Skip to main content

Convergence of Osteoimmunology and Immunomodulation for the Development and Assessment of Bone Biomaterials

  • Chapter
  • First Online:
The Immune Response to Implanted Materials and Devices

Abstract

The traditional biological principle for the development of bone biomaterials is to directly induce osteogenic differentiation of osteoblastic lineage cells. With this principle, most of the efforts are spent on optimizing the biomechanical and physicochemical properties of biomaterials to enhance osteogenic differentiation of mesenchymal stem cells. Given the vital roles of immune cells in bone dynamics, we propose a new concept “osteoimmunomodulation” in recognition of the importance of immune response during biomaterial-mediated osteogenesis. The paradigm of bone biomaterials design is also suggested to shift to an osteoimmunomodulatory material, and the possible evaluation strategies for the osteoimmunomodulation property of bone biomaterials are summarized. It is expected that bone biomaterials with favorable osteoimmunomodulation properties will be more clinically relevant to control new bone formation and biomaterial degradation in a controllable and biologically suitable manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bryers JD, Giachelli CM, Ratner BD (2012) Engineering biomaterials to integrate and heal: the biocompatibility paradigm shifts. Biotechnol Bioeng 109(8):1898–1911

    Article  Google Scholar 

  2. Franz S, Rammelt S, Scharnweber D et al (2011) Immune responses to implants – a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32(28):6692–6709

    Article  Google Scholar 

  3. Williams DF (2009) On the nature of biomaterials. Biomaterials 30(30):5897–5909

    Article  Google Scholar 

  4. Mokarram N, Bellamkonda RV (2014) A perspective on immunomodulation and tissue repair. Ann Biomed Eng 42(2):338–351

    Article  Google Scholar 

  5. Mundy GR, Raisz LG, Cooper RA et al (1974) Evidence for the secretion of an osteoclast stimulating factor in myeloma. N Engl J Med 291(20):1041–1046

    Article  Google Scholar 

  6. Horton JE, Raisz LG, Simmons HA et al (1972) Bone resorbing activity in supernatant fluid from cultured human peripheral blood leukocytes. Science 177(4051):793–795

    Article  Google Scholar 

  7. Takayanagi H (2007) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7(4):292–304

    Article  Google Scholar 

  8. Takayanagi H (2005) Inflammatory bone destruction and osteoimmunology. J Periodontal Res 40(4):287–293

    Article  Google Scholar 

  9. Chen Z, Mao X, Tan L et al (2014) Osteoimmunomodulatory properties of magnesium scaffolds coated with beta-tricalcium phosphate. Biomaterials 35(30):8553–8565

    Article  Google Scholar 

  10. Chen Z, Yi D, Zheng X et al (2014) Nutrient element-based bioceramic coatings on titanium alloy stimulating osteogenesis by inducing beneficial osteoimmmunomodulation. J Mater Chem B 2(36):6030–6043

    Article  Google Scholar 

  11. Chen Z, Klein T, Murray RZ et al (2016) Osteoimmunomodulation for the development of advanced bone biomaterials. Mater Today 19(6):304–321

    Article  Google Scholar 

  12. Chen Z, Yuen J, Crawford R et al (2015) The effect of osteoimmunomodulation on the osteogenic effects of cobalt incorporated beta-tricalcium phosphate. Biomaterials 61:126–138

    Article  Google Scholar 

  13. van den Berg WB, Miossec P (2009) IL-17 as a future therapeutic target for rheumatoid arthritis. Nat Rev Rheumatol 5(10):549–553

    Article  Google Scholar 

  14. Sato K, Suematsu A, Okamoto K et al (2006) Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 203(12):2673–2682

    Article  Google Scholar 

  15. Wright HL, McCarthy HS, Middleton J et al (2009) RANK, RANKL and osteoprotegerin in bone biology and disease. Curr Rev Musculoskelet Med 2(1):56–64

