Skip to main content

Comparative Analysis of Islet Development

  • Chapter
  • First Online:
Pancreatic Islet Biology

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 798 Accesses

Abstract

The pancreatic islet plays a critical role in glucose homeostasis. The islet is a highly vascularized micro-organ embedded in the exocrine pancreas, which mainly consists of endocrine hormone-secreting cells: beta cells (insulin), alpha cells (glucagon), delta cells (somatostatin), pancreatic polypeptide (PP) cells, and epsilon cells (ghrelin). In this chapter, we review fetal endocrine pancreatic cell development in various species, providing a glimpse of the evolutionary changes followed by a molecular hierarchy of genes involved in pancreas development and a model of islet formation that recent technological advances have made possible. Considering current concerns, species differences between humans and rodents will be discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrian TE, Mitchenere P, Sagor G et al (1982) Effect of pancreatic polypeptide on gallbladder pressure and hepatic bile secretion. Am J Physiol 243:G204–G207

    CAS  PubMed  Google Scholar 

  • Ahlgren U, Pfaff SL, Jessell TM et al (1997) Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature 385:257–260

    Article  CAS  PubMed  Google Scholar 

  • Alumets J, Hakanson R, Sundler F (1983) Ontogeny of endocrine cells in porcine gut and pancreas, An immunocytochemical study. Gastroenterology 85:1359–1372

    CAS  PubMed  Google Scholar 

  • Andralojc KM, Mercalli A, Nowak KW et al (2009) Ghrelin-producing epsilon cells in the developing and adult human pancreas. Diabetologia 52:486–493

    Article  CAS  PubMed  Google Scholar 

  • Argenton F, Zecchin E, Bortolussi M (1999) Early appearance of pancreatic hormone expressing cells in the zebrafish embryo. Mech Dev 87:217–221

    Article  CAS  PubMed  Google Scholar 

  • Asakawa A, Inui A, Yuzuriha H et al (2003) Characterization of the effects of pancreatic polypeptide in the regulation of energy balance. Gastroenterology 124:1325–1336

    Article  CAS  PubMed  Google Scholar 

  • Biemar F, Argenton F, Schmidtke R et al (2001) Pancreas development in zebrafish: early dispersed appearance of endocrine hormone expressing cells and their convergence to form the definitive islet. Dev Biol 230:189–203

    Article  CAS  PubMed  Google Scholar 

  • Bouwens L, De BE (1996) Islet morphogenesis and stem cell markers in rat pancreas. J Histochem Cytochem 44:947–951

    Article  CAS  PubMed  Google Scholar 

  • Brissova M, Fowler MJ (2005) Nicholson WE (2005) Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem 53:1087–1097

    Article  CAS  PubMed  Google Scholar 

  • Cabrera O, Berman M, Kenyon NS (2006) The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. PNAS 103:2334–2339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlsson GL, Heller RS, Serup P et al (2010) Immunohistochemistry of pancreatic development in cattle and pig. Anat Histol Embryol 39:107–119

    Article  CAS  PubMed  Google Scholar 

  • Collombat P, Mansouri A, Sorensen JH et al (2003) Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev 17:2591–2603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conarello SL, Jiang G, Mu J et al (2007) Glucagon receptor knockout mice are resistant to diet-induced obesity and streptozotocin-mediated beta cell loss and hyperglycaemia. Diabetologia 150:142–150

    Google Scholar 

  • Driever W, Solnica-Krezel L, Schier AF et al (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46

    CAS  PubMed  Google Scholar 

  • Epple A, Brinn JE (1987) The comperative physiology of the pancreatic islets. Springer, Berlin

    Book  Google Scholar 

  • Field HA, Dong PD, Beis D et al (2003) Formation of the digestive system in zebrafish. II. Pancreas morphogenesis. Dev Biol 261:197–208

    Article  CAS  PubMed  Google Scholar 

  • Furuta M, Yano H, Zhou A et al (1997) Defective prohormone processing and altered pancreatic islet morphology in mice lacking active SPC2. Proc Natl Acad Sci USA 94:6646–6651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelling RW, Du XQ, Dichmann DS et al (2003) Lower blood glucose, hyperglucagonemia, and pancreatic cell hyperplasia in glucagon receptor knockout mice. Proc Natl Acad Sci USA 100:1438–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gradwhol G, Dierich A, LeMeur M et al (2000) neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA 97:1607–1611

    Article  Google Scholar 

  • Guz Y, Montminy MR, Stein R et al (1995) Expression of murine STF-1, a putative insulin gene transcription factor, in β cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny. Development 121:149–161

    Google Scholar 

  • Hara M, Wang X, Kawamura T et al (2003) Transgenic mice with green fluorescent protein-labeled pancreatic β-cells. Am J Physiol Endocrinol Metab 284:E177–E183

    Article  CAS  PubMed  Google Scholar 

  • Hara M, Dizon RF, Glick BS et al (2006) Imaging pancreatic beta-cells in the intact pancreas. Am J Physiol Endocrinol Metab 290:E1041–E1047

    Article  CAS  PubMed  Google Scholar 

  • Hazelwood RL (1993) The pancreatic polypeptide (PP-fold) family: gastrointestinal, vascular, and feeding behavioral implications. Proc Soc Exp Biol Med 202:44–63

    Article  CAS  PubMed  Google Scholar 

  • Heller RS, Stoffers DA, Liu A et al (2004) The role of Brn4/Pou3f4 and Pax6 in forming the pancreatic glucagon cell identity. Dev Biol 268:123–134

    Article  CAS  PubMed  Google Scholar 

  • Herrera PL, Huarte J, Sanvito F et al (1991) Embryogenesis of the murine endocrine pancreas; early expression of pancreatic polypeptide gene. Development 113:1257–1265

    CAS  PubMed  Google Scholar 

  • Hesselson D, Anderson RM, Beinat M (2009) Distinct populations of quiescent and proliferative pancreatic beta-cells identified by HOTcre mediated labeling. Proc Natl Acad Sci USA 106:14896–14901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horb ME, Slack JM (2002) Expression of amylase and other pancreatic genes in Xenopus. Mech Dev 113:153–157

    Article  CAS  PubMed  Google Scholar 

  • Hussain MA, Lee J, Miller CP et al (1997) POU domain transcription factor brain 4 confers pancreatic alpha-cell-specific expression of the proglucagon gene through interaction with a novel proximal promoter G1 element. Mol Cell Biol 17:7186–7194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackintell LA, Lance VA (1994) Ontogeny and regional distribution of hormone producing cells in embryonic pancreas of Alligator Mississippienses. Gen Comp Endocrinol 94:244–260

    Article  CAS  PubMed  Google Scholar 

  • Jensen J (2004) Gene regulatory factors in pancreatic development. Dev Dyn 229:176–200

    Article  CAS  PubMed  Google Scholar 

  • Jones HB, Reens J, Brocklehurst SR et al (2014) Islets of Langerhans from prohormone convertase-2 knockout mice show α-cell hyperplasia and tumorigenesis with elevated α-cell neogenesis. Int J Exp Pathol 95:29–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonsson J, Carlsson L, Edlund T et al (1994) Insulin-promoterfactor 1 is required for pancreas development in mice. Nature 371:606–609

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi Y, Cooper B, Gannon M et al (2002) The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 32:128–134

    Article  CAS  PubMed  Google Scholar 

  • Kelly OG, Melton D (2000) Development of the pancreas in Xenopus laevis. Dev Dyn 218:615–627

    Article  CAS  PubMed  Google Scholar 

  • Kharouta M, Miller K, Kim A et al (2009) No mantle formation in rodent islets—the prototype of islet revisited. Diabetes Res Clin Pract 85:252–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilimnik G, Jo J, Periwal V et al (2012) Quantification of islet distribution and architecture. Islets 4:167–172

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim A, Miller K, Jo J et al (2009) Islet architecture: a comparative study. Islets 1:129–136

    PubMed  Google Scholar 

  • Kordowich S, Collombat P, Mansouri A et al (2011) Arx and Nkx2.2 compound deficiency redirects pancreatic alpha- and beta-cell differentiation to a somatostatin/ghrelin co-expressing cell lineage. BMC Dev Biol 11:52–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krapp A, Knofler M, Ledermann B et al (1998) The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev 12:3752–3763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Wen C, Peng J et al (2009) Generation of living color transgenic zebrafish to trace somatostatinexpressing cells and endocrine pancreas organization. Differentiation 77:128–134

    Article  CAS  PubMed  Google Scholar 

  • Lucini C, Castaldo L, Lai O et al (1998) Ontogeny, postnatal development and ageing of endocrine pancreas in Bubalus bubalis. J Anat 192:417–424

    Article  PubMed  PubMed Central  Google Scholar 

  • Maake C, Hanke W, Reinecke M (1998) An immunohistochemical and morphometric analysis of insulin, insulin-like growth factor I, glucagon, somatostatin, and PP in the development of the gastroentero-pancreatic system of Xenopus laevis. Gen Comp Endocrinol 110:182–195

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka T, Zhao L, Artner I et al (2003) Members of the large Maf transcription family regulate insulin gene transcription in islet cells. Mol Cell Biol 23:6049–6062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller K, Kim A, Kilimnik G et al (2009) Islet formation during neonatal development. PLoS ONE 4:e7739

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyata T, Maeda T, Lee JE (1999) NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev 13:1647–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naya FJ, Huang HP, Qiu Y et al (1997) Diabetes, defective pancreatic morphogenesis and abnormal enteroendocrine differentiation in BETA2/NeuroD-deficient mice. Genes Dev 11:2323–2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieuwkoop PD, Faber J (1967) Normal table of Xenopus laevis (Daudin). North-Holland Publishing Co, Amsterdam

    Google Scholar 

  • Nyman LR, Wells KS, Head WS et al (2008) Real-time, multidimensional in vivo imaging used to investigate blood flow in mouse pancreatic islets. J Clin Investig 118:3790–3797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ober EA, Field HA, Stainier DY (2003) From endoderm formation to liver and pancreas development in zebrafish. Mech Dev 120:5–18

    Article  CAS  PubMed  Google Scholar 

  • Pearl EJ, Bilogan CK, Mukhi S et al (2009) Xenopus pancreas development. Dev Dyn 238:1271–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersson B (1966) The two types of alpha cells during the development of the guinea pig pancreas. 2. Zellforsch. 75:371–380

    Article  CAS  Google Scholar 

  • Pictet R, Rutter WJ (1972) Development of the embryonic endocrine pancreas. In: Geiger SR (ed) Handbook of physiology section 7: endocrinology. American Physiological Society, Washington, DC, pp 25–66

    Google Scholar 

  • Reddy SN, Bibby NJ, Elliott RB (1985) Cellular distribution of insulin, glucagon, pancreatic polypeptide hormone and somatostatin in the fetal and adult pancreas of the guinea pig: A comparative immunohistochemical study. Eur Cell Biol 38:301–305

    CAS  Google Scholar 

  • Reddy S, Bibby NJ, Elliott RB (1992) An immunocytochemical study of endocrine cell development in the early fetal guinea pig pancreas. Gen Comp Endocrinol 86:275–283

    Article  CAS  PubMed  Google Scholar 

  • Rhoten WB (1987) Quantitative immunocytohemical analysis of the endocrine pancreas of the Nile Crocodile. Am J Anat 173:103–115

    Article  Google Scholar 

  • Samols E, Bonner-Weir S, Weir GC (1986) Intra-islet insulin-glucagon somatostatin relationships. Clin Endocrinol Metab 15:33–58

    Article  CAS  PubMed  Google Scholar 

  • Sander M, Neubuser A, Kalamaras J et al (1997) Genetic analysis reveals that PAX6 is required for normal transcription of pancreatic hormone genes and islet development. Genes Dev 11:1662–1673

    Article  CAS  PubMed  Google Scholar 

  • Sander M, Sussel L, Conners J et al (2000) Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of β-cell formation in the pancreas. Development 127:5533–5540

    CAS  PubMed  Google Scholar 

  • Savari O, Zielinski MC, Wang X et al (2013) Distinct function of the head region of human pancreas in the pathogenesis of diabetes. Islets 5:226–228

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwitzgebel VM, Scheel DW, Conners JR (2000) Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 127:3533–3542

    CAS  PubMed  Google Scholar 

  • Sørensen H, Winzell MS, Brand CL et al (2006) Glucagon receptor knockout mice display increased insulin sensitivity and impaired beta-cell function. Diabetes 55:3463–3469

    Article  PubMed  Google Scholar 

  • Sosa-Pineda B, Chowdhury K, Torres M et al (1997) The Pax4 gene is essential for differentiation of insulin-producing β cells in the mammalian pancreas. Nature 386:399–402

    Article  CAS  PubMed  Google Scholar 

  • Steiner DJ, Kim A, Miller K et al (2010) Pancreatic islet plasticity—interspecies comparison of islet architecture and composition. ISLETS 2:135–145

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoffers DA, Zinkin NT, Stanojevic V (1997) Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 15:106–110

    Article  CAS  PubMed  Google Scholar 

  • St-Onge L, Sosa-Pineda B, Chowdhory K et al (1997) Pax6 is required for differentiation of glucagon-producing α-cells in mouse pancreas. Nature 387:406–409

    Article  CAS  PubMed  Google Scholar 

  • Sussel L, Kalamaras J, Hartigan-O’Connor DJ et al (1998) Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development 125:2213–2221

    CAS  PubMed  Google Scholar 

  • Tehrani Z, Lin S (2015) Endocrine pancreas development in zebrafish. Cell Cycle 10(20):3466–3472

    Article  Google Scholar 

  • Vincent M, Guz Y, Rozenberg M et al (2003) Abrogation of protein convertase 2 activity results in delayed islet cell differentiation and maturation, increased alpha-cell proliferation, and islet neogenesis. Endocrinology 144:4061–4069

    Article  CAS  PubMed  Google Scholar 

  • Vuguin PM, Kedees MH, Cui L (2006) Ablation of the glucagon receptor gene increases fetal lethality and produces alterations in islet development and maturation. Endocrinology 147:3995–4006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Rovira M, Yusuff S et al (2011) Genetic inducible fate mapping in larval zebrafish reveals origins of adult insulin-producing β-cells. Development 138:609–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zielinski MC, Misawa R (2013a) Quantitative analysis of the pancreatic polypeptide cell distribution in the human pancreas. PLoS One 8:e55501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Misawa R, Zielinski MC (2013b) Regional differences in islet size distribution and architecture in human adult pancreas. PLoS One 8:e67454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward AB, Warga RM, Prince VE (2007) Origin of the zebrafish endocrine and exocrine pancreas. Dev Dyn 236:1558–1569

    Article  PubMed  Google Scholar 

  • Weir GC, Bonner-Weir S (1990) Islets of Langerhans: the puzzle of intraislet interactions and their relevance to diabetes. J Clin Invest 85:983–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wierup N, Svensson H, Mulder H et al (2002) The ghrelin cell: a novel developmentally regulated islet cell in the human pancreas. Regul Pept 107:63–69

    Article  CAS  PubMed  Google Scholar 

  • Zabel M, Surdyk-Zasada J, Lesisz I et al (1995) Immunocytochemical studies on endocrine cells of alimentary tract of the pig in the embryonic and fetal period of life. Folia Morphol (Warsz.) 54:69–80

    CAS  Google Scholar 

  • Zhang C, Moriguchi T, Kajihara M et al (2005) MafA is a key regulator of glucose-stimulated insulin secretion. Mol Cell Biol 25:4969–4976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manami Hara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Poudel, A., Savari, O., Tekin, Z., Hara, M. (2016). Comparative Analysis of Islet Development. In: A. Hardikar, A. (eds) Pancreatic Islet Biology. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-45307-1_2

Download citation

Publish with us

Policies and ethics