Skip to main content

Some Other Metaheuristics

  • Chapter
  • First Online:
Metaheuristics
  • 2191 Accesses

Abstract

In the last thirty years, a great interest has been devoted to metaheuristics. We can try to point out some of the steps that have marked the history of metaheuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Group Search Optimizer is based on the behavior of animals living in groups, where producers search to find food and scroungers search for joining opportunities.

  2. 2.

    The term “island” is used descriptively rather than literally here. That is, an island is not just a segment of land surrounded by water, but any habitat that is geographically isolated from other habitats, including lakes and mountaintops. The theory of island biogeography has also been extended to peninsulas, bays, and other only partially isolated areas.

  3. 3.

    The decomposition of the problem consists in determining an appropriate number of subcomponents and the role each will play. The mechanism for dividing the optimization problem f into n subproblems and treating them almost independently of one another depends strongly on the properties of the function f.

References

  1. Aickelin, U., Bentley, P., Cayzer, S., Kim, J., Mcleod, J.: Danger theory: The link between AIS and IDS? In: J. Timmis, P. Bentley, E. Hart (eds.) Artificial Immune Systems, Lecture Notes in Computer Science, pp. 147–155. Springer (2003)

    Google Scholar 

  2. Aickelin, U., Cayzer, S.: The danger theory and its application to artificial immune systems. In: Proceedings of the 1st International Conference on Artificial Immune Systems, pp. 141–148 (2002)

    Google Scholar 

  3. Anspach, M., Varela, F.: Le systme immunitaire : un soi cognitif autonome. In: D. Andler (ed.) Introduction aux sciences cognitives, p. 514. Gallimard, Paris (1992)

    Google Scholar 

  4. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press (1996)

    Google Scholar 

  5. Becerra, R.L., Coello, C.A.C.: A cultural algorithm with differential evolution to solve constrained optimization problems. In: IBERAMIA, pp. 881–890 (2004)

    Google Scholar 

  6. Brenner, M.P., Levitov, L.S., Budrene, E.O.: Physical mechanisms for chemotactic pattern formation by bacteria. Biophysical Journal 74(4), 1677–1693 (1998)

    Google Scholar 

  7. Brest, J., Maucec, M.: Self-adaptive differential evolution algorithm using population size reduction and three strategies. Soft Computing: A Fusion of Foundations, Methodologies and Applications 15(11), 2157–2174 (2011)

    Google Scholar 

  8. de Castro, L.N.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, London (2002)

    Google Scholar 

  9. de Castro, L.N., Von Zuben, F.J.: aiNet: An artificial immune network for data analysis. In: H.A. Abbass, R.A. Sarker, C.S. Newton (eds.) Data Mining: A Heuristic Approach, Chap. 12, pp. 231–259. Idea Group (2001)

    Google Scholar 

  10. de Castro, L.N., Von Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation 6(3), 239–251 (2002)

    Google Scholar 

  11. Chakraborty, U.: Advances in Differential Evolution, 1st edn. Springer (2008)

    Google Scholar 

  12. Coelho, G.P., Zuben, F.V.: omni-aiNet: An immune-inspired approach for omni optimization. In: Proceedings of the 5th International Conference on Artificial Immune Systems, pp. 294–308. Springer (2006)

    Google Scholar 

  13. Coello Coello, C.A., Becerra, R.L.: Adding knowledge and efficient data structures to evolutionary programming: A cultural algorithm for constrained optimization. In: GECCO, pp. 201–209 (2002)

    Google Scholar 

  14. Darwin, C.: Origin of Species. Gramercy, New York (1995)

    Google Scholar 

  15. Das, S., Biswas, A., Dasgupta, S., Abraham, A.: Bacterial foraging optimization algorithm: Theoretical foundations, analysis, and applications. In: A. Abraham, A.E. Hassanien, P. Siarry, A. Engelbrecht (eds.) Foundations of Computational Intelligence. Studies in Computational Intelligence, vol. 3, pp. 23–55. Springer, Berlin, Heidelberg (2009)

    Google Scholar 

  16. Das, S., Suganthan, P.N.: Differential evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation 15(1), 4–31 (2011)

    Google Scholar 

  17. Dasgupta, D.: Artificial Immune Systems and Their Applications. Springer, New York (1998)

    Google Scholar 

  18. Dasgupta, D., Yu, S., Nino, F.: Recent advances in artificial immune systems: Models and applications. Applied Soft Computing 11(2), 1574–1587 (2011)

    Google Scholar 

  19. de Castro, L.N., Zuben, F.J.V.: An evolutionary immune network for data clustering. In: Proceedings of the 6th Brazilian Symposium on Neural Networks, pp. 84–89. IEEE Computer Society Press (2000)

    Google Scholar 

  20. Dorigo, M.: Optimization, learning and natural Algorithms. Ph.D. thesis, Politecnico di Milano, Italy (1992)

    Google Scholar 

  21. Farmer, J.D., Packard, N.H., Perelson, A.S.: The immune system, adaptation, and machine learning. Phys. D 2(1–3), 187–204 (1986)

    Google Scholar 

  22. Feo, T.A., Resende, M.G.C.: A probabilistic heuristic for a computationally difficult set covering problem. Operations Research Letters 8(2), 67–71 (1989)

    Google Scholar 

  23. Ficici, S.G.: Solution concepts in coevolutionary algorithms. Ph.D. thesis, Brandeis University, Waltham, MA (2004). AAI3127125

    Google Scholar 

  24. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: Proceedings of the Symposium on Research in Security and Privacy, pp. 202–212 (1994)

    Google Scholar 

  25. Galeano, J.C., Veloza-Suan, A., González, F.A.: A comparative analysis of artificial immune network models. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, GECCO ’05, pp. 361–368. ACM, New York (2005)

    Google Scholar 

  26. Garrett, S.M.: How do we evaluate artificial immune systems? Evolutionary Computation 13(2), 145–177 (2005)

    Google Scholar 

  27. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: Harmony search. Simulation 76(2), 60–68 (2001)

    Google Scholar 

  28. Glover, F.: Future paths for integer programming and links to artificial intelligence. Computers and Operations Research 13(5), 533–549 (1986)

    Google Scholar 

  29. Goh, C.K., Tan, K.C.: A competitive–cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Transactions on Evolutionary Computation 13, 103–127 (2009)

    Google Scholar 

  30. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning, 1st edn. Studies in Computational Intelligence. Addison-Wesley Longman (1989)

    Google Scholar 

  31. Greensmith, J., Aickelin, U.: The deterministic dendritic cell algorithm. In: P.J. Bentley, D. Lee, S. Jung (eds.), Artificial Immune Systems. LNCS, vol. 5132, pp. 291–302. Springer (2008)

    Google Scholar 

  32. Greensmith, J., Aickelin, U., Cayzer, S.: Introducing dendritic cells as a novel immune-inspired algorithm for anomaly detection. In: C. Jacob, M. Pilat, P. Bentley, J. Timmis (eds.), Artificial Immune Systems, LNCS, vol. 3627, pp. 153–167. Springer (2005)

    Google Scholar 

  33. Greensmith, J., Aickelin, U., Twycross, J.: Detecting danger: Applying a novel immunological concept to intrusion detection systems. In: Proceedings of the 6th International Conference on Adaptive Computing in Design and Manufacture (ACDM2004), Bristol, UK (2004)

    Google Scholar 

  34. Guo, Y., Cheng, J., Cao, Y., Lin, Y.: A novel multi-population cultural algorithm adopting knowledge migration. Soft Computing 15, 897–905 (2011)

    Google Scholar 

  35. Hansen, N., Ostermeier, A., Gawelczyk, A.: On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation. In: Proceedings of the 6th International Conference on Genetic Algorithms, pp. 57–64. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  36. Hart, E., Bersini, H., Santos, F.: Structure versus function: A topological perspective on immune networks. Natural Computing 9, 603–624 (2010)

    Google Scholar 

  37. Hart, E., McEwan, C., Timmis, J., Hone, A.: Advances in artificial immune systems. Evolutionary Intelligence 4(2), 67–68 (2011)

    Google Scholar 

  38. Hart, E., Timmis, J.: Application areas of AIS: The past, the present and the future. Applied Soft Computing 8(1), 191–201 (2008)

    Google Scholar 

  39. He, Q., Wang, L.: An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Engineering Applications of Artificial Intelligence 20, 89–99 (2007)

    Google Scholar 

  40. He, S., Wu, Q., Saunders, J.: A novel group search optimizer inspired by animal behavioural ecology. In: Proceedings of 2006 IEEE Congress on Evolutionary Computation, pp. 16–21, Vancouver (2006)

    Google Scholar 

  41. Hillis, W.D.: Co-evolving parasites improve simulated evolution as an optimization procedure. Physica D 42, 228–234 (1990)

    Google Scholar 

  42. Jerne, N.K.: Towards a network theory of the immune system. Annals of Immunology 125C(1–2), 373–389 (1973)

    Google Scholar 

  43. Ji, Z., Dasgupta, D.: Revisiting negative selection algorithms. Evolutionary Computation 15(2), 223–251 (2007)

    Google Scholar 

  44. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  45. Kim, J., Greensmith, J., Twycross, J., Aickelin, U.: Malicious code execution detection and response immune system inspired by the danger theory. CoRR abs/1003.4142 (2010)

    Google Scholar 

  46. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Google Scholar 

  47. Kowaliw, T., Kharma, N.N., Jensen, C., Moghnieh, H., Yao, J.: Using competitive co-evolution to evolve better pattern recognisers. International Journal of Computational Intelligence and Applications 5(3), 305–320 (2005)

    Google Scholar 

  48. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection (Complex Adaptive Systems), 1st edn. MIT Press (1992)

    Google Scholar 

  49. Lin, C., Qing, A., Feng, Q.: A comparative study of crossover in differential evolution. Journal of Heuristics 17(6), 675–703 (2011). doi:10.1007/s10732-010-9151-1

    Google Scholar 

  50. Lin, C.J., Chen, C.H., Lin, C.T.: A hybrid of cooperative particle swarm optimization and cultural algorithm for neural fuzzy networks and its prediction applications. IEEE Transactions on Systems, Man, and Cybernetics, Part C 39, 55–68 (2009)

    Google Scholar 

  51. Liu, J., Lampinen, J.: A fuzzy adaptive differential evolution algorithm. Soft Computing 9, 448–462 (2005)

    Google Scholar 

  52. Liu, Y., Passino, K.: Biomimicry of social foraging bacteria for distributed optimization: Models, principles, and emergent behaviors. Journal of Optimization Theory and Applications 115, 603–628 (2002)

    Google Scholar 

  53. Luke, S., Wiegand, P.R.: When coevolutionary algorithms exhibit evolutionary dynamics. In: A.M. Barry (ed.) GECCO 2002: Proceedings of the Bird of a Feather Workshops, Genetic and Evolutionary Computation Conference, pp. 236–241. AAAI, New York (2002)

    Google Scholar 

  54. Ma, H.: An analysis of the equilibrium of migration models for biogeography-based optimization. Information Sciences 180(18), 3444–3464 (2010)

    Google Scholar 

  55. MacArthur, R., Wilson, E.: The Theory of Biogeography. Princeton University Press, Princeton, NJ (1967)

    Google Scholar 

  56. Matzinger, P.: Tolerance, danger, and the extended family. Annual Review of Immunology 12, 991–1045 (1994)

    Google Scholar 

  57. Mezura-Montes, E., Reyes-Sierra, M., Coello Coello, C.: Multi-objective optimization using differential evolution: A survey of the state-of-the-art. In: U. Chakraborty (ed.) Advances in Differential Evolution. Studies in Computational Intelligence, vol. 143, pp. 173–196. Springer, Berlin (2008)

    Google Scholar 

  58. Montgomery, J., Chen, S.: An analysis of the operation of differential evolution at high and low crossover rates. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2010). doi:10.1109/CEC.2010.5586128

  59. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of distributions. I. Binary parameters. In: Proceedings of the 4th International Conference on Parallel Problem Solving from Nature, PPSN IV, pp. 178–187. Springer, London (1996)

    Google Scholar 

  60. Neri, F., Tirronen, V.: Recent advances in differential evolution: A survey and experimental analysis. Artificial Intelligence Review 33, 61–106 (2010)

    Google Scholar 

  61. Nguyen, T., Yao, X.: Hybridizing cultural algorithms and local search. In: E. Corchado, H. Yin, V. Botti, C. Fyfe (eds.) Intelligent Data Engineering and Automated Learning, IDEAL 2006. Lecture Notes in Computer Science, vol. 4224, pp. 586–594. Springer, Berlin, (2006)

    Google Scholar 

  62. Ochoa, A., Ponce, J., Hernández, A., Li, L.: Resolution of a combinatorial problem using cultural algorithms. JCP 4(8), 738–741 (2009)

    Google Scholar 

  63. Paredis, J.: Steps towards co-evolutionary classification neural networks. In: R.A. Brooks, P. Maes (eds.) Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems (Artificial Life IV), pp. 102–108. Cambridge, MA (1994). http://www.mpi-sb.mpg.de/services/library/proceedings/contents/alife94.html

  64. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Systems Magazine 22(3), 52–67 (2002). doi:10.1109/MCS.2002.1004010

  65. Passino, K.M.: Bacterial foraging optimization. International Journal of Swarm Intelligence Research 1(1), 1–16 (2010)

    Google Scholar 

  66. Pollack, J.B., Blair, A.D.: Co-evolution in the successful learning of backgammon strategy. Machine Learning 32, 225–240 (1998)

    Google Scholar 

  67. Popovici, E., De Jong, K.: The effects of interaction frequency on the optimization performance of cooperative coevolution. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, GECCO ’06, pp. 353–360. ACM, New York (2006)

    Google Scholar 

  68. Potter, M.A., De Jong, K.A.: Cooperative coevolution: An architecture for evolving coadapted subcomponents. Evolutionary Computation 8(1), 1–29 (2000)

    Google Scholar 

  69. Potter, M.A., Jong, K.A.D.: A cooperative coevolutionary approach to function optimization. In: Proceedings of the International Conference on Evolutionary Computation, Third Conference on Parallel Problem Solving from Nature, PPSN III, pp. 249–257. Springer, London, (1994)

    Google Scholar 

  70. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Natural Computing Series. Springer, Berlin (2005)

    Google Scholar 

  71. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: A gravitational search algorithm. Information Sciences 179(13), 2232–2248 (2009). doi:10.1016/j.ins.2009.03.004

    Google Scholar 

  72. Renfrew, A.: Dynamic modeling in archaeology: what, when, and where? In: Dynamical Modeling and the Study of Change in Archaelogy (1994)

    Google Scholar 

  73. Reynolds, R.G.: An adaptive computer model of plan collection and early agriculture in the eastern valley of Oaxaca. In: G. Naquitz (ed.) Archaic Foraging and Early Agriculture in Oaxaca, Mexico, pp. 439–500 (1986)

    Google Scholar 

  74. Reynolds, R.G.: An introduction to cultural algorithms. In: A.V. Sebalk, L.J. Fogel (eds.) Proceedings of the Third Annual Conference on Evolutionary Programming, pp. 131–139. World Scientific, River Edge, NJ (1994)

    Google Scholar 

  75. Reynolds, R.G.: Cultural algorithms: Theory and applications. In: D. Corne, M. Dorigo, F. Glover (eds.) New Ideas in Optimization, pp. 367–378. McGraw-Hill, Maidenhead, UK (1999)

    Google Scholar 

  76. Reynolds, R.G., Kohler, T.A., Kobti, Z.: The effects of generalized reciprocal exchange on the resilience of social networks: An example from the prehispanic Mesa Verde region. Computational and Mathematical Organization Theory 9, 227–254 (2003)

    Google Scholar 

  77. Reynolds, R.G., Liu, D.: Multi-objective cultural algorithms. In: IEEE Congress on Evolutionary Computation, pp. 1233–1241 (2011)

    Google Scholar 

  78. Reynolds, R.G., Peng, B., Ali, M.Z.: The role of culture in the emergence of decision-making roles: An example using cultural algorithms. Complexity 13(3), 27–42 (2008)

    Google Scholar 

  79. Rivera, D.C., Becerra, R.L., Coello Coello Carlos, A.: Cultural algorithms, an alternative heuristic to solve the job shop scheduling problem. Engineering Optimization 39(1), 69–85 (2007)

    Google Scholar 

  80. Rosin, C.D., Belew, R.K.: New methods for competitive coevolution. Evolutionary Computation 5, 1–29 (1997)

    Google Scholar 

  81. Rychtyckyj, N., Reynolds, R.G.: Using cultural algorithms to re-engineer large-scale semantic networks. International Journal of Software Engineering and Knowledge Engineering 15(4), 665–694 (2005)

    Google Scholar 

  82. Saleem, S.M.: Knowledge-based solution to dynamic optimization problems using cultural algorithms. Ph.D. thesis, Wayne State University, Detroit, MI (2001)

    Google Scholar 

  83. Secker, A., Freitas, A., Timmis, J.: A danger theory inspired approach to web mining. In: J. Timmis, P. Bentley, E. Hart (eds.) Artificial Immune Systems. Lecture Notes in Computer Science, vol. 2787, pp. 156–167. Springer, Berlin, Heidelberg (2003). doi:10.1007/978-3-540-45192-1_16

    Google Scholar 

  84. Shi, Y.J., Teng, H.F., Li, Z.Q.: Cooperative co-evolutionary differential evolution for function optimization. In: L. Wang, K. Chen, Y. Ong (eds.) Advances in Natural Computation, Lecture Notes in Computer Science, vol. 3611, pp. 428–428. Springer, Berlin, (2005)

    Google Scholar 

  85. Simon, D.: Evolutionary Optimization Algorithms: Biologically-Inspired and Population-Based Approaches to Computer Intelligence. p. 624. Wiley (2013)

    Google Scholar 

  86. Simon, D.: Biogeography-based optimization. IEEE Transactions on Evolutionary Computation 12(6), 702–713 (2008)

    Google Scholar 

  87. Sims, K.: Evolving 3D morphology and behavior by competition. Artificial Life 1(4), 353–372 (1994)

    Google Scholar 

  88. Stanley, K.O., Miikkulainen, R.: Competitive coevolution through evolutionary complexification. Journal of Artificial Intelligence Research 21(1), 63–100 (2004)

    Google Scholar 

  89. Storn, R.M., Price, K.V.: Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4), 341–359 (1997)

    Google Scholar 

  90. Talbi, E.G.: Metaheuristics: From Design to Implementation, 1st edn. Wiley-Blackwell (2009)

    Google Scholar 

  91. Tan, K.C., Yang, Y.J., Goh, C.K.: A distributed cooperative coevolutionary algorithm for multiobjective optimization. IEEE Transactions on Evolutionary Computation 10(5), 527–549 (2006)

    Google Scholar 

  92. Teng, N., Teo, J., Hijazi, M., Hanafi, A.: Self-adaptive population sizing for a tune-free differential evolution. Soft Computing 13, 709–724 (2009)

    Google Scholar 

  93. Timmis, J., Andrews, P., Hart, E.: On artificial immune systems and swarm intelligence. Swarm Intelligence 4(4), 247–273 (2010)

    Google Scholar 

  94. Timmis, J., Andrews, P., Owens, N., Clark, E.: An interdisciplinary perspective on artificial immune systems. Evolutionary Intelligence 1(1), 5–26 (2008)

    Google Scholar 

  95. Timmis, J., Hone, A., Stibor, T., Clark, E.: Theoretical advances in artificial immune systems. Theoretical Computer Science 403(1), 11–32 (2008)

    Google Scholar 

  96. Tylor, E.B.: Primitive Culture, vol. 2, 7th edition. Brentano’s, New York (1924)

    Google Scholar 

  97. Ulutas, B.H., Kulturel-Konak, S.: A review of clonal selection algorithm and its applications. Artificial Intelligence Review 36(2), 117–138 (2011)

    Google Scholar 

  98. Walker, A., Hallam, J., Willshaw, D.: Bee-havior in a mobile robot: The construction of a self-organized cognitive map and its use in robot navigation within a complex, natural environment. In: Proceedings of ICNN’93, International Conference on Neural Networks, vol. III, pp. 1451–1456. IEEE Press, Piscataway, NJ (1993)

    Google Scholar 

  99. Wallace, A.R.: The Geographical Distribution of Animals (two volumes). Adamant Media Corporation, Boston, MA (2005)

    Google Scholar 

  100. Weber, M.: Parallel global optimization, structuring populations in differential evolution. Ph.D. thesis, University of Jyvskyl (2010)

    Google Scholar 

  101. Wiegand, R.P.: An analysis of cooperative coevolutionary algorithms. Ph.D. thesis, George Mason University, Fairfax, VA (2004). AAI3108645

    Google Scholar 

  102. Wu, C., Zhang, N., Jiang, J., Yang, J., Liang, Y.: Improved bacterial foraging algorithms and their applications to job shop scheduling problems. In: Proceedings of the 8th International Conference on Adaptive and Natural Computing Algorithms, Part I, ICANNGA ’07, pp. 562–569. Springer, Berlin, Heidelberg (2007)

    Google Scholar 

  103. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: J.R. González, D.A. Pelta, C. Cruz, G. Terrazas, N. Krasnogor (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), vol. 284, Chap. 6, pp. 65–74. Springer, Berlin Heidelberg (2010)

    Google Scholar 

  104. Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), Coimbatore, India, IEEE Conference Publications, pp. 210–214. IEEE Press, Piscataway, NJ (2009)

    Google Scholar 

  105. Zaharie, D.: Influence of crossover on the behavior of differential evolution algorithms. Applied Soft Computing 9(3), 1126–1138 (2009). doi:10.1016/j.asoc.2009.02.012

    Google Scholar 

  106. Zhang, C., Yi, Z.: A danger theory inspired artificial immune algorithm for on-line supervised two-class classification problem. Neurocomputing 73(7–9), 1244–1255 (2010). doi:10.1016/j.neucom.2010.01.005. http://www.sciencedirect.com/science/article/pii/S0925231210000573

    Google Scholar 

  107. Zheng, J., Chen, Y., Zhang, W.: A survey of artificial immune applications. Artificial Intelligence Review 34, 19–34 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilhem Boussaïd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boussaïd, I. (2016). Some Other Metaheuristics. In: Siarry, P. (eds) Metaheuristics. Springer, Cham. https://doi.org/10.1007/978-3-319-45403-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45403-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45401-6

  • Online ISBN: 978-3-319-45403-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics