researchers often encounter an enormous variety of choices when selecting scaffolds for tissue engineering. Typically, glass, ceramics, or polymeric biomaterials are used for making scaffolds, which provide the structural support for cell attachment and subsequent tissue development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Denrya I, Liisa T (2016) Kuhn design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dent Mater 32:43–53

    Google Scholar 

  • Bakry AS, Takahashid H, Otsukie M, Tagamie J (2014) Evaluation of new treatment for incipient enamel demineralization using 45S5 bioglass. Oper Dent Mater 30:314–320

    Google Scholar 

  • Tulyaganova DU, Reddy AA, Siegelc R, Ionescud E, Riedeld R, Ferreira JMF (2015) Synthesis and in vitro bioactivity assessment of injectable bioglass_organic pastes for bone tissue repair. Ceram Int 41:9373–9382

    Google Scholar 

  • Renghini C, Giuliani A, Mazzoni S, Brun F, Larsson E, Baino F et al (2013) Microstructural characterization and in vitro bioactivity of porous glass ceramic scaffolds for bone regeneration by synchrotron radiation X-ray microtomography. J Eur Ceram Soc 33:1553–1565

    Google Scholar 

  • Rahaman MN et al (2014) Mater Sci Eng C 41:224–231

    Google Scholar 

  • Larrañaga A, Diamanti E, Rubio E, Palomares T, Alonso-Varona A, Aldazabal P, Martin FJ, Sarasua JR (2014) A study of themechanical properties and cytocompatibility of lactide and caprolactone based scaffolds filled with inorganic bioactive particles. Mater Sci Eng C 42:451–460

    Google Scholar 

  • Gentile P, Bellucci D, Sola A, Matt C, Cannillo V, Ciardelli G (2015) Composite scaffolds for controlled drug release: role of the polyurethane nanoparticles on the physical properties andcell behavior. J Mech Behav Biomater 44:53–60

    Google Scholar 

  • Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17(4):467–479

    Google Scholar 

  • Bellucci D, Cannillo V, Sola A (2011a) Calcium and potassium addition to facilitate the sintering of bioactive glasses. Mater Lett 65:1825–1827

    Google Scholar 

  • Bellucci D, Sola A, Cannillo V, (2012b) Low temperature sintering of innovative bioactive glasses. J Am Ceram Soc 95:1313–1319

    Google Scholar 

  • Bellucci D, Sola A, Cannillo V (2013a) Bioactive glass-based composites for the production of dense sintered bodies and porous scaffolds. Mater Sci Eng C Mater Biol Appl 33:2138–2151

    Google Scholar 

  • Idowu B, Cama G, Deb S, DiSilvio L (2014) In vitro osteoinductive potential of porous monetite for bone tissue engineering. J Tissue Eng 5:1–14 (2041731414536572)

    Google Scholar 

  • Blaker J, Maquet V, Jérome R, Boccaccini AR, Nazhat SN (2005) Mechanical properties of highly porous PDLLA/bioglass composite foams as scaffolds for bone tissue engineering. Acta Biomater 1:643–652

    Google Scholar 

  • Soundrapandiana C, Mahatob A, Kundu B, Datta S, Sac B, Basu D (2014) Development and effect of different bioactive silicate glass scaffolds: invitro evaluation for use as a bone drug delivery system. J Mech Behav Biomater 40:1–1 2

    Google Scholar 

  • Rosenqvist K, Airaksinen S, Vehkamäki M, Juppo AM (2014) Evaluating optimal combination of clodronate and bioactive glass for dental application. Int J Pharm 468:112–120

    Google Scholar 

  • Bakry AS, Takahashi H, Otsuki M, Sadr A, Yamashita K, Tagami J (2011) CO2 laser improves 45S5 bioglass interaction withdentin. J Dent Res 90(2):246–250

    Google Scholar 

  • Baino F, Brovarone CV (2014) Bioceramics in ophthalmology. Acta Biomater 10:3372–3397

    Google Scholar 

  • Kinnunen I, Aitasalo K, Pollonen M, Varpula M (2000) Reconstruction of orbital fractures using bioactive glass. J Craniomaxollofac Surg 28:229–234

    Google Scholar 

  • Peltola M, Kinnunen I, Aitasalo K (2008) Reconstruction of orbital wall defects with bioactive glass plates. J Oral Maxillofac Surg 66:639–646

    Google Scholar 

  • Chirila TV (2001) An overview of the development of artificial corneas with porous skirts and the use of PHEMA for such an application. Biomaterials 22:3311–3317

    Google Scholar 

  • Linnola RJ, Happonen RP, Andersson OH, Vedel EA, Yli-Urpo U, Krause U et al (1996) Titanium and bioactive glass-ceramic coated titanium as materials for keratoprosthesis. Exp Eye Res 63:471–478

    Google Scholar 

  • Tulyaganov DU, Agathopoulos S, Valerio P, Balamurugan A, Saranti A, Karakassides MA, Ferreira JM (2011) Synthesis, bioactivity and preliminary biocompatibility studies of glasses in the system CaO–MgO–SiO2–Na2O–P2O5–CaF2. J Mater Sci Mater Med 22:217–227

    Google Scholar 

  • Tulyaganov DU, Makhkamov ME, Urazbaev A, Goel A, Ferreira JMF (2013) Synthesis, processing and characterization of a bioactive glass composition for bone regeneration. Ceram Int 39:2519–2526

    Google Scholar 

  • Arcos D, Regí MV (2010) Sol–gel silica-based biomaterials and bone tissue regeneration. Acta Biomater 6:2874–2888

    Google Scholar 

  • Bellantone M, Coleman NJ, Hench LL (2000) Bacteriostatic action of a novel four component bioactive glass. J Biomed Mater Res 51:484–490

    Google Scholar 

  • Rezwan K, Chen QZ, Blaker J, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431

    Google Scholar 

  • Fu Q, Saiz E, Rahaman MN, Tomsia AP (2011) Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C 31:1245–1256

    Google Scholar 

  • Blaker J, Maquet V, Jérome R, Boccaccini AR, Nazhat SN (2005) Mechanical properties of highly porous PDLLA/bioglass composite foams as scaffolds for bone tissue engineering. Acta Biomater 1:643–652

    Google Scholar 

  • Thomson RC, Yaszemski MJ, Power JM, Mikos AG (1998) Hydroxyapatite fiber reinforced poly(α-hydroxy ester) foams for bone regeneration. Biomaterials 19:1935–1943

    Google Scholar 

  • Roether JA, Boccaccini AR, Hench LL, Maquet V, Gautier S, Jérome R (2002) Development and in vitro characterization of novel bioresorbable and bioactive composite materials based on polylactide foams and bioglassfor tissue engineering applications. Biomaterials 23:3871–3878

    Google Scholar 

  • Maquet V, Boccaccini AR, Pravata L, Notingher I, Jérome R (2004) Porous poly (α-hydroxyacid)/bioglass composite scaffolds for bone tissue engineering I: preparation and in vitro characterization. Biomaterials 25:4185–4194

    Google Scholar 

  • Chen JP, Chang YS (2011) Preparation and characterization of composite nanofibers of polycaprolactone and nanohydroxyapatite for osteogenic differentiationof mesenchymal stem cells. Colloids Surf B: Biointerfaces 86:169–175

    Google Scholar 

  • Kim SS, Park MS, Jeon O, Choi CY, Kim BS (2006) Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 27:1399–1409

    Google Scholar 

  • Kim HW, Lee HH, Chun GS (2008) Bioactivity and osteoblast responses of novel biomedical nanocomposites of bioactive glass nanofiber filled poly(lactic acid) J Biomed Mater Res Part A 85:651–663

    Google Scholar 

  • Gerhardt LC, Boccaccini AR (2010) Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3:3867–3910

    Google Scholar 

  • Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7:2355–2373

    Google Scholar 

  • Lee J, Guarino V, Gloria A, Ambrosio L, Tae G, Kim et al YH (2010) Regeneration of Achilles’ tendon: the role of dynamic stimulation for enhanced cell proliferation and mechanical properties. J Biomater Sci 21:1173–1190

    Google Scholar 

  • Jeong SI, Kim SH, Kim YH, Jung Y, Kwon JH, Kim et al BS (2004) Manufacture of elastic biodegradable PLCL scaffolds for mechano-active vascular tissue engineering. J Biomater Sci Polym Ed 15:645–660

    Google Scholar 

  • Calori GM, Mazza E, Colombo M, Ripamonti C (2011) The use of bone-graft substitutes in large bone defects: any specific needs? Injury—Int J Care Inj 42:56–63

    Google Scholar 

  • Albrektsson T, Johansson C. Osteoinduction (2001) Osteoconduction and osseointegration. Eur Spine J 10:96–101

    Google Scholar 

  • Minardi S, Corradetti B, Taraballi F et al (2015) Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation. Biomaterials 62:128–137

    Google Scholar 

  • Wang L, Zhang B, Bao C et al (2014) Ectopic osteoid and bone formation by three calcium-phosphate ceramics in rats, rabbits and dogs. PLoS One 9(9):e107044

    Google Scholar 

  • Daculsi G, Fellah BH, Miramond T (2014) The essential role of calcium phosphate bioceramics in bone regeneration. In: BenNissan B (ed), Advances in calcium phosphate biomaterials, Springer-Verlag, Berlin, pp 71–96

    Google Scholar 

  • Landi E, Logroscino G, Proietti L et al (2008) Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour. J Mater Sci Mater Med 19(1):239–247

    Google Scholar 

  • Maier JAM, Bernardini D, Rayssiguier Y, Mazur A (2004) High concentrations of magnesium modulate vascular endothelial cell behaviour in vitro. Biochim Biophys Acta—Mol Basis Dis 1689(1):6–12

    Google Scholar 

  • Marie PJ, Ammann P, Boivin G, Rey C (2001) Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int 69(3):121–129

    Google Scholar 

  • Marquis P, Roux C, Diaz-Curiel M et al (2007) Long-term beneficial effects of strontium ranelate on the quality of life in patients with vertebral osteoporosis (Soti study). Calcif Tissue Int 80:137–138

    Google Scholar 

  • Ortolani S, Vai S (2006) Strontium ranelate: an increased bone quality leading to vertebral antifracture efficacy at all stages. Bone 38(2):19–22

    Google Scholar 

  • Pors Nielsen S (2004) The biological role of strontium. Bone 35(3):583–588

    Google Scholar 

  • Li H, Chang J (2013) Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect. Acta Biomater 9(6):6981–6991

    Google Scholar 

  • Pietak AM, Reid JW, Stott MJ, Sayer M (2007) Silicon substitution in the calcium phosphate bioceramics. Biomaterials 28(28):4023–4032

    Google Scholar 

  • Schwartzwalder K, Somers AV (1963) Inventors. General motors corporation, assignee. Method of making porous ceramic articles. US patent 3,090,094

    Google Scholar 

  • Chang BS, Lee CK, Hong KS et al (2000) Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials 21(12):1291–1298

    Google Scholar 

  • Saiz E, Gremillard L, Menendez G et al (2007) Preparation of porous hydroxyapatite scaffolds. Mater Sci Eng C-Biomim Supramol Syst 27(3):546–550

    Google Scholar 

  • Tian JT, Tian JM (2001) Preparation of porous hydroxyapatite. J Mater Sci 36(12):3061–3066

    Google Scholar 

  • Padilla S, Sanchez-Salcedo S, Vallet-Regi M (2007) Bioactive glass as precursor of designed-architecture scaffolds for tissue engineering. J Biomed Mater Res Part A 81(1):224–232

    Google Scholar 

  • Santos JD, Knowles JC, Reis RL, Monteiro FJ, Hastings GW (1994) Microstructural characterization of glass-reinforced hydroxyapatite composites. Biomaterials 15(1):5–10

    Google Scholar 

  • Colombo P, Hellmann JR (2002) Ceramic foams from preceramic polymers. Mater Res Innov 6(5–6):260–272

    Google Scholar 

  • Shepherd JH, Best SM (2011) Calcium phosphate scaffolds for bone repair. JOM 63(4):83–92

    Google Scholar 

  • Lewis JA, Smay JE (2005) Three-dimensional periodic structures. Cell Ceram Struct Manuf Properties Appl pp 87–100

    Google Scholar 

  • Lewis JA, Smay JE, Stuecker J, Cesarano III J (2006) Direct ink writing of three-dimensional ceramic structures. J Am Ceram Soc 89(12):3599–3609

    Google Scholar 

  • Simon JL, Michna S, Lewis JA et al (2007) In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. J Biomed Mater Res Part A 83(3):747–758

    Google Scholar 

  • Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543

    Google Scholar 

  • Descamps M, Duhoo T, Monchau F et al (2008) Manufacture of macroporous beta-tricalcium phosphate bioceramics. J Eur Ceram Soc 28(1):149–157

    Google Scholar 

  • Descamps M, Richart O, Hardouin P, Hornez JC, Leriche A (2008) Synthesis of macroporous beta-tricalcium phosphate with controlled porous architectural. Ceram Int 34(5):1131–1137

    Google Scholar 

  • Michna S, Wu W, Lewis JA (2005) Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds. Biomaterials 26(28):5632–5639

    Google Scholar 

  • Denry I, Holloway JA (2014) Low temperature sintering of fluorapatite glass-ceramics. Dental Mater 30(2):112–121

    Google Scholar 

  • Fu Q, Saiz E, Rahaman MN, Tomsia AP (2011) Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C—Mater Biol Appl 31(7):1245–1256

    Google Scholar 

  • Barrere F, Mahmood TA, de Groot K, van Blitterswijk CA (2008) Advanced biomaterials for skeletal tissue regeneration: Instructive and smart functions. Mater Sci Eng R Rep 59(1–6):38–71

    Google Scholar 

  • Barrere F, van Blitterswijk CA, de Groot K (2006) Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomed 1(3):317–332

    Google Scholar 

  • Davies JE (2007) Bone bonding at natural and biomaterial surfaces. Biomaterials 28(34):5058–5067

    Google Scholar 

  • Woodard JR, Hilldore AJ, Lan SK et al (2007) The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials 28(1):45–54

    Google Scholar 

  • Diaz-Rodriguez P, Gonzalez P, Serra J, Landin M (2014) Key parameters in blood-surface interactions of 3D bioinspired ceramic materials. Mater Sci Eng C-Mater Biol Appl 41:232–239

    Google Scholar 

  • Seyfert UT, Biehl V, Schenk J (2002) In vitro hemocompatibility testing of biomaterials according to the ISO 10993–4. Biomol Eng 19(2–6):91–96

    Google Scholar 

  • ISO (2002) Standard 10993-4 Biological evaluation of medical devices—part 4: selection of tests for interactions with blood

    Google Scholar 

  • LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395:81–98

    Google Scholar 

  • Autefage H, Briand-Mesange F, Cazalbou S et al (2009) Adsorption and release of BMP-2 on nanocrystalline apatite-coated and uncoated hydroxyapatite/beta-tricalcium phosphate porous ceramics. J Biomed Mater Res B Appl Biomater 91(2):706–715

    Google Scholar 

  • Liu Y, de Groot K, Hunziker EB (2005) BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model. Bone 36(5):745–757

    Google Scholar 

  • Roldan JC, Detsch R, Schaefer S et al (2010) Bone formation and degradation of a highly porous biphasic calcium phosphate ceramic in presence of BMP-7, VEGF and mesenchymal stem cells in an ectopic mouse model. J Craniomaxillofac Surg 38(6):423–430

    Google Scholar 

  • Guicheux J, Gauthier O, Aguado E et al (1998) Human growth hormone locally released in bone sites by calcium-phosphate biomaterial stimulates ceramic bone substitution without systemic effects: a rabbit study. J Bone Miner Res 13(4):739–748

    Google Scholar 

  • Thomson RC, Yaszemski MJ, Power JM, Mikos AG (1998) Hydroxyapatite fiber reinforced poly(α-hydroxy ester) foams for bone regeneration. Biomaterials 19:1935–1943.

    Google Scholar 

  • Lee J, Guarino V, Gloria A, Ambrosio L, Tae G, Kim YH (2010) Regeneration of Achilles’ tendon: the role of dynamic stimulation for enhanced cell proliferation and mechanical properties. J Biomater Sci 21:1173–1190

    Google Scholar 

  • Jeong SI, Kim SH, Kim YH, Jung Y, Kwon JH, Kim BS et al (2004) Manufacture of elastic biodegradable PLCL scaffolds for mechano-active vascular tissue engineering. J Biomater Sci Polym Ed 15:645–660

    Google Scholar 

  • Yunos DM, Bretcanu O, Boccaccini A (2008) Polymer–bioceramic composites for tissue engineering scaffolds. J Mater Sci Mater Med 43:4433–4442

    Google Scholar 

  • Yagmurlu MF, Korkusuz F, Guersel I, Korkusuz P, Ors U, Hasirci V (1999) Sulbactam-cefoperazone polyhydroxybutyrate-co-hydroxyvalerate (PHBV) local antibiotic delivery system: in vivo effectiveness and biocompatibility in the treatment of implant-related experimental osteomyelitis. J Biomed Mater Res 46:494–503

    Google Scholar 

  • Zhang X, Wyss UP, Pichora D, GoosenMF (1994a) Biodegradable controlled antibiotic release devices for osteomyelitis: optimization of release properties.J Pharm Pharmacol 46:718–724

    Google Scholar 

  • Zhang X, Wyss UP, Pichora D, Goosen MFA (1994b) Amechanistic study of antibiotic release from biodegradable poly (d, 1-lactide)cylinders. J Control Release 31:129–144

    Google Scholar 

  • Domingues ZR, Cortés, ME, Gomes TA, Diniz HF, Freitas CS, Gomes JB, Faria AMC, Sinisterra RD (2004) Bioactive glass as a drug delivery system of tetracycline and tetracycline associated with β-cyclodextrin. Biomaterials 25:327–333

    Google Scholar 

  • Czarnobaj K (2008) Preparation and characterization of silica xerogels as carriers for drugs. Drug Deliv 15:485–492

    Google Scholar 

  • Merchant HA, Shoaib HM, Tazeen J, Yousuf RI (2006) Once- daily tablet formulation and in vitro release evaluation of cefpodoxime using hydroxypropyl methylcellulose: a technical note. AAPS PharmSciTech 7:78

    Google Scholar 

  • Bang H-G, Kim S-J, Park S-Y (2008) Biocompatibilityandthe physicalpropertiesofbio-glassceramicsinthe Na2O–CaO–SiO2–P2O5 system withCaF2 and MgF2 additives. J Ceram Proc Res 9:588–590

    Google Scholar 

  • Aina V, Malavasi G, Fiorio Pla A, Munaron L, Morterra C (2009) Zinc-containing bioactive glasses: surface reactivity and behaviour towards endothelial cells. Acta Biomater 5:1211–1222

    Google Scholar 

  • Ma ZJ, Yamaguchi M (2001) Role of endogenous zinc in the enhancement of bone protein synthesis associated with bone growth of newborn rats. J Bone Miner Metab 19:38–44

    Google Scholar 

  • Xia W, Chang J (2006) Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. J Control Release 110:522–530

    Google Scholar 

  • Kundu B, Soundrapandian C, Nandi SK, Mukherjee P, Dandapat N, Roy S, Datta BK, Mandal TK, Basu D, Bhattacharya RN (2010b) Development of new localized drug delivery system based on ceftriaxone-sulbactam composite drug impregnated porous hydroxyapatite: a systematic approach for in vitro and in vivo animal trial. Pharm Res 27:1659–1676.

    Google Scholar 

  • Noble L, Gray AI, Sadiq L, Uchegbu IF (1999) A non-covalently cross-linked chitosan based hydrogel. Int J Pharm 192:173–182

    Google Scholar 

  • Rossi S, Marciello M, Sandri G, Bonferoni MC, Ferrari F, Caramella C (2008) Chitosan ascorbate: a chitosan salt with improved penetration enhancement properties. Pharm Dev Technol 13:513–521

    Google Scholar 

  • Ubaidulla U, Khar RK, Ahmad FJ, Tripathi P (2009) Optimization of chitosan succinate and chitosan phthalate microspheres for oral delivery of insulin using response surface methodology. Pharm Dev Technol 14:96–105

    Google Scholar 

  • Baldrick P (2010) The safety of chitosan as a pharmaceutical excipient. Regul Toxicol Pharmacol 56:290–299

    Google Scholar 

  • Kong M, Chen XG, Liu CS, Liu CG, Meng XH, Yu le J (2008) Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. coli. Colloids Surf 65:197–202

    Google Scholar 

  • Park Y, Kim MH, Park SC, Cheong H, Jang MK, Nah JW, Hahm KS (2008) Investigation of the anti fungal activity and mechanism of action of LMWS-chitosan. J Microbiol Biotechnol 18:1729–1734

    Google Scholar 

  • Rosenqvist K, Airaksinen S, Fraser SJ, Gordon KC, Juppo AM (2013) Interaction of bioactive glass with clodronate. Int J Pharm 452:102–107

    Google Scholar 

  • Cross KJ, Huq NL, Stanton DP, Sum M, Reynolds EC (2004) NMR studies of a novel calcium, phosphate and fluoride delivery vehicle-alpha(S1)-casein(59-79) by stabilized amorphous calcium fluoride phosphate nanocomplexes. Biomaterials 25(20):5061–5069

    Google Scholar 

  • Borges BC, de Souza Borges J, de Araujo LS, Machado CT, DosSantos AJ, de Assuncao Pinheiro IV (2011) Update on nonsurgical, ultraconservative approaches to treat effectivelynon-cavitated caries lesions in permanent teeth. Eur J Dent 5(2):229–236

    Google Scholar 

  • Fan Y, Sun Z, Moradian-Oldak J (2009) Controlled remineralizationof enamel in the presence of amelogenin and fluoride. Biomaterials 30(4):478–483

    Google Scholar 

  • Nganga S, Zhang D, Moritz N, Vallittu PK, Hupa L (2012) Multi-layerporous fiber-reinforced composites for implants: in vitrocalcium phosphate formation in the presence of bioactiveglass. Dent Mater 28(11):1134–1145

    Google Scholar 

  • Hench LL (1991) Bioceramics—from concept to clinic. J Am Ceram Soc 74(7):1487–1510

    Google Scholar 

  • Bunker BC, Tallant DR, Headley TJ, Turner GL, Kirkpatrick RJ (1988) The structure of leached sodium borosilicate glass. Phys Chem Glasses 29(3):106–120

    Google Scholar 

  • Hench LL, Splinter RJ, Allen WC, Greenlee TK (1972) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 2:117–141

    Google Scholar 

  • Aitasalo K, Kinnunen I, Palmgren J, Varpula M (2001) Repair of orbital floor fractures with bioactive glass implants. J Oral Maxillofac Surg 59:1390–1396

    Google Scholar 

  • Tesavibul P, Felzmann R, Gruber S, Liska R, Thompson I, Boccaccini AR et al (2012) Processing of 45S5 Bioglass—by lithography-based additive manufacturing. Mater Lett 74:81–84

    Google Scholar 

  • Vitale-Brovarone C, Baino F, Verné E (2009) High strength bioactive glass-ceramic scaffolds for bone regeneration. J Mater Sci Mater Med 20:643–653

    Google Scholar 

  • Izquierdo-Barba I, Salinas AJ, Vallet-Regí M (2013) Bioactive glasses: from macro tonano. Int J Appl Glass Sci 4:149–161

    Google Scholar 

  • Merceron C, Vinatier C, Clouet J, Colliec-Jouault S, Weiss P, Guicheux J (2008) Adipose-derived mesenchymal stem cells and biomaterials for cartilage tissue engineering. Joint Bone Spine. Rev Rhum 75:672–674

    Google Scholar 

  • Schneider OD, Weber F, Brunner TJ, Loher S, Ehrbar M, Schmidlin PR, Stark WJ (2009) Invivo and in vitro evaluation of flexible, cottonwool-like nano composites as bone substitute material for complex defects. Acta Biomater 5:1775–1784

    Google Scholar 

  • Weiss P, Layrolle P, Clergeau LP, Enckel B, Pilet P, Amouriq Y, Daculsi G, Giumelli B (2007) The safety and efficacy of an injectable bone substitute in dental sockets demonstrated in a human clinical trial. Biomaterials 28:3295–3305

    Google Scholar 

  • Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953

    Google Scholar 

  • Ducheyne P (2011) Biomaterials. In: Ducheyne P (ed), Comprehensive biomaterials, Elsevier, Oxford, pp 1–4

    Google Scholar 

  • Hench LL, Day DE, Höland W, Rheinberger VM (2010) Glassand medicine. Int J Appl Glass Sci 1:104–117

    Google Scholar 

  • Hoppe A, Guldal NS, Boccaccini AR (2011) A review of the biological response toionic dissolution products from bioactive glasses and glass–ceramics. Biomaterials 32:2757–2774

    Google Scholar 

  • Xynos ID, Edgar AJ, Lee DK, Larry B, Hench L, Polak JM (2001) Gene-expression profiling of human osteoblasts following treatment with the ionic productsof Bioglass 45S5 dissolution. J Biomed Mater Res 55:151–157

    Google Scholar 

  • Hench LL (1994) Bioactive ceramics: theory and clinical applications, Oxford

    Google Scholar 

  • Agathopoulos S, Tulyaganov DU, Valerio P, Ferreira JM (200) A new model formulation of the SiO2–Al2O3–B2O3–MgO–CaO–Na2O–F glass–ceramics. Biomaterials 26:2255–2264

    Google Scholar 

  • Kansal I, Tulyaganov DU, Goel A, Pascual MJ, Ferreira JMF(2010) Structural analysis and thermal behavior of diopside–fluorapatite–wollas-tonite-based glasses and glass–ceramics. Acta Biomater 6:4380–4388

    Google Scholar 

  • Tulyaganov DU, Agathopoulos S, Ventura JM, Karakassides MA, Fabrichnaya O, Ferreira JMF (2006) Synthesis of glass–ceramics in the CaO–MgO–SiO2 system with B2O3, P2O5, Na2O and CaF2 additives. J Eur Ceram Soc 26:1463–1471

    Google Scholar 

  • Agathopoulos S, Tulyaganov DU, Ventura JMG, Kannan S, Saranti A, Karakassides MA, Ferreira JMF (2006) Structural analysis and devitrification of glasses based on the CaO–MgO–SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives. J Non Cryst Solids 352:322–328

    Google Scholar 

  • Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431

    Google Scholar 

  • Saboori A, Rabiee M, Mutarzadeh F, Sheikhi M, Tahriri M, Karimi M (2009) Synthesis, characterizations and in vitro bioactivity of sol–gel-derived SiO2–CaO–P2O5–MgO bioglass. Mater Sci Eng C 29:335–340

    Google Scholar 

  • Catauro M, Raucci MG, De Gaetano F, Marotta A (2004) Antibacterial and bioactive silver-containing Na2O–CaO–2SiO2 glass prepared by sol–gel method. J Mater Sci Mater Med 15:831–837

    Google Scholar 

  • Ragel CV, Vallet-Regí M (2000) In vitro bioactivity and gentamicin release from glass–polymer-antibiotic composites. J Biomed Mater Res 51:424–429

    Google Scholar 

  • Arcos D, Ragel CV, Vallet-Regi M (2001) Bioactivity in glass/PMMA composites used as drug delivery system. Biomaterials 22:701–708

    Google Scholar 

  • Ladrón de Guevara S, Ragel CV, Vallet-Regí M (2003) Bioactive glass–polymer materials for controlled release of ibuprofen. Biomaterials 24:4037–4043

    Google Scholar 

  • Arcos D, Peña J, Vallet-Regí M (2003) Influence of a SiO2–CaO–P2O5 sol–gel on the bioactivity and controlled release of a ceramic/polymer/antibiotic mixed materials. Chem Mater 15:4132–4138

    Google Scholar 

  • Arcos D, del Real RP, Vallet-Regí M (2002) A novel bioactive and magnetic biphasic material. Biomaterials 23:2151–2158

    Google Scholar 

  • Ruiz E, Serrano MC, Arcos D, Vallet-Regí M (2006) Glass–glass ceramic thermoseeds for hyperthermic treatment of bone tumours. J Biomed Mater Res 79:533–543

    Google Scholar 

  • Serrano MC, Portoles MT, Pagani R, Sáez de Guinoa J, Ruíz-Fernández E, Arcos D et al (2008) In vitro positive biocompatibility evaluation of glass–glass ceramic thermoseeds for hyperthermic treatment of bone tumours. Tissue Eng 14:617–627

    Google Scholar 

  • Ragel CV, Vallet-Regí M, Rodríguez-Lorenzo LM (2002) Preparation and in vitro bioactivity of hydroxyapatite/solgel-glass biphasic material. Biomaterials 23:1865–1872

    Google Scholar 

  • Vallet-Regí M, Rámila A, Padilla S, Muñoz B (2003) Bioactive glasses as accelerators of the apatites bioactivity. J Biomed Mater Res 66:580–585

    Google Scholar 

  • Campostrini R, Carturam G (1996) Immobilisation of plant cells in hybrid sol–gel material. J Sol-Gel Sci Technol 7:87–97

    Google Scholar 

  • Pope Edgard JA (1997) Bioartificial organs I: silica gel encapsulated pancreatic islets for the treatment of diabetes mellitus. J Sol-Gel Sci Technol 8:635–639

    Google Scholar 

  • Vallet-Regí M (2006) Revisiting ceramics for medical applications. Dalton Trans 44:5211–5220

    Google Scholar 

  • Vallet-Regí M, Balas F, Arcos D (2007) Mesoporous materials for drug delivery. Angew Chem Int Ed 46:7548–7558

    Google Scholar 

  • López-Noriega A, Arcos D, Izquierdo-Barba I, Sakamoto Y, Terasaki O, Vallet- Regí M (2006) Ordered mesoporous bioactive glasses for bone tissue regeneration. Chem Mater 18:3137–3144

    Google Scholar 

  • Izquierdo-Barba I, Arcos D, Sakamoto Y, Terasaki O, López-Noriega A, Vallet- Regí M (2008) High-performance mesoporous bioceramics mimicking bone mineralization. Chem Mater 20:3191–3198

    Google Scholar 

  • Leonova E, Izquierdo-Barba I, Arcos D, López-Noriega A, Hedi N, Vallet-Regí M et al (2008) Multinuclear solid-state NMR studies of ordered mesoporous bioactive glasses. J Phys Chem C 112:5552–5562

    Google Scholar 

  • Garcia A, Cicuendez M, Izquierdo-Barba I, Arcos D, Vallet-Regí M (2009) Essential role of calcium phosphate heterogeneities in 2D-hexagonal and 3D-cubic SiO2–CaO–P2O5 mesoporous bioactive glasses. Chem Mater 21:5474–5484

    Google Scholar 

  • Donlan RM, Costerton JW (2002) Clin Microbiol Rev 15:167

    Google Scholar 

  • Hanssen AD (2005) Clin Orthop Relat Res P 437

    Google Scholar 

  • Brown RF, Rahaman MN, Dwilewicz AB, Huang W, Day DE, Li Y, Bal BS (2009) J Biomed Mater Res A 88:392

    Google Scholar 

  • Zhang D, Munukka E, Hupa L, Ylänen HO, Viljanen MK, Hupa M (2007) Key Eng Mater 173:330–332

    Google Scholar 

  • Fu Q, Huang W, Jia W, Rahaman MN, Liu X, Tomsia AP (2011) Tissue Eng A 17:3077

    Google Scholar 

  • Kaur G, Pandey OP, Singh K, Homa D, Scott B, Pickrell G (2013) A review of bioactive glasses: their structure, properties, fabrication, and apatite formation. J Biomed Mater Res A 102:254–274

    Google Scholar 

  • Kaur G, Sharma P, Kumar V, Singh K (2012) Assesment of in-vitro bioactivity of SiO2-BaO-ZnO-B2O3-Al2O3 glasses: an optico-analytical approach. Mater Sci Engg C 32(7):1941–1947

    Google Scholar 

  • Kaur G, Pickrell G, Sriranganathan N, Kumar V, Homa D (2016) Review and the state of the art: Sol-gel or melt quenched bioactive glasses for tissue engineering. J Biomed Mater Res: B Appl Biomater 104(6):1248–1275. doi:10.1002/jbm.b.33443

  • Kaur G, Pickrell G, Pandey OP, Singh K, Chudasama BN, Kumar V (2016) Combined and individual Doxorubicin/Vancomycin drug loading, release kinetics and apatite formation for the CaO-CuO-P2O5- SiO2- B2O3 mesoporous glasses. RSC Adv 6:51046–51056

    Google Scholar 

  • Kaur G, Pickrell G, Kimsawatde G, Allbee H, Sriranganathan N (2014) Synthesis, cytotoxicity, and hydroxypatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses. Sci Rep. doi:10.1038/srep04392

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kumar .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumar, V., Pickrell, G., Waldrop, S., Sriranganathan, N. (2017). Future Perspectives of Bioactive Glasses for the Clinical Applications. In: Bioactive Glasses. Series in BioEngineering. Springer, Cham. https://doi.org/10.1007/978-3-319-45716-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45716-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45715-4

  • Online ISBN: 978-3-319-45716-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics