Skip to main content

Preparation and Characterization of Hybrid Membranes Based on Poly(Ether-b-Amide)

  • Chapter
  • First Online:
Membranes

Abstract

Novel hybrid membranes based on poly(ether-b-amide) copolymers and amine-modified mesoporous silica MCM-48 were prepared by the casting method. To the best of our knowledge, there is no evidence about the application of amine-modified MCM-48 silica in the fabrication of mixed matrix membranes (MMMs) based on PEBA copolymers. MMMs were characterized by FT-IR spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Modification of MCM-48 with the organosilane improved the compatibility with the polymeric matrix. In addition, the separation performance of prepared membranes was investigated by experiments of pure gas permeation. The incorporation of modified nanoparticles into the polymeric matrix improved the gas separation performance of the fabricated nanocomposite membranes. By comparing with pristine PEBA membranes, MMM with 2.5 % of APS-MCM-48 exhibited higher ideal selectivity for the gas pairs CO2/CH4 and CO2/N2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xing, R., & Ho, W. S. W. (2011). Crosslinked polyvinylalcohol–polysiloxane/fumed silica mixed matrix membranes containing amines for CO2/H2 separation. Journal of Membrane Science, 367, 91–102.

    Article  Google Scholar 

  2. Yang, H. Q., Xu, Z. H., Fan, M. H., Gupta, R., Slimane, R. B., Bland, A. E., et al. (2008). Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences, 20, 14.

    Article  Google Scholar 

  3. Ge, L., Zhu, Z., & Rudolph, V. (2011). Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane. Separation and Purification Technology, 78, 76.

    Article  Google Scholar 

  4. Sanipa, S. M., Ismail, A. F., Goh, P. S., Soga, T., Tanemura, M., & Yasuhiko, H. (2011). Gas separation properties of functionalized carbon nanotubes mixed matrix membranes. Separation and Purification Technology, 78, 208.

    Article  Google Scholar 

  5. Chung, T. S., Jiang, L. Y., Li, Y., & Kulprathipanja, S. (2007). Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in Polymer Science, 32, 483.

    Article  Google Scholar 

  6. Rafiq, S., Mana, Z., Maulud, A., Muhammada, N., & Maitra, S. (2012). Separation of CO2 from CH4 using polysulfone/polyimide silica nanocomposite membranes. Separation and Purification Technology, 90, 162.

    Article  Google Scholar 

  7. Mahajan, R., Burns, R., Schaeffer, M., & Koros, W. J. (2002). Challenges in forming successful mixed matrix membranes with rigid polymeric materials. Journal of Applied Polymer Science, 86, 881.

    Article  Google Scholar 

  8. Goh, P. S., Ismail, A. F., Sanip, S. M., Ng, B. C., & Aziz, M. (2011). Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Separation and Purification Technology, 81, 243.

    Article  Google Scholar 

  9. Armstrong, S., Freeman, B., Hiltner, A., & Baer, E. (2012). Gas permeability of melt-processed poly(ether block amide) copolymers and the effects of orientation. Polymer, 53, 1383.

    Article  Google Scholar 

  10. Chen, J. C., Feng, X., & Penlidis, A. (2004). Gas permeation through poly(Ether-b-amide) (PEBAX 2533) block copolymer membranes. Separation Science and Technology, 39, 149.

    Article  Google Scholar 

  11. Tocci, E., Gugliuzza, A., De Lorenzo, L., Macchionea, M., De Luca, G., & Drioli, E. (2008). Transport properties of a co-poly(amide-12-b-ethylene oxide) membrane: A comparative study between experimental and molecular modelling results. Journal of Membrane Science, 323, 316.

    Article  Google Scholar 

  12. Peyravi, M., Babaluo, A. A., Ardestani, M. A., Razavi Aghjeh, M. K., Pishghadam, S. R., & Hadi, P. (2010). Study on the synthesis of poly(ether-block-amide) copolymer based on nylon6 and poly(ethylene oxide) with various block lengths. Journal of Applied Polymer Science, 118, 1211.

    Google Scholar 

  13. Ardestani, M. A., Babaluo, A. A., Peyravi, M., Razavi Aghjeh, M. K., & Jannatdoost, E. (2010). Fabrication of PEBA/ceramic nanocomposite membranes in gas sweetening. Desalination, 250, 1140.

    Article  Google Scholar 

  14. Tan, H. F., Wu, Y. H., Zhou, Y., Liu, Z. N., & Li, T. M. (2014). Pervaporative recovery of n-butanol from aqueous solutions MCM-41 filled PEBA mixed matrix membrane. Journal of Membrane Science, 453, 302.

    Article  Google Scholar 

  15. Wu, H., Li, X., Li, Y., Wang, S., Guo, R., Jiang, Z., et al. (2014). Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties. Journal of Membrane Science, 465, 78.

    Article  Google Scholar 

  16. Friess, K., Hynek, V., Šípek, M., Kujawski, W. M., Vopicka, O., Zgazar, M., et al. (2011). Permeation and sorption properties of poly(ether-block-amide) membranes filled by two types of zeolites. Separation and Purification Technology, 80, 418.

    Article  Google Scholar 

  17. Murali, R. S., Ismail, A. F., Rahman, M. A., & Sridhar, S. (2014). Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations. Separation and Purification Technology, 129, 1.

    Article  Google Scholar 

  18. Murali, R. S., Sridhar, S., Sankarshana, T., & Ravikumar, Y. V. L. (2010). Gas permeation behavior of Pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes. Industrial and Engineering Chemistry Research, 49, 6530.

    Article  Google Scholar 

  19. Hong-Wei, Y., Chen, Z. H., & Yang, I. K. (2012). Use of the composite membrane of poly(ether-block-amide) and carbon nanotubes (CNTs) in a pervaporation system incorporated with fermentation for butanol production by Clostridium acetobutylicum. Bioresource Technology, 109, 105.

    Article  Google Scholar 

  20. Rahman, M. M., Filiz, V., Shishatskiy, S., Abetz, C., Neumann, S., Bolmer, S., et al. (2013). PEBAX® with PEG functionalized POSS as nanocomposite membranes for CO2 separation. Journal of Membrane Science, 437, 286.

    Article  Google Scholar 

  21. Khan, A. L., Klaysom, C., Gahlaut, A., & Vankelecom, I. F. J. (2013). Polysulfone acrylate membranes containing functionalized mesoporous MCM-41 for CO2 separation. Journal of Membrane Science, 436, 145.

    Article  Google Scholar 

  22. Kim, S., & Marand, E. (2008). High permeability nano-composite membranes based on mesoporous MCM-4 nanoparticles in a polysulfone matrix. Microporous and Mesoporous Materials, 114, 129.

    Article  Google Scholar 

  23. Meléndez-Ortiz, H. I., Perera-Mercado, Y., Mercado-Silva, J. A., Olivares-Maldonado, Y., Castruita, G., & García-Cerda, L. A. (2014). Functionalization with amine-containing organosilane of mesoporous silica MCM-41 and MCM-48 obtained at room temperature. Ceramics International, 40, 9701.

    Article  Google Scholar 

  24. Mercier, L., & Pinnavaia, T. J. (1998). Heavy metal ion adsorbents formed by the grafting of a thiol functionality to mesoporous silica molecular sieves: Factors affecting Hg (II) uptake. Environmental Science and Technology, 32, 2749.

    Article  Google Scholar 

  25. Yokoi, T., Yoshitake, H., & Tatsumi, T. (2004). Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di-and tri-amino-organoalkoxysilanes. Journal of Materials Chemistry, 14, 951.

    Article  Google Scholar 

  26. Yue, M. B., Chun, Y., Cao, Y., Dong, X., & Zhu, J. H. (2006). CO2 capture by as-prepared SBA-15 with an occluded organic template. Advanced Functional Materials, 16, 1717.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by CONACYT-México (Fondo SENER-Hidrocarburos) under Grant No. 127499. Authors H. I. Melendez-Ortiz and G. Castruita-de Leon are grateful to the program Catedras-CONACyT. The authors are grateful to J. A. Cepeda, G. Mendez, and J. Sanchez for their technical assistance in the SEM, TGA, and FT-IR studies, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor Iván Meléndez-Ortiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Meléndez-Ortiz, H.I. et al. (2017). Preparation and Characterization of Hybrid Membranes Based on Poly(Ether-b-Amide). In: Maciel-Cerda, A. (eds) Membranes. Springer, Cham. https://doi.org/10.1007/978-3-319-45315-6_2

Download citation

Publish with us

Policies and ethics