Skip to main content

Biobanking of Human Mesenchymal Stem Cells: Future Strategy to Facilitate Clinical Applications

  • Chapter
  • First Online:
Biobanking and Cryopreservation of Stem Cells

Abstract

Human mesenchymal stem cells (hMSCs), a type of adult stem cells that hold great potential in clinical applications (e.g., regenerative medicine and cell-based therapy) due to their ability to differentiate into multiple types of specialized cells and secrete soluble factors which can initiate tissue repair and regulate immune response. hMSCs need to be expanded in vitro or cryopreserved to obtain sufficient cell numbers required for clinical applications. However, long-term in vitro culture-expanded hMSCs may raise some biosafety concerns (e.g., chromosomal abnormality and malignant transformation) and compromised functional properties, limiting their use in clinical applications. To avoid those adverse effects, it is essential to cryopreserve hMSCs at early passage and pool them for off-the-shelf use in clinical applications. However, the existing cryopreservation methods for hMSCs have some notable limitations. To address these limitations, several approaches have to be taken in order to produce healthy and efficacious cryopreserved hMSCs for clinical trials, which remains challenging to date. Therefore, a noteworthy amount of resources has been utilized in research in optimization of the cryopreservation methods, development of freezing devices, and formulation of cryopreservation media to ensure that hMSCs maintain their therapeutic characteristics without raising biosafety concerns following cryopreservation. Biobanking of hMSCs would be a crucial strategy to facilitate clinical applications in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

hMSCs:

Human mesenchymal stem cells

CPA:

Cryoprotective agent

DMSO:

Dimethyl sulfoxide

FBS:

Fetal bovine serum

GvHD:

Graft-versus-host disease

References

  1. Heathman TR, Glyn VA, Picken A, Rafiq QA, Coopman K, Nienow AW, Kara B, Hewitt CJ (2015) Expansion, harvest and cryopreservation of human mesenchymal stem cells in a serum-free microcarrier process. Biotechnol Bioeng 112(8):1696–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084

    Article  CAS  PubMed  Google Scholar 

  3. Doulatov S, Daley GQ (2013) Development. A stem cell perspective on cellular engineering. Science 342(6159):700–702

    Article  CAS  PubMed  Google Scholar 

  4. Choi JR, Pingguan-Murphy B, Wan Abas WA, Noor Azmi MA, Omar SZ, Chua KH, Wan Safwani WK (2014) Impact of low oxygen tension on stemness, proliferation and differentiation potential of human adipose-derived stem cells. Biochem Biophys Res Commun 448(2):218–224

    Article  CAS  PubMed  Google Scholar 

  5. Choi JR, Pingguan-Murphy B, Abas WABW, Azmi MAN, Omar SZ, Chua KH, Safwani WKZW (2014) Hypoxia promotes growth and viability of human adipose-derived stem cells with increased growth factors secretion. J Asian Sci Res 4(7):328–338

    Google Scholar 

  6. Lindroos B, Suuronen R, Miettinen S (2011) The potential of adipose stem cells in regenerative medicine. Stem Cell Rev 7(2):269–291

    Article  PubMed  Google Scholar 

  7. Callihan P, Mumaw J, Machacek DW, Stice SL, Hooks SB (2011) Regulation of stem cell pluripotency and differentiation by G protein coupled receptors. Pharmacol Ther 129(3):290–306

    Article  CAS  PubMed  Google Scholar 

  8. Choi JR, Pingguan-Murphy B, Wan Abas WA, Yong KW, Poon CT, Noor Azmi MA, Omar SZ, Chua KH, Xu F, Wan Safwani WK (2015) In situ normoxia enhances survival and proliferation rate of human adipose tissue-derived stromal cells without increasing the risk of tumourigenesis. PLoS One 10(1):e0115034

    Article  PubMed  PubMed Central  Google Scholar 

  9. Heathman TR, Nienow AW, McCall MJ, Coopman K, Kara B, Hewitt CJ (2015) The translation of cell-based therapies: clinical landscape and manufacturing challenges. Regen Med 10(1):49–64

    Article  CAS  PubMed  Google Scholar 

  10. Rowley J, Abraham E, Campbell A, Brandwein H, Oh S (2012) Meeting lot-size challenges of manufacturing adherent cells for therapy. BioProcess Int 10(3):7

    Google Scholar 

  11. Roemeling-van Rhijn M, de Klein A, Douben H, Pan Q, van der Laan LJ, Ijzermans JN, Betjes MG, Baan CC, Weimar W, Hoogduijn MJ (2013) Culture expansion induces non-tumorigenic aneuploidy in adipose tissue-derived mesenchymal stromal cells. Cytotherapy 15(11):1352–1361

    Article  CAS  PubMed  Google Scholar 

  12. Rosland GV, Svendsen A, Torsvik A, Sobala E, McCormack E, Immervoll H, Mysliwietz J, Tonn JC, Goldbrunner R, Lonning PE, Bjerkvig R, Schichor C (2009) Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res 69(13):5331–5339

    Article  CAS  PubMed  Google Scholar 

  13. Moll G, Alm JJ, Davies LC, von Bahr L, Heldring N, Stenbeck-Funke L, Hamad OA, Hinsch R, Ignatowicz L, Locke M, Lonnies H, Lambris JD, Teramura Y, Nilsson-Ekdahl K, Nilsson B, Le Blanc K (2014) Do cryopreserved mesenchymal stromal cells display impaired immunomodulatory and therapeutic properties? Stem Cells 32(9):2430–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yong KW, Wan Safwani WK, Xu F, Wan Abas WA, Choi JR, Pingguan-Murphy B (2015) Cryopreservation of human mesenchymal stem cells for clinical applications: current methods and challenges. Biopreserv Biobank 13(4):231–239

    Article  PubMed  Google Scholar 

  15. Marquez-Curtis LA, Janowska-Wieczorek A, McGann LE, Elliott JA (2015) Mesenchymal stromal cells derived from various tissues: biological, clinical and cryopreservation aspects. Cryobiology 71(2):181–197

    Article  CAS  PubMed  Google Scholar 

  16. Rowley SD (1992) Hematopoietic stem cell cryopreservation: a review of current techniques. J Hematother 1(3):233–250

    Article  CAS  PubMed  Google Scholar 

  17. Davies OG, Smith AJ, Cooper PR, Shelton RM, Scheven BA (2014) The effects of cryopreservation on cells isolated from adipose, bone marrow and dental pulp tissues. Cryobiology 69(2):342–347

    Article  CAS  PubMed  Google Scholar 

  18. Hubel A (1997) Parameters of cell freezing: implications for the cryopreservation of stem cells. Transfus Med Rev 11(3):224–233

    Article  CAS  PubMed  Google Scholar 

  19. Hubel A (2011) Advancing the preservation of cellular therapy products. Transfusion 51(4):1537–2995

    Google Scholar 

  20. Stubban C, Katkov I, Loring JF, Wesselschmidt RL (2007) Cryopreservation of human embryonic stem cells. In: Loring JF, Wesselschmidt RL, Schwartz PH (eds) Human stem cell manual. Academic, Oxford, pp 47–55

    Chapter  Google Scholar 

  21. Baust JG (2006) Concepts in biopreservation. In: Baust JG, Baust JM (eds) Advances in biopreservation. CRC Press, Boca Raton, pp 1–14

    Chapter  Google Scholar 

  22. Baust JM, Corwin WL, VanBuskirk R, Baust JG (2015) Biobanking: the future of cell preservation strategies. In: Feridoun KB (ed) Biobanking in the 21st century. Springer, Cham, pp 37–53

    Chapter  Google Scholar 

  23. Baust JM (2006) Properties of cells and tissues influencing preservation outcome: molecular basis of preservation-induced cell death. In: Baust JG, Baust JM (eds) Advances in biopreservation. CRC Press, Boca Raton, pp 63–88

    Chapter  Google Scholar 

  24. Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI (1995) Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant 16(4):557–564

    CAS  PubMed  Google Scholar 

  25. Otto WR, Wright NA (2011) Mesenchymal stem cells: from experiment to clinic. Fibrogenesis Tissue Repair 4(20):1755–1536

    Google Scholar 

  26. Wang S, Qu X, Zhao RC (2012) Clinical applications of mesenchymal stem cells. J Hematol Oncol 5(19):1756–8722

    Google Scholar 

  27. Prasad VK, Lucas KG, Kleiner GI, Talano JA, Jacobsohn D, Broadwater G, Monroy R, Kurtzberg J (2011) Efficacy and safety of ex vivo cultured adult human mesenchymal stem cells (prochymal) in pediatric patients with severe refractory acute graft-versus-host disease in a compassionate use study. Biol Blood Marrow Transplant 17(4):534–541

    Article  CAS  PubMed  Google Scholar 

  28. Kurtzberg J, Prockop S, Teira P, Bittencourt H, Lewis V, Chan KW, Horn B, Yu L, Talano JA, Nemecek E, Mills CR, Chaudhury S (2014) Allogeneic human mesenchymal stem cell therapy (remestemcel-L, prochymal) as a rescue agent for severe refractory acute graft-versus-host disease in pediatric patients. Biol Blood Marrow Transplant 20(2):229–235

    Article  PubMed  Google Scholar 

  29. Kebriaei P, Isola L, Bahceci E, Holland K, Rowley S, McGuirk J, Devetten M, Jansen J, Herzig R, Schuster M, Monroy R, Uberti J (2009) Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biol Blood Marrow Transplant 15(7):804–811

    Article  CAS  PubMed  Google Scholar 

  30. Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP, Gerstenblith G, DeMaria AN, Denktas AE, Gammon RS, Hermiller JB Jr, Reisman MA, Schaer GL, Sherman W (2009) A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 54(24):2277–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vaes B, Van’t Hof W, Deans R, Pinxteren J (2012) Application of multiStem ((R)) allogeneic cells for immunomodulatory therapy: clinical progress and pre-clinical challenges in prophylaxis for graft versus host disease. Front Immunol 3(345):1–9

    Google Scholar 

  32. Guven S, Demirci U (2012) Integrating nanoscale technologies with cryogenics: a step towards improved biopreservation. Nanomedicine (London, England) 7(12):1787–1789

    Article  CAS  Google Scholar 

  33. Hubel A, Spindler R, Skubitz AP (2014) Storage of human biospecimens: selection of the optimal storage temperature. Biopreserv Biobank 12(3):165–175

    Article  PubMed  Google Scholar 

  34. Zhang X, Catalano PN, Gurkan UA, Khimji I, Demirci U (2011) Emerging technologies in medical applications of minimum volume vitrification. Nanomedicine (London, England) 6(6):1115–1129

    Article  Google Scholar 

  35. Janz Fde L, Debes Ade A, Cavaglieri Rde C, Duarte SA, Romao CM, Moron AF, Zugaib M, Bydlowski SP (2012) Evaluation of distinct freezing methods and cryoprotectants for human amniotic fluid stem cells cryopreservation. J Biomed Biotechnol 2012:649353

    PubMed  Google Scholar 

  36. Wowk B (2012) Electric and magnetic fields in cryopreservation. Cryobiology 64(3):301–303; author reply 304–305

    Article  PubMed  Google Scholar 

  37. Lee SY, Huang GW, Shiung JN, Huang YH, Jeng JH, Kuo TF, Yang JC, Yang WC (2012) Magnetic cryopreservation for dental pulp stem cells. Cells Tissues Organs 196(1):23–33

    Article  CAS  PubMed  Google Scholar 

  38. McGann LE (1978) Differing actions of penetrating and nonpenetrating cryoprotective agents. Cryobiology 15(4):382–390

    Article  CAS  PubMed  Google Scholar 

  39. Rudolph AS, Crowe JH (1985) Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiology 22(4):367–377

    Article  CAS  PubMed  Google Scholar 

  40. Karlsson JO (2002) Cryopreservation: freezing and vitrification. Science 296(5568):655–656

    Article  CAS  PubMed  Google Scholar 

  41. Karlsson JO, Toner M (1996) Long-term storage of tissues by cryopreservation: critical issues. Biomaterials 17(3):243–256

    Article  CAS  PubMed  Google Scholar 

  42. Berz D, McCormack EM, Winer ES, Colvin GA, Quesenberry PJ (2007) Cryopreservation of hematopoietic stem cells. Am J Hematol 82(6):463–472

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shivakumar SB, Bharti D, Jang SJ, Hwang SC, Park JK, Shin JK, Byun JH, Park BW, Rho GJ (2015) Cryopreservation of human Wharton’s jelly-derived mesenchymal stem cells following controlled rate freezing protocol using different cryoprotectants; a comparative study. Int J Stem Cells 8(2):155–169

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liu G, Zhou H, Li Y, Li G, Cui L, Liu W, Cao Y (2008) Evaluation of the viability and osteogenic differentiation of cryopreserved human adipose-derived stem cells. Cryobiology 57(1):18–24

    Article  CAS  PubMed  Google Scholar 

  45. Miranda-Sayago JM, Fernandez-Arcas N, Benito C, Reyes-Engel A, Herrero JR, Alonso A (2012) Evaluation of a low cost cryopreservation system on the biology of human amniotic fluid-derived mesenchymal stromal cells. Cryobiology 64(3):160–166

    Article  CAS  PubMed  Google Scholar 

  46. Zhang HT, Chen H, Zhao H, Dai YW, Xu RX (2011) Neural stem cells differentiation ability of human umbilical cord mesenchymal stromal cells is not altered by cryopreservation. Neurosci Lett 487(1):118–122

    Article  CAS  PubMed  Google Scholar 

  47. Zambelli A, Poggi G, Da Prada G, Pedrazzoli P, Cuomo A, Miotti D, Perotti C, Preti P, Robustelli della Cuna G (1998) Clinical toxicity of cryopreserved circulating progenitor cells infusion. Anticancer Res 18(6B):4705–4708

    CAS  PubMed  Google Scholar 

  48. Benekli M, Anderson B, Wentling D, Bernstein S, Czuczman M, McCarthy P (2000) Severe respiratory depression after dimethylsulphoxide-containing autologous stem cell infusion in a patient with AL amyloidosis. Bone Marrow Transplant 25(12):1299–1301

    Article  CAS  PubMed  Google Scholar 

  49. Windrum P, Morris TC (2003) Severe neurotoxicity because of dimethyl sulphoxide following peripheral blood stem cell transplantation. Bone Marrow Transplant 31(4):315

    Article  CAS  PubMed  Google Scholar 

  50. Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61(4):364–370

    Article  CAS  PubMed  Google Scholar 

  51. Tuschong L, Soenen SL, Blaese RM, Candotti F, Muul LM (2002) Immune response to fetal calf serum by two adenosine deaminase-deficient patients after T cell gene therapy. Hum Gene Ther 13(13):1605–1610

    Article  CAS  PubMed  Google Scholar 

  52. Mackensen A, Drager R, Schlesier M, Mertelsmann R, Lindemann A (2000) Presence of IgE antibodies to bovine serum albumin in a patient developing anaphylaxis after vaccination with human peptide-pulsed dendritic cells. Cancer Immunol Immunother 49(3):152–156

    Article  CAS  PubMed  Google Scholar 

  53. Balci D, Can A (2013) The assessment of cryopreservation conditions for human umbilical cord stroma-derived mesenchymal stem cells towards a potential use for stem cell banking. Curr Stem Cell Res Ther 8(1):60–72

    Article  CAS  PubMed  Google Scholar 

  54. Rall WF, Fahy GM (1985) Ice-free cryopreservation of mouse embryos at −196 degrees C by vitrification. Nature 313(6003):573–575

    Article  CAS  PubMed  Google Scholar 

  55. Hunt CJ (2011) Cryopreservation of human stem cells for clinical application: a review. Transfus Med Hemother 38(2):107–123

    Article  PubMed  PubMed Central  Google Scholar 

  56. Moon JH, Lee JR, Jee BC, Suh CS, Kim SH, Lim HJ, Kim HK (2008) Successful vitrification of human amnion-derived mesenchymal stem cells. Hum Reprod 23(8):1760–1770

    Article  PubMed  Google Scholar 

  57. Massood E, Maryam K, Parvin S, Mojgan M, Noureddin NM (2013) Vitrification of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells. Cryo Letters 34(5):471–480

    PubMed  Google Scholar 

  58. Wu Y, Wen F, Gouk SS, Lee EH, Kuleshova L (2015) Cryopreservation strategy for tissue engineering constructs consisting of human mesenhymal stem cells and hydrogel biomaterials. Cryo Letters 36(5):325–335

    CAS  PubMed  Google Scholar 

  59. Shi M, Ling K, Yong KW, Li Y, Feng S, Zhang X, Pingguan-Murphy B, Lu TJ, Xu F (2015) High-throughput non-contact vitrification of cell-laden droplets based on cell printing. Sci Rep 5(17928)

    Google Scholar 

  60. Li Y, Tan JC, Li LS (2010) Comparison of three methods for cryopreservation of human embryonic stem cells. Fertil Steril 93(3):999–1005

    Article  PubMed  Google Scholar 

  61. Tedder RS, Zuckerman MA, Goldstone AH, Hawkins AE, Fielding A, Briggs EM, Irwin D, Blair S, Gorman AM, Patterson KG et al (1995) Hepatitis B transmission from contaminated cryopreservation tank. Lancet 346(8968):137–140

    Article  CAS  PubMed  Google Scholar 

  62. Fountain D, Ralston M, Higgins N, Gorlin JB, Uhl L, Wheeler C, Antin JH, Churchill WH, Benjamin RJ (1997) Liquid nitrogen freezers: a potential source of microbial contamination of hematopoietic stem cell components. Transfusion 37(6):585–591

    Article  CAS  PubMed  Google Scholar 

  63. AbdelHafez F, Xu J, Goldberg J, Desai N (2011) Vitrification in open and closed carriers at different cell stages: assessment of embryo survival, development, DNA integrity and stability during vapor phase storage for transport. BMC Biotechnol 11(29):1472–6750

    Google Scholar 

  64. Song YS, Adler D, Xu F, Kayaalp E, Nureddin A, Anchan RM, Maas RL, Demirci U (2010) Vitrification and levitation of a liquid droplet on liquid nitrogen. Proc Natl Acad Sci U S A 107(10):4596–4600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Martin-Ibanez R, Hovatta O, Canals JM (2012) Cryopreservation of human pluripotent stem cells: are we going in the right direction? In: Katkov II (ed) Current frontiers in cryobiology. InTech, Rijeka, pp 139–166

    Google Scholar 

  66. Fraser JK, Cairo MS, Wagner EL, McCurdy PR, Baxter-Lowe LA, Carter SL, Kernan NA, Lill MC, Slone V, Wagner JE, Wallas CH, Kurtzberg J (1998) Cord Blood Transplantation Study (COBLT): cord blood bank standard operating procedures. J Hematother 7(6):521–561

    Article  CAS  PubMed  Google Scholar 

  67. Rubinstein P, Dobrila L, Rosenfield RE, Adamson JW, Migliaccio G, Migliaccio AR, Taylor PE, Stevens CE (1995) Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc Natl Acad Sci U S A 92(22):10119–10122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Thirumala S, Goebel WS, Woods EJ (2009) Clinical grade adult stem cell banking. Organogenesis 5(3):143–154

    Article  PubMed  PubMed Central  Google Scholar 

  69. Son JH, Heo YJ, Park MY, Kim HH, Lee KS (2010) Optimization of cryopreservation condition for hematopoietic stem cells from umbilical cord blood. Cryobiology 60(3):287–292

    Article  CAS  PubMed  Google Scholar 

  70. Thirumala S, Wu X, Gimble JM, Devireddy RV (2010) Evaluation of polyvinylpyrrolidone as a cryoprotectant for adipose tissue-derived adult stem cells. Tissue Eng Part C Methods 16(4):783–792

    Article  CAS  PubMed  Google Scholar 

  71. Rao W, Huang H, Wang H, Zhao S, Dumbleton J, Zhao G, He X (2015) Nanoparticle-mediated intracellular delivery enables cryopreservation of human adipose-derived stem cells using trehalose as the sole cryoprotectant. ACS Appl Mater Interfaces 7(8):5017–5028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Verdanova M, Pytlik R, Kalbacova MH (2014) Evaluation of sericin as a fetal bovine serum-replacing cryoprotectant during freezing of human mesenchymal stromal cells and human osteoblast-like cells. Biopreserv Biobank 12(2):99–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yong KW, Pingguan-Murphy B, Xu F, Abas WA, Choi JR, Omar SZ, Azmi MA, Chua KH, Wan Safwani WK (2015) Phenotypic and functional characterization of long-term cryopreserved human adipose-derived stem cells. Sci Rep 5:9596

    Article  PubMed  PubMed Central  Google Scholar 

  74. Diaferia GR, Dessi SS, Deblasio P, Biunno I (2008) Is stem cell chromosomes stability affected by cryopreservation conditions? Cytotechnology 58(1):11–16

    Article  PubMed  PubMed Central  Google Scholar 

  75. Jenkins EC, Ye L, Silverman WP (2012) Does the cryogenic freezing process cause shorter telomeres? Cryobiology 65(1):72–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. de Lima Prata K, de Santis GC, Orellana MD, Palma PV, Brassesco MS, Covas DT (2012) Cryopreservation of umbilical cord mesenchymal cells in xenofree conditions. Cytotherapy 14(6):694–700

    Article  PubMed  Google Scholar 

  77. Luetzkendorf J, Nerger K, Hering J, Moegel A, Hoffmann K, Hoefers C, Mueller-Tidow C, Mueller LP (2015) Cryopreservation does not alter main characteristics of Good Manufacturing Process-grade human multipotent mesenchymal stromal cells including immunomodulating potential and lack of malignant transformation. Cytotherapy 17(2):186–198

    Article  PubMed  Google Scholar 

  78. Angelo PC, Ferreira AC, Fonseca VD, Frade SP, Ferreira CS, Malta FS, Pereira AK, Leite HV, Brum AP, Pardini VC, Gomes KB, Cabral AC (2012) Cryopreservation does not alter karyotype, multipotency, or NANOG/SOX2 gene expression of amniotic fluid mesenchymal stem cells. Genet Mol Res GMR 11(2):1002–1012

    Article  CAS  PubMed  Google Scholar 

  79. Yong KW, Safwani WK, Xu F, Zhang X, Choi JR, Abas WA, Omar SZ, Azmi MA, Chua KH, Pingguan-Murphy B (2016) Assessment of tumourigenic potential in long-term cryopreserved human adipose-derived stem cells. J Tissue Eng Regen Med 12(10)

    Google Scholar 

  80. Parmegiani L, Cognigni GE, Filicori M (2009) Ultra-violet sterilization of liquid nitrogen prior to vitrification. Hum Reprod 24(11):2969

    Article  PubMed  Google Scholar 

  81. Rollig C, Babatz J, Wagner I, Maiwald A, Schwarze V, Ehninger G, Bornhauser M (2002) Thawing of cryopreserved mobilized peripheral blood – comparison between waterbath and dry warming device. Cytotherapy 4(6):551–555

    Article  CAS  PubMed  Google Scholar 

  82. Thirumala S, Zvonic S, Floyd E, Gimble JM, Devireddy RV (2005) Effect of various freezing parameters on the immediate post-thaw membrane integrity of adipose tissue derived adult stem cells. Biotechnol Prog 21(5):1511–1524

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This report was supported by University of Malaya Research Grant (UMRG RP040B-15HTM) from the Ministry of Education Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Kamarul Zaman Wan Safwani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yong, K.W., Choi, J.R., Wan Safwani, W.K.Z. (2016). Biobanking of Human Mesenchymal Stem Cells: Future Strategy to Facilitate Clinical Applications. In: Karimi-Busheri, F., Weinfeld, M. (eds) Biobanking and Cryopreservation of Stem Cells. Advances in Experimental Medicine and Biology, vol 951. Springer, Cham. https://doi.org/10.1007/978-3-319-45457-3_8

Download citation

Publish with us

Policies and ethics