    Article  Google Scholar 

  16. Boyce BF, Xing L (2007) Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther 9(Suppl 1):S1

    Article  Google Scholar 

  17. Theill LE, Boyle WJ, Penninger JM (2002) RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol 20:795–823

    Article  Google Scholar 

  18. Chakravarti A, Raquil MA, Tessier P et al (2009) Surface RANKL of Toll-like receptor 4-stimulated human neutrophils activates osteoclastic bone resorption. Blood 114(8):1633–1644

    Article  Google Scholar 

  19. Li Y, Toraldo G, Li A et al (2007) B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 109(9):3839–3848

    Article  Google Scholar 

  20. Pacifici R (2010) The immune system and bone. Arch Biochem Biophys 503(1):41–53

    Article  Google Scholar 

  21. Yoshitake F, Itoh S, Narita H et al (2008) Interleukin-6 directly inhibits osteoclast differentiation by suppressing receptor activator of NF-kappaB signaling pathways. J Biol Chem 283(17):11535–11540

    Article  Google Scholar 

  22. Abdel Meguid MH, Hamad YH, Swilam RS et al (2013) Relation of interleukin-6 in rheumatoid arthritis patients to systemic bone loss and structural bone damage. Rheumatol Int 33(3):697–703

    Article  Google Scholar 

  23. Adamopoulos IE, Tessmer M, Chao C-C et al (2011) IL-23 is critical for induction of arthritis, osteoclast formation, and maintenance of bone mass. J Immunol 187(2):951–959

    Article  Google Scholar 

  24. Devlin RD, Reddy SV, Savino R et al (1998) IL-6 mediates the effects of IL-1 or TNF, but Not PTHrP or 1,25(OH)2D3, on osteoclast-like cell formation in normal human bone marrow cultures. J Bone Miner Res 13(3):393–399

    Article  Google Scholar 

  25. Richardson IG (2000) The nature of the hydration products in hardened cement pastes. Cem Concr Compos 22(2):97–113

    Article  Google Scholar 

  26. Sims NA, Quinn JMW (2014) Osteoimmunology: oncostatin M as a pleiotropic regulator of bone formation and resorption in health and disease. Bonekey Rep 3

    Google Scholar 

  27. Arron JR, Choi Y (2000) Bone versus immune system. Nature 408(6812):535–536

    Article  Google Scholar 

  28. Chang MK, Raggatt LJ, Alexander KA et al (2008) Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 181(2):1232–1244

    Article  Google Scholar 

  29. Rifas L (2006) T-cell cytokine induction of BMP-2 regulates human mesenchymal stromal cell differentiation and mineralization. J Cell Biochem 98(4):706–714

    Article  Google Scholar 

  30. Hess K, Ushmorov A, Fiedler J et al (2009) TNFalpha promotes osteogenic differentiation of human mesenchymal stem cells by triggering the NF-kappaB signaling pathway. Bone 45(2):367–376

    Article  Google Scholar 

  31. Ding J, Ghali O, Lencel P et al (2009) TNF-alpha and IL-1beta inhibit RUNX2 and collagen expression but increase alkaline phosphatase activity and mineralization in human mesenchymal stem cells. Life Sci 84(15–16):499–504

    Article  Google Scholar 

  32. Yang X, Ricciardi BF, Hernandez-Soria A et al (2007) Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice. Bone 41(6):928–936

    Article  Google Scholar 

  33. Guihard P, Boutet MA, Brounais-Le Royer B et al (2015) Oncostatin m, an inflammatory cytokine produced by macrophages, supports intramembranous bone healing in a mouse model of tibia injury. Am J Pathol 185(3):765–775

    Article  Google Scholar 

  34. Walsh NC, Reinwald S, Manning CA et al (2009) Osteoblast function is compromised at sites of focal bone erosion in inflammatory arthritis. J Bone Miner Res 24(9):1572–1585

    Article  Google Scholar 

  35. Gilbert L, He X, Farmer P et al (2000) Inhibition of osteoblast differentiation by tumor necrosis factor-alpha. Endocrinology 141(11):3956–3964

    Google Scholar 

  36. Feldmann M, Maini RN (2010) Anti-TNF therapy, from rationale to standard of care: what lessons has it taught us? J Immunol 185(2):791–794

    Article  Google Scholar 

  37. Diarra D, Stolina M, Polzer K et al (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13(2):156–163

    Article  Google Scholar 

  38. Liu Y, Wang L, Kikuiri T et al (2011) Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-gamma and TNF-alpha. Nat Med 17(12):1594–1601

    Article  Google Scholar 

  39. Chang J, Liu F, Lee M et al (2013) NF-kappaB inhibits osteogenic differentiation of mesenchymal stem cells by promoting beta-catenin degradation. Proc Natl Acad Sci U S A 110(23):9469–9474

    Article  Google Scholar 

  40. Alexander KA, Chang MK, Maylin ER et al (2011) Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res 26(7):1517–1532

    Article  Google Scholar 

  41. Pettit AR, Chang MK, Hume DA et al (2008) Osteal macrophages: a new twist on coupling during bone dynamics. Bone 43(6):976–982

    Article  Google Scholar 

  42. Honda Y, Anada T, Kamakura S et al (2006) Elevated extracellular calcium stimulates secretion of bone morphogenetic protein 2 by a macrophage cell line. Biochem Biophys Res Commun 345(3):1155–1160

    Article  Google Scholar 

  43. Wahl SM, McCartney-Francis N, Allen JB et al (1990) Macrophage production of TGF-beta and regulation by TGF-beta. Ann N Y Acad Sci 593:188–196

    Article  Google Scholar 

  44. Vi L, Baht GS, Whetstone H et al (2015) Macrophages promote osteoblastic differentiation in-vivo: implications in fracture repair and bone homeostasis. J Bone Miner Res 30(6):1090–1102

    Article  Google Scholar 

  45. Shi M, Chen Z, Farnaghi S et al (2016) Copper-doped mesoporous silica nanospheres, a promising immunomodulatory agent for inducing osteogenesis. Acta Biomater 30:334–344

    Article  Google Scholar 

  46. Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37(12):1445–1453

    Article  Google Scholar 

  47. Ortiz LA, DuTreil M, Fattman C et al (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci U S A 104(26):11002–11007

    Article  Google Scholar 

  48. Oh JY, Roddy GW, Choi H et al (2010) Anti-inflammatory protein TSG-6 reduces inflammatory damage to the cornea following chemical and mechanical injury. Proc Natl Acad Sci U S A 107(39):16875–16880

    Article  Google Scholar 

  49. Yun JK, DeFife K, Colton E et al (1995) Human monocyte/macrophage adhesion and cytokine production on surface-modified poly(tetrafluoroethylene/hexafluoropropylene) polymers with and without protein preadsorption. J Biomed Mater Res 29(2):257–268

    Article  Google Scholar 

  50. Boehler RM, Graham JG, Shea LD (2011) Tissue engineering tools for modulation of the immune response. Biotechniques 51(4):239–240

    Google Scholar 

  51. Hotchkiss KM, Reddy GB, Hyzy SL et al (2015) Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomater 31:425–34

    Article  Google Scholar 

  52. Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2(8):469–478

    Article  Google Scholar 

  53. Tan Y, Li S, Pitt BR et al (1999) The inhibitory role of CpG immunostimulatory motifs in cationic lipid vector-mediated transgene expression in vivo. Hum Gene Ther 10(13):2153–2161

    Article  Google Scholar 

  54. Wojciak-Stothard B, Madeja Z, Korohoda W et al (1995) Activation of macrophage-like cells by multiple grooved substrata. Topographical control of cell behaviour. Cell Biol Int 19(6):485–490

    Article  Google Scholar 

  55. Rice JM, Hunt JA, Gallagher JA et al (2003) Quantitative assessment of the response of primary derived human osteoblasts and macrophages to a range of nanotopography surfaces in a single culture model in vitro. Biomaterials 24(26):4799–4818

    Article  Google Scholar 

  56. Hezi-Yamit A, Sullivan C, Wong J et al (2009) Impact of polymer hydrophilicity on biocompatibility: implication for DES polymer design. J Biomed Mater Res A 90(1):133–141

    Article  Google Scholar 

  57. Paul NE, Skazik C, Harwardt M et al (2008) Topographical control of human macrophages by a regularly microstructured polyvinylidene fluoride surface. Biomaterials 29(30):4056–4064

    Article  Google Scholar 

  58. Smith BS, Capellato P, Kelley S et al (2013) Reduced in vitro immune response on titania nanotube arrays compared to titanium surface. Biomater Sci 1(3):322–332

    Article  Google Scholar 

  59. Veiseh O, Doloff JC, Ma M et al (2015) Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat Mater 14(6):643–651

    Article  Google Scholar 

  60. Nel AE, Madler L, Velegol D et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557

    Article  Google Scholar 

  61. Oh WK, Kim S, Choi M et al (2010) Cellular uptake, cytotoxicity, and innate immune response of silica-titania hollow nanoparticles based on size and surface functionality. ACS Nano 4(9):5301–5313

    Article  Google Scholar 

  62. Cuenya BR (2010) Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films 518(12):3127–3150

    Article  Google Scholar 

  63. Laquerriere P, Grandjean-Laquerriere A, Jallot E et al (2003) Importance of hydroxyapatite particles characteristics on cytokines production by human monocytes in vitro. Biomaterials 24(16):2739–2747

    Article  Google Scholar 

  64. Malard O, Bouler JM, Guicheux J et al (1999) Influence of biphasic calcium phosphate granulometry on bone ingrowth, ceramic resorption, and inflammatory reactions: preliminary in vitro and in vivo study. J Biomed Mater Res 46(1):103–111

    Article  Google Scholar 

  65. Ward WK, Slobodzian EP, Tiekotter KL et al (2002) The effect of microgeometry, implant thickness and polyurethane chemistry on the foreign body response to subcutaneous implants. Biomaterials 23(21):4185–4192

    Article  Google Scholar 

  66. Matlaga BF, Yasenchak LP, Salthouse TN (1976) Tissue response to implanted polymers: the significance of sample shape. J Biomed Mater Res 10(3):391–397

    Article  Google Scholar 

  67. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491

    Article  Google Scholar 

  68. Klinge U, Klosterhalfen B, Birkenhauer V et al (2002) Impact of polymer pore size on the interface scar formation in a rat model. J Surg Res 103(2):208–214

    Article  Google Scholar 

  69. Weyhe D, Schmitz I, Belyaev O et al (2006) Experimental comparison of monofile light and heavy polypropylene meshes: less weight does not mean less biological response. World J Surg 30(8):1586–1591

    Article  Google Scholar 

  70. Garg K, Pullen NA, Oskeritzian CA et al (2013) Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds. Biomaterials 34(18):4439–4451

    Article  Google Scholar 

  71. Laschke MW, Harder Y, Amon M et al (2006) Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng 12(8):2093–2104

    Article  Google Scholar 

  72. Kuboki Y, Jin Q, Kikuchi M et al (2002) Geometry of artificial ECM: sizes of pores controlling phenotype expression in BMP-induced osteogenesis and chondrogenesis. Connect Tissue Res 43(2–3):529–534

    Article  Google Scholar 

  73. Bohner M, Galea L, Doebelin N (2012) Calcium phosphate bone graft substitutes: failures and hopes. J Eur Ceram Soc 32(11):2663–2671

    Article  Google Scholar 

  74. De A (2011) Wnt/Ca2+ signaling pathway: a brief overview. Acta Biochim Biophys Sin 43(10):745–756

    Article  Google Scholar 

  75. MacLeod RJ, Hayes M, Pacheco I (2007) Wnt5a secretion stimulated by the extracellular calcium-sensing receptor inhibits defective Wnt signaling in colon cancer cells. Am J Physiol Gastrointest Liver Physiol 293(1):G403–G411

    Article  Google Scholar 

  76. Zhao Y, Wang C-L, Li R-M et al (2014) Wnt5a promotes inflammatory responses via nuclear factor kB (NF-kB) and mitogen-activated protein kinase (MAPK) pathways in human dental pulp cells. J Biol Chem 289(30):21028–21039

    Article  Google Scholar 

  77. Teuber SS, Saunders RL, Halpern GM et al (1995) Elevated serum silicon levels in women with silicone gel breast implants. Biol Trace Elem Res 48(2):121–130

    Article  Google Scholar 

  78. Sugimoto J, Romani AM, Valentin-Torres AM et al (2012) Magnesium decreases inflammatory cytokine production: a novel innate immunomodulatory mechanism. J Immunol 188(12):6338–6346

    Article  Google Scholar 

  79. Cramer T, Yamanishi Y, Clausen BE et al (2003) HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112(5):645–657

    Article  Google Scholar 

  80. Oda T, Hirota K, Nishi K et al (2006) Activation of hypoxia-inducible factor 1 during macrophage differentiation. Am J Physiol Cell Physiol 291(1):C104–C113

    Article  Google Scholar 

  81. Grandjean-Laquerriere A, Laquerriere P, Jallot E et al (2006) Influence of the zinc concentration of sol-gel derived zinc substituted hydroxyapatite on cytokine production by human monocytes in vitro. Biomaterials 27(17):3195–3200

    Article  Google Scholar 

  82. Velard F, Braux J, Amedee J et al (2013) Inflammatory cell response to calcium phosphate biomaterial particles: an overview. Acta Biomater 9(2):4956–4963

    Article  Google Scholar 

  83. Cardemil C, Elgali I, Xia W et al (2013) Strontium-doped calcium phosphate and hydroxyapatite granules promote different inflammatory and bone remodelling responses in normal and ovariectomised rats. PLoS One 8(12), e84932

    Article  Google Scholar 

  84. Buache E, Velard F, Bauden E et al (2012) Effect of strontium-substituted biphasic calcium phosphate on inflammatory mediators production by human monocytes. Acta Biomater 8(8):3113–3119

    Article  Google Scholar 

  85. Wu C, Chen Z, Yi D et al (2014) Multidirectional effects of Sr-, Mg-, and Si-containing bioceramic coatings with high bonding strength on inflammation, osteoclastogenesis, and osteogenesis. ACS Appl Mater Interfaces 6(6):4264–4276

    Article  Google Scholar 

  86. Wu C, Chen Z, Wu Q et al (2015) Clinoenstatite coatings have high bonding strength, bioactive ion release, and osteoimmunomodulatory effects that enhance in vivo osseointegration. Biomaterials 71:35–47

    Article  Google Scholar 

  87. Wu CT, Fan W, Zhou YH et al (2012) 3D-printing of highly uniform CaSiO3 ceramic scaffolds: preparation, characterization and in vivo osteogenesis. J Mater Chem 22(24):12288–12295

    Article  Google Scholar 

  88. Wu C, Fan W, Gelinsky M et al (2011) Bioactive SrO-SiO2 glass with well-ordered mesopores: characterization, physiochemistry and biological properties. Acta Biomater 7(4):1797–1806

    Article  Google Scholar 

  89. Zhang M, Wu C, Lin K et al (2012) Biological responses of human bone marrow mesenchymal stem cells to Sr-M-Si (M = Zn, Mg) silicate bioceramics. J Biomed Mater Res A 100(11):2979–2990

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Q-CAS Biotechnology Fund (GJHZ1505), the Prince Charles Hospital Foundation, QUT Funding for Australia-China Centre of Tissue Engineering and Regenerative Medicine (ACCTERM), Recruitment Program of Global Young Talent, China (C.W.), the National High Technology Research and Development Program of China (863 Program, SS2015AA020302), Natural Science Foundation of China (Grant 31370963), Program of Shanghai Outstanding Academic Leaders (15XD1503900), Key Research Program of Chinese Academy of Sciences (Grant KGZDEW-T06), Innovative Project of SIC, CAS, and ARC (DP120103697). We thank Dr Thor Friis who proofread the draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, Z., Wu, C., Xiao, Y. (2017). Convergence of Osteoimmunology and Immunomodulation for the Development and Assessment of Bone Biomaterials. In: Corradetti, B. (eds) The Immune Response to Implanted Materials and Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-45433-7_6

Download citation

Publish with us

Policies and ethics