Skip to main content

The Complexity of Cylindrical Algebraic Decomposition with Respect to Polynomial Degree

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9890))

Included in the following conference series:

Abstract

Cylindrical algebraic decomposition (CAD) is an important tool for working with polynomial systems, particularly quantifier elimination. However, it has complexity doubly exponential in the number of variables. The base algorithm can be improved by adapting to take advantage of any equational constraints (ECs): equations logically implied by the input. Intuitively, we expect the double exponent in the complexity to decrease by one for each EC. In ISSAC 2015 the present authors proved this for the factor in the complexity bound dependent on the number of polynomials in the input. However, the other term, that dependent on the degree of the input polynomials, remained unchanged.

In the present paper the authors investigate how CAD in the presence of ECs could be further refined using the technology of Gröbner Bases to move towards the intuitive bound for polynomial degree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We note that in this quote we made a small correction to the description of the second set of roots (removing a dash from \(y_1\) in the second distinct point). We thank the anonymous referee of the present paper for identifying this correction.

  2. 2.

    It would be possible to economise: if \(x_1x_2^2\mapsto \xi _1^2\), then we could map \(x_1^2x_2^4\) to \(\xi _1^4\) rather than a new \(\xi _2^4\). Since this trick is used purely for the analysis and not in implementation, we ignore such possibilities.

  3. 3.

    As downloaded from www.regularchains.org on 11th March 2016.

  4. 4.

    The On-Line Encyclopedia of Integer Sequences, 2010, Sequence A000124, https://oeis.org/A000124.

References

  1. Arnon, D., Collins, G.E., McCallum, S.: Cylindrical algebraic decomposition I: the basic algorithm. SIAM J. Comput. 13, 865–877 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Algorithms and Computations in Mathematics, vol. 10. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  3. Bradford, R., Chen, C., Davenport, J.H., England, M., Moreno Maza, M., Wilson, D.: Truth table invariant cylindrical algebraic decomposition by regular chains. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 44–58. Springer, Heidelberg (2014)

    Google Scholar 

  4. Bradford, R., Davenport, J.H., England, M., McCallum, S., Wilson, D.: Cylindrical algebraic decompositions for boolean combinations. In: Proceedings of ISSAC 2013, pp. 125–132. ACM (2013)

    Google Scholar 

  5. Bradford, R., Davenport, J.H., England, M., McCallum, S., Wilson, D.: Truth table invariant cylindrical algebraic decomposition. J. Symbolic Comput. 76, 1–35 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bradford, R., Davenport, J.H., England, M., Wilson, D.: Optimising problem formulation for cylindrical algebraic decomposition. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS, vol. 7961, pp. 19–34. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Brown, C.W.: Improved projection for cylindrical algebraic decomposition. J. Symbolic Comput. 32(5), 447–465 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brown, C.W.: Constructing a single open cell in a cylindrical algebraic decomposition. In: Proceedings of ISSAC 2013, pp. 133–140. ACM (2013)

    Google Scholar 

  9. Brown, C.W., Davenport, J.H.: The complexity of quantifier elimination and cylindrical algebraic decomposition. In: Proceedings of ISSAC 2007, pp. 54–60. ACM (2007)

    Google Scholar 

  10. Brown, C.W., El Kahoui, M., Novotni, D., Weber, A.: Algorithmic methods for investigating equilibria in epidemic modelling. J. Symbolic Comput. 41, 1157–1173 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Buchberger, B.: Bruno Buchberger’s PhD thesis (1965): an algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. J. Symbolic Comput. 41(3–4), 475–511 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Buchberger, B., Hong, H.: Speeding up quantifier elimination by Gröbner bases. Technical report, 91–06. RISC, Johannes Kepler University (1991)

    Google Scholar 

  13. Busé, L., Mourrain, B.: Explicit factors of some iterated resultants and discriminants. Math. Comput. 78, 345–386 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, C., Moreno, M.M., Xia, B., Yang, L.: Computing cylindrical algebraic decomposition via triangular decomposition. In: Proceedings of ISSAC 2009, pp. 95–102. ACM (2009)

    Google Scholar 

  15. Collins, G.E.: The SAC-2 computer algebra system. In: Caviness, B.F. (ed.) EUROCAL 1985. LNCS, vol. 204, pp. 34–35. Springer, Heidelberg (1985)

    Google Scholar 

  16. Collins, G.E.: Quantifier elimination by cylindrical algebraic decomposition - 20 years of progress. In: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts & Monographs in Symbolic Computation, pp. 8–23. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  17. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symbolic Comput. 12, 299–328 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Davenport, J.H., Bradford, R., England, M., Wilson, D.: Program verification in the presence of complex numbers, functions with branch cuts etc. In: Proceedings of SYNASC 2012, pp. 83–88. IEEE (2012)

    Google Scholar 

  19. Davenport, J.H., England, M.: Need polynomial systems be doubly-exponential? In: Greuel, G.-M., Koch, T., Paule, P., Sommese, A. (eds.) ICMS 2016. LNCS, vol. 9725, pp. 157–164. Springer, Heidelberg (2016)

    Chapter  Google Scholar 

  20. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J. Symbolic Comput. 5(1–2), 29–35 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. England, M., Bradford, R., Chen, C., Davenport, J.H., Maza, M.M., Wilson, D.: Problem formulation for truth-table invariant cylindrical algebraic decomposition by incremental triangular decomposition. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 45–60. Springer, Heidelberg (2014)

    Google Scholar 

  22. England, M., Bradford, R., Davenport, J.H.: Improving the use of equational constraints in cylindrical algebraic decomposition. In: Proceedings of ISSAC 2015, pp. 165–172. ACM (2015)

    Google Scholar 

  23. England, M., Wilson, D., Bradford, R., Davenport, J.H.: Using the regular chains library to build cylindrical algebraic decompositions by projecting and lifting. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 458–465. Springer, Heidelberg (2014)

    Google Scholar 

  24. Erascu, M., Hong, H.: Synthesis of optimal numerical algorithms using real quantifier elimination (case study: square root computation). In: Proceedings of ISSAC 2014, pp. 162–169. ACM (2014)

    Google Scholar 

  25. Faugère, J.C.: A new efficient algorithm for computing groebner bases without reduction to zero (F5). In: Proceedings of ISSAC 2002, pp. 75–83. ACM (2002)

    Google Scholar 

  26. Fotiou, I.A., Parrilo, P.A., Morari, M.: Nonlinear parametric optimization using cylindrical algebraic decomposition. In: 2005 European Control Conference on Decision and Control, CDC-ECC 2005, pp. 3735–3740 (2005)

    Google Scholar 

  27. Han, J., Dai, L., Xia, B.: Constructing fewer open cells by gcd computation in CAD projection. In: Proceedings of ISSAC 2014, pp. 240–247. ACM (2014)

    Google Scholar 

  28. Heintz, J.: Definability and fast quantifier elimination in algebraically closed fields. Theor. Comput. Sci. 24(3), 239–277 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hong, H.: An improvement of the projection operator in cylindrical algebraic decomposition. In: Proceedings of ISSAC 1990, pp. 261–264. ACM (1990)

    Google Scholar 

  30. Huang, Z., England, M., Davenport, J.H., Paulson, L.: Using machine learning to decide when to precondition cylindrical algebraic decomposition with Groebner bases (2016, to appear)

    Google Scholar 

  31. Huang, Z., England, M., Wilson, D., Davenport, J.H., Paulson, L.C., Bridge, J.: Applying machine learning to the problem of choosing a heuristic to select the variable ordering for cylindrical algebraic decomposition. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 92–107. Springer, Heidelberg (2014)

    Google Scholar 

  32. Iwane, H., Yanami, H., Anai, H., Yokoyama, K.: An effective implementation of a symbolic-numeric cylindrical algebraic decomposition for quantifier elimination. In: Proceedings of SNC 2009, pp. 55–64 (2009)

    Google Scholar 

  33. Jouanolou, J.P.: Le formalisme du résultant. Adv. Math. 90(2), 117–263 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lazard, D., McCallum, S.: Iterated discriminants. J. Symbolic Comput. 44(9), 1176–1193 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mayr, E.W., Meyer, A.R.: The complexity of the word problems for commutative semigroups and polynomial ideals. Adv. Math. 46(3), 305–329 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mayr, E.W., Ritscher, S.: Dimension-dependent bounds for gröbner bases of polynomial ideals. J. Symbolic Comput. 49, 78–94 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. McCallum, S.: An improved projection operation for cylindrical algebraic decomposition. In: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts & Monograph in Symbolic Computation, pp. 242–268. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  38. McCallum, S.: Factors of iterated resultants and discriminants. J. Symbolic Comput. 27(4), 367–385 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. McCallum, S.: On projection in CAD-based quantifier elimination with equational constraint. In: Proceedings of ISSAC 1999, pp. 145–149. ACM (1999)

    Google Scholar 

  40. McCallum, S.: On propagation of equational constraints in CAD-based quantifier elimination. In: Proceedings of ISSAC 2001, pp. 223–231. ACM (2001)

    Google Scholar 

  41. Paulson, L.C.: MetiTarski: past and future. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 1–10. Springer, Heidelberg (2012)

    Google Scholar 

  42. Schwartz, J.T., Sharir, M.: On the “Piano-Movers” problem: I. the case of a two-dimensional rigid polygonal body moving amidst polygonal barriers. Commun. Pure Appl. Math. 36(3), 345–398 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  43. Strzeboński, A.: Cylindrical algebraic decomposition using validated numerics. J. Symbolic Comput. 41(9), 1021–1038 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Strzeboński, A.: Cylindrical algebraic decomposition using local projections. In: Proceedings of ISSAC 2014, pp. 389–396. ACM (2014)

    Google Scholar 

  45. Wilson, D., Bradford, R., Davenport, J.H., England, M.: Cylindrical algebraic sub-decompositions. Math. Comput. Sci. 8, 263–288 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wilson, D., England, M., Davenport, J.H., Bradford, R.: Using the distribution of cells by dimension in a cylindrical algebraic decomposition. In: Proceedings of SYNASC 2014, pp. 53–60. IEEE (2014)

    Google Scholar 

  47. Wilson, D.J., Bradford, R.J., Davenport, J.H.: Speeding up cylindrical algebraic decomposition by Gröbner bases. In: Jeuring, J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS, vol. 7362, pp. 280–294. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was originally supported by EPSRC grant: EP/J003247/1 and is now supported by EU H2020-FETOPEN-2016-2017-CSA project \(\mathcal {SC}^2\) (712689). Thanks to the referees for their helpful comments, and Prof. Buchberger for reminding JHD that Gröbner bases were applicable here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew England .

Editor information

Editors and Affiliations

Appendices

Appendix

A The Iterated Resultants from Section 4

$$\begin{aligned} R_1&:= \mathrm {res}(r_1, r_2, y) = {x}^{16} + 8\,{x}^{15} + ( -8\,{w}^{2}+8\,w+64 ) {x}^{14} + ( -56\,{w}^{2}+56\,w \\ {}&\quad +288 ) {x}^{13} + ( 28\,{w}^{4}-56\,{w}^{3}-332\,{w}^{2}+400\,w+1138 ) {x}^{12} + ( 168\,{w}^{4} \\ {}&\quad -336\,{w}^{3}-1144\,{w}^{2}+1552\,w+2912 ) {x}^{11} + ( -56\,{w}^{6}+168\,{w}^{5}+648\,{w}^{4} \\ {}&\quad -1816\,{w}^{3}-2664\,{w} ^{2}+5328\,w+6336 ) {x}^{10} + ( -280\,{w}^{6}+840\,{w}^{5} \\ {}&\quad +1400\,{w}^{4}-5400\,{w}^{3}-2616\,{w}^{2}+11368\,w+7808 ) {x}^{9} + ( 70\,{w}^{8} \\ {}&\quad -280\,{w}^{7}-500\,{w}^{6}+3080\,{w}^{5}-270\,{w}^{4}-11576\,{w}^{3}+4860\,{w}^{2} \\ {}&\quad +20816\,w+7381 ) {x}^{8} + ( 280\,{w}^{8}-1120\,{w}^{7}+80\,{w}^{6}+6080\,{w}^{5}-8480\,{w}^{4} \\ {}&\quad -11792\,{w}^{3}+22840\,{w}^{2}+20192\,w+920 ) {x}^{7} + ( -56\,{w}^{10}+280\,{w}^{9} \\ {}&\quad -80\,{w}^{8}-2160\,{w}^{7}+4960\,{w}^{6}+3200\,{w}^{5}-22608\,{w}^{4}+2584\,{w}^{3} \\ {}&\quad +40840\,{w}^{2}+16040\,w+2024 ) {x}^{6} + ( -168\,{w}^{10}+840\,{w}^{9}-1520\,{w}^{8} \\ {}&\quad -1360\,{w}^{7}+12016\,{w}^{6}-11296\,{w}^{5}-23368\,{w}^{4}+30136\,{w}^{3}+22032\,{w}^{2} \\ {}&\quad +624\,w+736 ) {x}^{5} + ( 28\,{w}^{12}-168\,{w}^{11}+396\,{w}^{10}+160\,{w}^{9}-3690\,{w}^{8} \\&\quad +6576\,{w}^{7}+4520\,{w}^{6}-24712\,{w}^{5}+13154\,{w}^{4}+37456\,{w}^{3}+1464\,{w}^{2} \\&\quad -1568\,w+5968 ) {x}^{4} + ( 56\,{w}^{12}-336\,{w}^{11}+1192\,{w}^{10}-1680\,{w}^{9} \\&\quad -2688\,{w}^{8}+12496\,{w}^{7}-13464\,{w}^{6}-16912\,{w}^{5}+37240\,{w}^{4}+13472\,{w}^{3} \\ {}&\quad -16384\,{w}^{2}+1984\,w+3072 ) {x}^{3} + ( -8\,{w}^{14}+56\,{w}^{13}-248\,{w}^{12}+520\,{w}^{11} \\&\quad +72\,{w}^{10}-3088\,{w}^{9}+7664\,{w}^{8}-2040\,{w}^{7}-16176\,{w}^{6}+20424\,{w}^{5} \\ {}&\quad +20056\,{w}^{4}-15360\,{w}^{3}-8544\,{w}^{2}+4608\,w+2304 ) {x}^{2} + ( -8\,{w}^{14} \\ {}&\quad +56\,{w}^{13}-296\,{w}^{12}+808\,{w}^{11}-1144\,{w}^{10}-776\,{w}^{9}+6184\,{w}^{8}-7048\,{w}^{7} \\&\quad -6944\,{w}^{6}+19696\,{w}^{5}+3872\,{w}^{4}-16832\,{w}^{3}-1152\,{w}^{2}+4608\,w ) x + {w}^{16} \\&\quad -8\,{w}^{15}+52\,{w}^{14}-184\,{w}^{13}+454\,{w}^{12}-440\,{w}^{11}-772\,{w}^{10} +3352\,{w}^{9} \\ {}&\quad -2447\,{w}^{8}-4288\,{w}^{7}+8200\,{w}^{6}+2080\,{w}^{5}-7664\,{w}^{4} -384\,{w}^{3} + 2304\,{w}^{2}\\ \end{aligned}$$
$$\begin{aligned} R_2&:= \mathrm {res}(r_1, r_3, y) = {x}^{16} + 8\,{x}^{15} + ( -8\,{w}^{2}+8\,w+28 ) {x}^{14} + ( -56\,{w}^{2}+56\,w \\&\quad +48 ) {x}^{13} + ( 28\,{w}^{4}-56\,{w}^{3}-116\,{w}^{2}+160\,w-2 ) {x}^{12} + ( 168\,{w}^{4} \\ {}&\quad -336\,{w}^{3}+80\,{w}^{2}+184\,w-256 ) {x}^{11} + ( -56\,{w}^{6}+168\,{w}^{5}+108\,{w}^{4} \\&\quad -592\,{w}^{3}+852\,{w}^{2}-240\,w-12 ) {x}^{10} + ( -280\,{w}^{6}+840\,{w}^{5}-1120\,{w}^{4} \\&\quad +360\,{w}^{3}+1872\,{w}^{2}-1448\,w+2000 ) {x}^{9} + ( 70\,{w}^{8}-280\,{w}^{7}+220\,{w}^{6} \\&\quad +560\,{w}^{5}-2742\,{w}^{4}+3232\,{w}^{3}-1428\,{w}^{2}+224\,w+4537 ) {x}^{8} + ( 280\,{w}^{8} \\&\quad -1120\,{w}^{7}+2720\,{w}^{6}-3280\,{w}^{5}-1280\,{w}^{4}+6016\,{w}^{3}-11696\,{w}^{2}+7496\,w \\&\quad +2552 ) {x}^{7} + ( -56\,{w}^{10}+280\,{w}^{9}-620\,{w}^{8}+480\,{w}^{7}+2488\,{w}^{6}-6880\,{w}^{5} \\&\quad +9384\,{w}^{4}-5744\,{w}^{3}-9404\,{w}^{2}+12008\,w-4120 ) {x}^{6} + ( -168\,{w}^{10} \\ {}&\quad +840\,{w}^{9} -2960\,{w}^{8}+5840\,{w}^{7}-4832\,{w}^{6}-3088\,{w}^{5}+21104\,{w}^{4} \\ {}&\quad -27128\,{w}^{3} +12552\,{w}^{2}+3888\,w-5888 ) {x}^{5} + ( 28\,{w}^{12}-168\,{w}^{11}+612\,{w}^{10} \\ {}&\quad -1280\,{w}^{9} +498\,{w}^{8}+3648\,{w}^{7}-12424\,{w}^{6}+17360\,{w}^{5}-4546\,{w}^{4} \\&\quad -13928\,{w}^{3} + 19032\,{w}^{2}-9344\,w-176 ) {x}^{4} + ( 56w^{12} - 336w^{11} + 1552w^{10} \\ {}&\quad - 4200\,{w}^{9} + 7296\,{w}^{8} - 6080\,{w}^{7} - 7440\,w^{6}+25880\,{w}^{5}-31352\,{w}^{4} \\ {}&\quad +13472\,{w}^{3} +1856\,{w}^{2}-10304\,w+1536 )x^3 + ( -8\,{w}^{14}+56\,{w}^{13}-284\,{w}^{12} \\ {}&\quad +880\,{w}^{11} -1740\,{w}^{10}+1616\,{w}^{9}+2468\,{w}^{8}-10704\,{w}^{7}+15828\,{w}^{6} \\ {}&\quad -8040\,{w}^{5} -1064\,{w}^{4}+9792\,{w}^{3}-3168\,{w}^{2}+2304 ) {x}^{2} + ( -8\,{w}^{14}+56\,{w}^{13} \\ {}&\quad -320\,{w}^{12} +1096\,{w}^{11}-2800\,{w}^{10}+4600\,{w}^{9}-3968\,{w}^{8}-2152\,{w}^{7} \\ {}&\quad +9592\,{w}^{6} -10832\,{w}^{5} +5312\,{w}^{4}+4672\,{w}^{3}-5760\,{w}^{2}+4608\,w ) x + {w}^{16} \\ {}&\quad -8\,{w}^{15} +52\,{w}^{14}-208\,{w}^{13} +646\,{w}^{12}-1376\,{w}^{11}+2012\,{w}^{10}-1136\,{w}^{9} \\ {}&\quad -1295\,{w}^{8}+4328\,{w}^{7}-3992\,{w}^{6} +2368\,{w}^{5}+2320\,{w}^{4}-1920\,{w}^{3}+2304\,{w}^{2} \\ \end{aligned}$$
$$\begin{aligned} R_3&:= \mathrm {res}(r_3, r_3, y) = {x}^{16} + 8\,{x}^{15} + ( -8\,{w}^{2}+8\,w+44 ) {x}^{14} + ( -56\,{w}^{2}+56\,w \\&\quad +160 ) {x}^{13} + ( 28\,{w}^{4}-56\,{w}^{3}-228\,{w}^{2}+272\,w+430 ) {x}^{12} + ( 168\,{w}^{4}\\&\quad -336\,{w}^{3}-592\,{w}^{2}+856\,w+816 ) {x}^{11} + ( -56\,{w}^{6}+168\,{w}^{5}+444\,{w}^{4} \\&\quad -1264\,{w}^{3}-812\,{w}^{2}+1952\,w+1092 ) {x}^{10} + ( -280\,{w}^{6}+840\,{w}^{5}+560\,{w}^{4} \\&\quad -3000\,{w}^{3}+32\,{w}^{2}+3032\,w+736 ) {x}^{9} + ( 70\,{w}^{8}-280\,{w}^{7}-340\,{w}^{6} \\&\quad +2240\,{w}^{5}-902\,{w}^{4}-4208\,{w}^{3}+2716\,{w}^{2}+3120\,w-183 ) {x}^{8} + ( 280\,{w}^{8} \\&\quad -1120\,{w}^{7}+480\,{w}^{6}+3440\,{w}^{5}-4640\,{w}^{4}-2304\,{w}^{3}+5840\,{w}^{2}+1128\,w\\ {}&\quad -1144 ) {x}^{7} + ( -56\,{w}^{10}+280\,{w}^{9}-60\,{w}^{8}-1760\,{w}^{7}+3128\,{w}^{6}+960\,{w}^{5}\\ {}&\quad -7352\,{w}^{4}+3216\,{w}^{3}+5860\,{w}^{2}-1320\,w-824 ) {x}^{6} + ( -168\,{w}^{10}+840\,{w}^{9}\\ {}&\quad -1280\,{w}^{8}-880\,{w}^{7}+5568\,{w}^{6}-5008\,{w}^{5}-4464\,{w}^{4}+7848\,{w}^{3}+984\,{w}^{2}\\ {}&\quad -2576\,w-64 ) {x}^{5} + ( 28\,{w}^{12}-168\,{w}^{11}+276\,{w}^{10}+400\,{w}^{9}-2302\,{w}^{8}\\ {}&\quad +2848\,{w}^{7}+1880\,{w}^{6}-7440\,{w}^{5}+3582\,{w}^{4}+5704\,{w}^{3}-3208\,{w}^{2}-1216\,w\\ {}&\quad +720 ) {x}^{4} + ( 56\,{w}^{12}-336\,{w}^{11}+880\,{w}^{10}-840\,{w}^{9}-1424\,{w}^{8}+4800\,{w}^{7}\\ {}&\quad -3856\,{w}^{6}-3464\,{w}^{5}+6968\,{w}^{4}+32\,{w}^{3}-3392\,{w}^{2}+448\,w+512 ) {x}^{3} \\ {}&\quad + ( -8\,{w}^{14}+56\,{w}^{13}-172\,{w}^{12}+208\,{w}^{11}+308\,{w}^{10}-1504\,{w}^{9}+1972\,{w}^{8}\\ {}&\quad +432\,{w}^{7}-3788\,{w}^{6}+2920\,{w}^{5}+2552\,{w}^{4}-3136\,{w}^{3}-864\,{w}^{2}+1024\,w\\ {}&\quad +256 ) {x}^{2} + ( -8\,{w}^{14}+56\,{w}^{13}-208\,{w}^{12}+424\,{w}^{11}-352\,{w}^{10}-520\,{w}^{9}\\ {}&\quad +1744\,{w}^{8}-1416\,{w}^{7}-1176\,{w}^{6}+2928\,{w}^{5}-384\,{w}^{4}-1984\,{w}^{3}+384\,{w}^{2}\\ {}&\quad +512\,w ) x + {w}^{16}-8\,{w}^{15}+36\,{w}^{14}-96\,{w}^{13}+150\,{w}^{12}-48\,{w}^{11}-308\,{w}^{10}\\ {}&\quad +672\,{w}^{9}-351\,{w}^{8}-648\,{w}^{7}+1096\,{w}^{6}-880\,{w}^{4}+128\,{w}^{3}+256\,{w}^{2} \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

England, M., Davenport, J.H. (2016). The Complexity of Cylindrical Algebraic Decomposition with Respect to Polynomial Degree. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2016. Lecture Notes in Computer Science(), vol 9890. Springer, Cham. https://doi.org/10.1007/978-3-319-45641-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45641-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45640-9

  • Online ISBN: 978-3-319-45641-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics