Skip to main content

High Energy Multipole Distribution Spark Ignition System

  • Conference paper
  • First Online:
Ignition Systems for Gasoline Engines (CISGE 2016)

Included in the following conference series:

Abstract

This work presents a high energy multipole distribution spark ignition system that utilizes a three-pole spark igniter to create spatially distributed sparks within the igniter perimeter. The current prototype can fit in a M14 standard spark plug mounting thread, evenly distributing three spark gaps in a triangular pattern with a circumradius of 2.3 mm. The spark gaps can be individually energized by the attached ignition coils, thereby discharging in either simultaneous or alternating mode. The experimental results from both the single-cylinder engine and constant-volume combustion vessels indicate a clear trend that, on the basis of similar total spark energy levels, the three-pole ignition system can shorten the ignition delay, stabilize the combustion phasing, and extend the ignitable lean limits, compared to a conventional fine-electrode spark plug. Moreover, as found in the combustion vessel tests, the effectiveness of spark discharge enhancement using direct-capacitor discharge can be augmented through simultaneously discharging through the three poles, hence resulting in significantly shortened ignition delay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wei, H., Zhu, T., Shu, G., Tan, L., et al.: Gasoline engine exhaust gas recirculation– a review. Appl. Energy 99, 534–544 (2012). doi:10.1016/j.apenergy.2012.05.011

    Article  Google Scholar 

  2. Gallon, E., Fontana, G., Palmaccio, R.: Effects of exhaust gas recycle in a downsized gasoline engine. Appl. Energy 105, 99–107 (2013). doi:10.1016/j.apenergy.2012.12.046

    Article  Google Scholar 

  3. Takahashi, D., Nakata, K., Yoshihara, Y., Ohta, Y., et al.: Combustion development to achieve engine thermal efficiency of 40 % for hybrid vehicles. SAE Technical Paper 2015-01-1254 (2015). doi:10.4271/2015-01-1254

  4. Zheng, M., Tan, Y., Mulenga, M., Wang, M.: Thermal efficiency analyses of diesel low temperature combustion cycles. SAE Technical Paper 2007-01-4019 (2007). doi:10.4271/2007-01-4019

  5. Gukelberger, R., Alger, T., Gingrich, J., Mangold, B.: Impact of operating parameters on ignition system energy consumption. SAE Technical Paper 2014-01-1233 (2014). doi:10.4271/2014-01-1233

  6. Hampe, C., Kubach, H., Spicher, U., et al.: Investigations of ignition processes using high frequency ignition. SAE Tech Paper, 2013-01-1633 (2013). doi:10.4271/2013-01-1633

  7. Shiraishi, T., Urushihara, T., Gundersen, M.: A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition. J. Phys. D Appl. Phys. 42, 135208 (2009). doi:10.1088/00223727/42/13/135208

    Article  Google Scholar 

  8. Sjöberg, M., Zeng, W., Singleton, D., Sanders, J., et al.: Combined effects of multi-pulse transient plasma ignition and intake heating on lean limits of well-mixed E85 DISI engine operation. SAE Int. J. Engines 7(4), 1781–1801 (2014). doi:10.4271/2014-01-2615

    Article  Google Scholar 

  9. Rohwein, G.J.: An efficient power-enhanced ignition system. IEEE Trans. Plasma Sci. 25(2), 306–310 (1997). doi:10.1109/27.602504

    Article  Google Scholar 

  10. Yoshida, K., Shoji, H., Tanaka, H.: Performance of newly developed plasma jet igniter. SAE Technical Paper 1999-01-3327 (1999). doi:10.4271/1999-01-3327

  11. Dale, J.D., Checkel, M.D., Smy, P.R.: Application of high energy ignition systems to engines. Prog. Energy Combust. Sci. 23(5–6), 379–398 (1997). doi:10.1016/S0360-1285(97)00011-7

    Article  Google Scholar 

  12. Heise, V., Farah, P., Husted, H., Wolf, E.: High frequency ignition system for gasoline direct injection engines. SAE Technical Paper 2011-01-1223 (2011). doi:10.4271/2011-01-1223

  13. Alger, T., Gingrich, J., Mangold, B., Roberts, C.: A continuous discharge ignition system for EGR limit extension in SI engines. SAE Int. J. Engines 4(1), 677–692 (2011). doi:10.4271/2011-01-0661

    Article  Google Scholar 

  14. Heywood, J.B.: Internal combustion engine fundamentals, pp. 435–437 (1988)

    Google Scholar 

  15. Hall, M., Matthews, R., Ezekoye, O.: Railplug ignition operating characteristics and performance: a review. SAE Technical Paper 2007-01-1832 (2007). doi:10.4271/2007-01-1832

  16. Rohwein, G., Camilli, L.: Automotive ignition transfer efficiency. SAE Technical Paper 2002-01-2839 (2002). doi:10.4271/2002-01-2839

  17. Suess, M., Guenthner, M., Schenk, M., et al.: Investigation of the potential of corona ignition to control gasoline homogeneous charge compression ignition combustion. P. I. Mech. Eng. D-J. Aut. 226(2), 275–286 (2011). doi:10.1177/0954407011416905

    Article  Google Scholar 

  18. Stevens, C.A., Pertl, F.A., Hoke, J.L., et al.: Comparative testing of a novel microwave ignition source, the quarter wave coaxial cavity igniter. J. Phys. D Appl. Phys. 225(12), 1633–1640 (2011). doi:10.1177/0954407011411389

    Google Scholar 

  19. Yu, S., Xie, K., Yu, X., Wang, M., Zheng, M., Han, X., Tjong, J.: High energy ignition strategy for diluted mixtures via a three-pole igniter. SAE Papers 2016-01-2175 (2016)

    Google Scholar 

  20. Yu, S., Wang, M., Zheng, M.: Distributed electrical discharge to improve the ignition of premixed quiescent and turbulent mixtures. SAE Technical Paper 2016-01-0706 (2016). doi:10.4271/2016-01-0706

  21. Xie, K., Yu, S., Zheng, M.: Investigation of multi-pole spark ignition on flame kernel development and in engine operation. In: Proceedings of the ASME 2016 Internal Combustion Fall Technical Conference, 9–12 October 2016, Greenville, SC, USA, ICEF2016-9474 (2016)

    Google Scholar 

Download references

Acknowledgements

The research at the Clean Combustion Engine Laboratory is sponsored by NSERC, AUTO21, BiofuelNet, Canada Foundation for Innovation, Ontario Research Funds, the University of Windsor, and Ford Motor Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Zheng, M., Yu, S., Tjong, J. (2017). High Energy Multipole Distribution Spark Ignition System. In: Günther, M., Sens, M. (eds) Ignition Systems for Gasoline Engines. CISGE 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-45504-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45504-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45503-7

  • Online ISBN: 978-3-319-45504-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics