Skip to main content

Blood-Brain Barrier Dysfunction during Central Nervous System Autoimmune Diseases

  • Chapter
  • First Online:
The Blood Brain Barrier and Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

The blood-brain barrier (BBB) cellular constituents and their molecular interactions critically regulate immune activation within the central nervous system (CNS) such that it is protected from fatal complications of inflammatory processes. While the mechanisms that prevent leukocyte access to the CNS parenchyma were originally ascribed to physical barriers comprised of specialized endothelial cells (ECs) with ensheathing pericytes, astrocyte endfeet, and their basement membranes, it is now established that these walls are, in fact, molecular in nature. Cellular adhesion molecules, chemoattractants, and the receptors that regulate their patterns of expression maintain barrier integrity and function, limiting the entry of leukocytes and their egress into the CNS parenchyma from perivascular spaces. These molecular mechanisms are also critical for neuroinflammatory responses to pathogen invasion within the CNS, promoting immune cell interactions at endothelial barriers that ensure local T cell reactivation, a requirement for their role in pathogen clearance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hinson SR, McKeon A, Lennon VA (2010) Neurological autoimmunity targeting aquaporin-4. Neuroscience 168:1009–1018

    Article  CAS  PubMed  Google Scholar 

  2. Marignier R, Giraudon P, Vukusic S, Confavreux C, Honnorat J (2010) Anti-aquaporin-4 antibodies in Devic’s neuromyelitis optica: therapeutic implications. Ther Adv Neurol Disord 3:311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Graber DJ, Levy M, Kerr D, Wade WF (2008) Neuromyelitis optica pathogenesis and aquaporin 4. J Neuroinflammation 5:22

    Article  PubMed  PubMed Central  Google Scholar 

  4. Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis–the plaque and its pathogenesis. N Engl J Med 354:942–955

    Article  CAS  PubMed  Google Scholar 

  5. Wingerchuk DM, Lucchinetti CF, Noseworthy JH (2001) Multiple sclerosis: current pathophysiological concepts. Lab Invest 81:263–281

    Article  CAS  PubMed  Google Scholar 

  6. Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara K et al (2004) A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364:2106–2112

    Article  CAS  PubMed  Google Scholar 

  7. Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR (2005) IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 202:473–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roemer SF, Parisi JE, Lennon VA, Benarroch EE, Lassmann H, Bruck W et al (2007) Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Brain 130:1194–1205

    Article  PubMed  Google Scholar 

  9. Banks WA, Kastin AJ, Broadwell RD (1995) Passage of cytokines across the blood-brain barrier. Neuroimmunomodulation 2:241–248

    Article  CAS  PubMed  Google Scholar 

  10. Dantzer R, Kelley KW (2007) Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun 21:153–160

    Article  CAS  PubMed  Google Scholar 

  11. O’Carroll SJ, Kho DT, Wiltshire R, Nelson V, Rotimi O, Johnson R et al (2015) Pro-inflammatory TNFalpha and IL-1beta differentially regulate the inflammatory phenotype of brain microvascular endothelial cells. J Neuroinflammation 12:131

    Article  PubMed  PubMed Central  Google Scholar 

  12. Minagar A, Alexander JS (2003) Blood-brain barrier disruption in multiple sclerosis. Mult Scler 9:540–549

    Article  CAS  PubMed  Google Scholar 

  13. Alvarez JI, Saint-Laurent O, Godschalk A, Terouz S, Briels C, Larouche S et al (2015) Focal disturbances in the blood-brain barrier are associated with formation of neuroinflammatory lesions. Neurobiol Dis 74:14–24

    Article  CAS  PubMed  Google Scholar 

  14. Vincent T, Saikali P, Cayrol R, Roth AD, Bar-Or A, Prat A et al (2008) Functional consequences of neuromyelitis optica-IgG astrocyte interactions on blood-brain barrier permeability and granulocyte recruitment. J Immunol 181:5730–5737

    Article  CAS  PubMed  Google Scholar 

  15. Uzawa A, Mori M, Arai K, Sato Y, Hayakawa S, Masuda S et al (2010) Cytokine and chemokine profiles in neuromyelitis optica: significance of interleukin-6. Mult Scler 16:1443–1452

    Article  CAS  PubMed  Google Scholar 

  16. Matsushita T, Tateishi T, Isobe N, Yonekawa T, Yamasaki R, Matsuse D et al (2013) Characteristic cerebrospinal fluid cytokine/chemokine profiles in neuromyelitis optica, relapsing remitting or primary progressive multiple sclerosis. PLoS One 8:e61835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kothur K, Wienholt L, Brilot F, Dale RC (2016) CSF cytokines/chemokines as biomarkers in neuroinflammatory CNS disorders: a systematic review. Cytokine 77:227–237

    Article  PubMed  Google Scholar 

  18. Uzawa A, Mori M, Ito M, Uchida T, Hayakawa S, Masuda S et al (2009) Markedly increased CSF interleukin-6 levels in neuromyelitis optica, but not in multiple sclerosis. J Neurol 256:2082–2084

    Article  CAS  PubMed  Google Scholar 

  19. Wen SR, Liu GJ, Feng RN, Gong FC, Zhong H, Duan SR et al (2012) Increased levels of IL-23 and osteopontin in serum and cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol 244:94–96

    Article  CAS  PubMed  Google Scholar 

  20. Sharief MK, Thompson EJ (1992) In vivo relationship of tumor necrosis factor-alpha to blood-brain barrier damage in patients with active multiple sclerosis. J Neuroimmunol 38:27–33

    Article  CAS  PubMed  Google Scholar 

  21. Woodroofe MN, Cuzner ML (1993) Cytokine mRNA expression in inflammatory multiple sclerosis lesions: detection by non-radioactive in situ hybridization. Cytokine 5:583–588

    Article  CAS  PubMed  Google Scholar 

  22. Cannella B, Raine CS (1995) The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann Neurol 37:424–435

    Article  CAS  PubMed  Google Scholar 

  23. Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H et al (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8:500–508

    Article  CAS  PubMed  Google Scholar 

  24. Matusevicius D, Kivisakk P, He B, Kostulas N, Ozenci V, Fredrikson S et al (1999) Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler 5:101–104

    Article  CAS  PubMed  Google Scholar 

  25. Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL (1994) Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265:1237–1240

    Article  CAS  PubMed  Google Scholar 

  26. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. The IFNB Multiple Sclerosis Study Group (1993). Neurology 43:655–61.

    Google Scholar 

  27. Paty DW, Li DK (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group. Neurology 43:662–667

    Article  CAS  PubMed  Google Scholar 

  28. Jacobs LD, Cookfair DL, Rudick RA, Herndon RM, Richert JR, Salazar AM et al (1996) Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann Neurol 39:285–294

    Article  CAS  PubMed  Google Scholar 

  29. Jacobs LD, Beck RW, Simon JH, Kinkel RP, Brownscheidle CM, Murray TJ et al (2000) Intramuscular interferon beta-1a therapy initiated during a first demyelinating event in multiple sclerosis. CHAMPS Study Group. N Engl J Med 343:898–904

    Article  CAS  PubMed  Google Scholar 

  30. Minagar A, Long A, Ma T, Jackson TH, Kelley RE, Ostanin DV et al (2003) Interferon (IFN)-beta 1a and IFN-beta 1b block IFN-gamma-induced disintegration of endothelial junction integrity and barrier. Endothelium J Endothelial Cell Res 10:299–307

    Article  CAS  Google Scholar 

  31. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53

    Article  CAS  PubMed  Google Scholar 

  32. Brosnan CF, Cannella B, Battistini L, Raine CS (1995) Cytokine localization in multiple sclerosis lesions: correlation with adhesion molecule expression and reactive nitrogen species. Neurology 45:S16–S21

    Article  CAS  PubMed  Google Scholar 

  33. Abbott NJ (2002) Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat 200:629–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Engelhardt B (2008) Immune cell entry into the central nervous system: involvement of adhesion molecules and chemokines. J Neurol Sci 274:23–26

    Article  CAS  PubMed  Google Scholar 

  35. Williams JL, Holman DW, Klein RS (2014) Chemokines in the balance: maintenance of homeostasis and protection at CNS barriers. Front Cell Neurosci 8:154

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kivisakk P, Mahad DJ, Callahan MK, Trebst C, Tucky B, Wei T et al (2003) Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci U S A 100:8389–8394

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yednock TA, Cannon C, Fritz LC, Sanchez-Madrid F, Steinman L, Karin N (1992) Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 356:63–66

    Article  CAS  PubMed  Google Scholar 

  38. Kleiter I, Hellwig K, Berthele A, Kumpfel T, Linker RA, Hartung HP et al (2012) Failure of natalizumab to prevent relapses in neuromyelitis optica. Arch Neurol 69:239–245

    Article  PubMed  Google Scholar 

  39. Kitley J, Evangelou N, Kuker W, Jacob A, Leite MI, Palace J (2014) Catastrophic brain relapse in seronegative NMO after a single dose of natalizumab. J Neurol Sci 339:223–225

    Article  PubMed  Google Scholar 

  40. Zhong X, Wang H, Dai Y, Wu A, Bao J, Xu W et al (2011) Cerebrospinal fluid levels of CXCL13 are elevated in neuromyelitis optica. J Neuroimmunol 240–241:104–108

    Article  PubMed  Google Scholar 

  41. Alvarez E, Piccio L, Mikesell RJ, Klawiter EC, Parks BJ, Naismith RT et al (2013) CXCL13 is a biomarker of inflammation in multiple sclerosis, neuromyelitis optica, and other neurological conditions. Mult Scler 19:1204–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Quan C, Yu H, Qiao J, Xiao B, Zhao G, Wu Z et al (2013) Impaired regulatory function and enhanced intrathecal activation of B cells in neuromyelitis optica: distinct from multiple sclerosis. Mult Scler 19:289–298

    Article  CAS  PubMed  Google Scholar 

  43. Shimizu F, Nishihara H, Sano Y, Takeshita Y, Takahashi S, Maeda T et al (2015) Markedly increased IP-10 production by blood-brain barrier in neuromyelitis optica. PLoS One 10:e0122000

    Article  PubMed  PubMed Central  Google Scholar 

  44. McCandless EE, Piccio L, Woerner BM, Schmidt RE, Rubin JB, Cross AH et al (2008) Pathological expression of CXCL12 at the blood-brain barrier correlates with severity of multiple sclerosis. Am J Pathol 172:799–808

    Article  PubMed  PubMed Central  Google Scholar 

  45. Scarpini E, Galimberti D, Baron P, Clerici R, Ronzoni M, Conti G et al (2002) IP-10 and MCP-1 levels in CSF and serum from multiple sclerosis patients with different clinical subtypes of the disease. J Neurol Sci 195:41–46

    Article  CAS  PubMed  Google Scholar 

  46. Malmestrom C, Andersson BA, Haghighi S, Lycke J (2006) IL-6 and CCL2 levels in CSF are associated with the clinical course of MS: implications for their possible immunopathogenic roles. J Neuroimmunol 175:176–182

    Article  CAS  PubMed  Google Scholar 

  47. Stamatovic SM, Sladojevic N, Keep RF, Andjelkovic AV (2012) Relocalization of junctional adhesion molecule A during inflammatory stimulation of brain endothelial cells. Mol Cell Biol 32:3414–3427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Roberts TK, Eugenin EA, Lopez L, Romero IA, Weksler BB, Couraud PO et al (2012) CCL2 disrupts the adherens junction: implications for neuroinflammation. Lab Invest 92:1213–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nourshargh S, Krombach F, Dejana E (2006) The role of JAM-A and PECAM-1 in modulating leukocyte infiltration in inflamed and ischemic tissues. J Leukoc Biol 80:714–718

    Article  CAS  PubMed  Google Scholar 

  50. Yeung D, Manias JL, Stewart DJ, Nag S (2008) Decreased junctional adhesion molecule-A expression during blood-brain barrier breakdown. Acta Neuropathol 115:635–642

    Article  CAS  PubMed  Google Scholar 

  51. Sobel RA, Mitchell ME, Fondren G (1990) Intercellular adhesion molecule-1 (ICAM-1) in cellular immune reactions in the human central nervous system. Am J Pathol 136:1309–1316

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Carlos TM, Harlan JM (1994) Leukocyte-endothelial adhesion molecules. Blood 84:2068–2101

    CAS  PubMed  Google Scholar 

  53. Bo L, Peterson JW, Mork S, Hoffman PA, Gallatin WM, Ransohoff RM et al (1996) Distribution of immunoglobulin superfamily members ICAM-1, −2, −3, and the beta 2 integrin LFA-1 in multiple sclerosis lesions. J Neuropathol Exp Neurol 55:1060–1072

    Article  CAS  PubMed  Google Scholar 

  54. Steinman L (2001) Multiple sclerosis: a two-stage disease. Nat Immunol 2:762–764

    Article  CAS  PubMed  Google Scholar 

  55. Vestweber D (2015) How leukocytes cross the vascular endothelium. Nat Rev Immunol 15:692–704

    Article  CAS  PubMed  Google Scholar 

  56. Weller RO, Engelhardt B, Phillips MJ (1996) Lymphocyte targeting of the central nervous system: a review of afferent and efferent CNS-immune pathways. Brain Pathol 6:275–288

    Article  CAS  PubMed  Google Scholar 

  57. Engelhardt B, Ransohoff RM (2005) The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol 26:485–495

    Article  CAS  PubMed  Google Scholar 

  58. Kivisakk P, Mahad DJ, Callahan MK, Sikora K, Trebst C, Tucky B et al (2004) Expression of CCR7 in multiple sclerosis: implications for CNS immunity. Ann Neurol 55:627–638

    Article  CAS  PubMed  Google Scholar 

  59. Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F (2004) Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 14:164–174

    Article  PubMed  Google Scholar 

  60. Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M et al (2007) Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130:1089–1104

    Article  PubMed  Google Scholar 

  61. Washington R, Burton J, Todd RF 3rd, Newman W, Dragovic L, Dore-Duffy P (1994) Expression of immunologically relevant endothelial cell activation antigens on isolated central nervous system microvessels from patients with multiple sclerosis. Ann Neurol 35:89–97

    Article  CAS  PubMed  Google Scholar 

  62. Conlon P, Oksenberg JR, Zhang J, Steinman L (1999) The immunobiology of multiple sclerosis: an autoimmune disease of the central nervous system. Neurobiol Dis 6:149–166

    Article  CAS  PubMed  Google Scholar 

  63. Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M et al (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132:1175–1189

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Multiple Sclerosis Society Post-doctoral Fellowship (J.L. Williams) and the National Institutes of Health/National Institute of Neurological Disorders and Stroke Grant P01 NS059560 (R.S. Klein).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robyn S. Klein MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Williams, J.L., Klein, R.S. (2017). Blood-Brain Barrier Dysfunction during Central Nervous System Autoimmune Diseases. In: Lyck, R., Enzmann, G. (eds) The Blood Brain Barrier and Inflammation. Progress in Inflammation Research. Springer, Cham. https://doi.org/10.1007/978-3-319-45514-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45514-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45512-9

  • Online ISBN: 978-3-319-45514-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics