Skip to main content

Part of the book series: Springer Proceedings in Energy ((SPE))

  • 1151 Accesses

Abstract

Airborne Wind Energy (AWE) is a new approach to harvest stronger wind streams at higher altitudes for renewable energy. This paper reviews recent developments in this field. Conventional wind energy and current constrains for its development are discussed and airborne wind energy as an appropriate solution in the literature is reviewed. Different AWE technologies are reviewed and appraised and other related issues such as transmission and curtailment are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Energy Agency (IEA): World Energy Outlook 2014. http://www.iea.org (2014). Accessed 1 Oct 2015

  2. The European Wind Energy Association: The economics of wind energy. http://www.ewea.org/fileadmin/files/library/publications/reports/Economics_of_Wind_Energy.pdf (2009). Accessed 1 Oct 2015

  3. Manalis, M.S.: Airborne windmills and communication aerostats. J. Aircraft 13(7), 543–544 (1976). doi:10.2514/3.58686

    Article  Google Scholar 

  4. Loyd, M.L.: Crosswind kite power. Energy 04(03), 106–111 (1980). doi:10.2514/3.48021

    Article  Google Scholar 

  5. Archer, C.L., Calderia, K.: Global assessment of high-altitude wind power. Energies 2, 307–319 (2009). doi:10.3390/en20200307

    Article  Google Scholar 

  6. Archer, C.L.: An introduction to meteorology for airborne wind energy. In: Ahrens, U., et al. (eds.) Airborne Wind Energy, pp. 81–94. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39965-7_5

  7. Sieberling, S.: Flight guidance and control of a tethered glider in an airborne wind energy application. In: Qiping, C., et al. (eds.) Advances in Aerospace Guidance Navigation and Control (Selected Papers of the Second CEAS Specialist Conference on Guidance, Navigation and Control), Delft, pp. 337–351. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38253-6_21

  8. Ruiterkamp, R., Sieberling, S.: Description and preliminary test results of six degrees of freedom rigid wing pumping system. In: Ahrens, U., et al. (eds.) Airborne Wind Energy, pp. 443–458, Springer, Heidelberg (2013). doi:10.1007/978-3-642-39965-7_26

  9. Ampyx Power: Airborne wind energy. http://www.ampyxpower.com (2015). Accessed 1 Oct 2015

  10. Creighton, R.: Go fly a kite. IEEE Spect. 49(12), 46–51 (2012). doi:10.1109/MSPEC.2012.6361763

    Article  Google Scholar 

  11. WindLift: Airborne wind energy. http://windlift.com/technology.html (2015). Accessed 1 Oct 2015

  12. Bormann, A., et al.: Development of a three-line ground-actuated airborne wind energy converter. In: Ahrens, U., et al (eds.) Airborne Wind Energy, pp. 427–436. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39965-7_24

  13. EnerKite: Airborne wind energy. http://www.enerkite.de/en/ (2015). Accessed 1 Oct 2015

  14. Fritz, F.: Application of an automated kite system for ship propulsion and power generation. In: Ahrens, U., et al. (eds.) Airborne Wind Energy, pp. 359–372, Springer, Heidelberg (2013). doi:10.1007/978-3-642-39965-7_20

  15. SkySails: Airborne wind energy. http://www.skysails.info/english/power/development/3-product-35-mw-and-first-test-wind-farm/ (2015). Accessed 1 Oct 2015

  16. MakaniPower: Airborne wind energy. http://www.google.com/makani/technology/ (2015). Accessed 1 Oct 2015

  17. Kolar, J.W., et al.: Conceptualization and multi-objective optimization of the electric system of an airborne wind turbine. In: IEEE International Symposium on Industrial Electronics (ISIE 2011), Gdansk, pp. 26–31, 27–30 June 2011. IEEE, Gdansk (2011). doi:10.1109/ISIE.2011.5984131

  18. Sky Wind Power: Airborne wind energy. http://www.skywindpower.com/ (2015). Accessed 1 Oct 2015

  19. Roberts, B.W., et al.: Harnessing high altitude winds power. IEEE Trans. Energy Convers. 22(1), 136–144 (2007). doi:10.1109/TEC.2006.889603

    Article  Google Scholar 

  20. Ockels, W.J.: Laddermill, a novel concept to exploit the energy in the airspace. Aircr. Des. 4, 81–97 (2001). doi:10.1016/S1369-8869(01)00002-7

    Article  Google Scholar 

  21. Ockels, W.J., et al.: The Laddermill: work in progress. In: European Wind Energy Conference, London, 22–25 Nov 2004

    Google Scholar 

  22. Jehle, C., Schmehl, R.: Applied tracking control for kite power systems. J. Guid. Control Dyn. 37(4), 1211–1222 (2014). doi:10.2514/1.62380

    Article  Google Scholar 

  23. Fechner, U., Vlugt, R.V., Schreuder, E., Schmehl, R.: Dynamic model of a pumping kite power system. Renew. Energy 83, 705–716 (2015). doi:10.1016/j.renene.2015.04.028

    Article  Google Scholar 

  24. Lansdorp, B., Ockels, W.J.: Design and construction of a 4 kW ground station for the Laddermill. In: 7th IASTED International Conference on Power and Energy systems (EuroPES 2007), Palma de Mallorca, pp. 1–8, 29–31 Aug 2007, IASTED (2007)

    Google Scholar 

  25. Williams, P., et al.: Modeling, simulation, and testing of surf kites for power generation. In: AIAA Modeling and Simulation Technologies Conference and Exhibit, Hawaii, 18–21 Aug 2008

    Google Scholar 

  26. Canale, M., et al.: High altitude wind energy generation using controlled power kites. IEEE Trans. Control Syst. Technol. 18(2), 279–292 (2010). doi:10.1109/TCST.2009.2017933

    Article  Google Scholar 

  27. Canale, M., Fagiano, L., Milanese, M., Ippolito, M.: Control of tethered airfoils for a new class of wind energy generator. In: Parisini T., et al. (eds.) Proceedings of the 45th Conference on Decision and Control, San Diego, pp. 4020–4026, 13–15 Dec 2006. IEEE (2006). doi:10.1109/CDC.2006.376775

  28. Canale, M., Fagiano, L., Milanese, M.: Power kites for wind energy generation. IEEE Control Syst. Mag. 27(6), 25–38 (2007). doi:10.1109/MCS.2007.909465

    Article  MathSciNet  Google Scholar 

  29. Furey, A.D.: Evolutionary robotics in high altitude wind energy application. Dissertation, University of Sussex (2011)

    Google Scholar 

  30. Furey, A., Harvey, I.: Evolution of neural networks for active control of tethered airfoils. In: Almeida e Costa, F. (eds.) Proceedings of 9th European Conference, ECAL 2007, Lisbon, vol. 4648, pp. 746-755, 10–14 Sep 2007. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74913-4_75

  31. Diehl, M., et al.: Real-time optimization for large scale nonlinear processes. Dissertation, Heidelberg: Ruprecht Karls University (2001)

    Google Scholar 

  32. Geebelen, K., et al.: An experimental test set-up for launch/ recovery of an Airborne Wind Energy (AWE) system. In: Proceedings of the American Control Conference (ACC), Montreal, pp. 4405–4410, 27–29 June 2012. IEEE, Montreal (2012). doi:10.1109/ACC.2012.6315033

  33. Houska, B., Diehl, M.: Optimal control of towing kites. In: Proceedings of 45th IEEE Conference on Decision and Control, San Diego, pp. 2693–2697, 13–15 Dec 2006. IEEE, San Diego (2006). doi:10.1109/CDC.2006.377210

  34. Houska, B., et al.: Robustness and stability optimization of power generating kite systems in a periodic pumping mode. In: IEEE International Conference on Control Applications (CCA), Yokohama, pp. 2172–2177, 8–10 Sept 2010. IEEE, Yokohama (2010). doi:10.1109/CCA.2010.5611288

  35. Ilzhoefer, A., et al.: Nonlinear MPC of kites under varying wing conditions for a new class of large scale wind power generators. Int. J. Robust Nonlinear Control 17(17), 1590–1599 (2007). doi:10.1002/rnc.1210

    Article  MATH  Google Scholar 

  36. Zanon, M., et al.: Airborne wind energy based on dual airfoils. IEEE Trans. Control Syst. Technol. 21(4), 1215–1222 (2013). doi:10.1109/TCST.2013.2257781

    Article  Google Scholar 

  37. Coleman, J., Ahmad, H., Pican, E., Toal, D.: Modeling of a synchronous offshore pumping mode airborne wind energy farm. Energy 71, 569–578 (2014). doi:10.1016/j.energy.2014.04.110

    Article  Google Scholar 

  38. Coleman, J.: Distributed control system and novel power take off method for pumping-mode airborne wind energy. Dissertation, University of Limerick (2014)

    Google Scholar 

  39. Coleman, J., Ahmad, H., Pican, E., Toal, D.: None-reversing generators in a novel design for pumping mode airborne wind energy farm. In: Ahrens, U., et al. (eds.) Airborne Wind Energy, pp. 587–597. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39965-7

  40. AWESCO: Airborne wind energy. http://www.awesco.eu/ (2015). Accessed 1 Oct 2015

  41. Spinato, F., et al.: Reliability of wind turbine subassemblies. IET Renew. Power Gener. 3(4), 1–15 (2009). doi:10.1049/iet-rpg:20080060

    Article  Google Scholar 

  42. Pican, E., Omerdic, E., Toal, D., Leahy, M.: Analysis of parallel connected synchronous generators in a novel offshore wind farm model. Energy 36(11), 6387–6397 (2011). doi:10.1016/j.energy.2011.09.035

    Article  Google Scholar 

  43. Bird, L., et al.: Wind and solar energy curtailment: experience and practices in the United States. National Renewable Energy Laboratory (NREL). http://www.nrel.gov/publications (2014). Accessed 1 Oct 2015

  44. Deane, J.P., Gallachoir, B.P.O., McKeogh, E.J.: Techno-economic review of existing and new pumped hydro energy storage plant. Renew. Sustain. Energy Rev. 14(4), 1293–1302 (2010). doi:10.1016/j.rser.2009.11.015

  45. Beaudin, M., Zareipour, H., Schellenberglabe, A., Rosehart, W.: Energy storage for mitigating the variability of renewable electricity sources: an updated review. Energy. Sustain. Dev. 14(4), 302–314 (2010). doi:10.1016/j.esd.2010.09.007

    Article  Google Scholar 

  46. Ahern, E.P., Deane, P., Persson, T., Gallachoir, B.O., Murphy, J.D.: A perspective on the potential role of renewable gas in a smart energy island system. Renew. Energy 78, 648–656 (2015). doi:10.1016/j.renene.2015.01.048

    Article  Google Scholar 

Download references

Acknowledgments

This publication has emanated from research supported by the Science Foundation Ireland under the MaREI Centre research program [Grant No. SFI/12/RC/2302] and through the support of the European Commission under the H2020 Marie Skłodowska-Curie action: ITN AWESCO [Reference No. 642682].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Ebrahimi Salari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ebrahimi Salari, M., Coleman, J., Toal, D. (2017). Airborne Wind Energy—A Review. In: Oral, A., Bahsi Oral, Z. (eds) 3rd International Congress on Energy Efficiency and Energy Related Materials (ENEFM2015). Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-45677-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45677-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45676-8

  • Online ISBN: 978-3-319-45677-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics