Skip to main content

Super-Gaussian Directions of Random Vectors

  • Chapter
  • First Online:
Geometric Aspects of Functional Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2169))

  • 1534 Accesses

Abstract

We establish the following universality property in high dimensions: Let X be a random vector with density in \(\mathbb{R}^{n}\). The density function can be arbitrary. We show that there exists a fixed unit vector \(\theta \in \mathbb{R}^{n}\) such that the random variable \(Y =\langle X,\theta \rangle\) satisfies

$$\displaystyle{ \min \left \{\mathbb{P}(Y \geq tM), \mathbb{P}(Y \leq -tM)\right \} \geq ce^{-Ct^{2} }\qquad \qquad \text{for all}\ 0 \leq t \leq \tilde{ c}\sqrt{n}, }$$

where M > 0 is any median of | Y | , i.e., \(\min \{\mathbb{P}(\vert Y \vert \geq M), \mathbb{P}(\vert Y \vert \leq M)\} \geq 1/2\). Here, \(c,\tilde{c},C> 0\) are universal constants. The dependence on the dimension n is optimal, up to universal constants, improving upon our previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Böröczky, E. Lutwak, D. Yang, G. Zhang, The logarithmic Minkowski problem. J. Am. Math. Soc. 26 (3), 831–852 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. K. Böröczky, E. Lutwak, D. Yang, G. Zhang, Affine images of isotropic measures. J. Differ. Geom. 99 (3), 407–442 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Boucheron, G. Lugosi, P. Massart, Concentration Inequalities. A Nonasymptotic Theory of Independence (Oxford University Press, Oxford, 2013)

    Google Scholar 

  4. M. Henk, E. Linke, Cone-volume measures of polytopes. Adv. Math. 253, 50–62 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Klartag, On nearly radial marginals of high-dimensional probability measures. J. Eur. Math. Soc. 12 (3), 723–754 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Ledoux, M. Talagrand, Probability in Banach Spaces. Isoperimetry and Processes, vol. 23 (Springer, Berlin, 1991). Ergeb. Math. Grenzgeb. (3)

    Google Scholar 

  7. V.D. Milman, G. Schechtman, Asymptotic Theory of Finite-Dimensional Normed Spaces. Lecture Notes in Mathematics, vol. 1200 (Springer, Berlin, 1986)

    Google Scholar 

  8. G. Paouris, On the existence of supergaussian directions on convex bodies. Mathematika 58 (2), 389–408 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Pivovarov, On the volume of caps and bounding the mean-width of an isotropic convex body. Math. Proc. Camb. Philos. Soc. 149 (2), 317–331 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Bo Berndtsson and Emanuel Milman for interesting discussions and for encouraging me to write this paper. Supported by a grant from the European Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo’az Klartag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Klartag, B. (2017). Super-Gaussian Directions of Random Vectors. In: Klartag, B., Milman, E. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 2169. Springer, Cham. https://doi.org/10.1007/978-3-319-45282-1_13

Download citation

Publish with us

Policies and ethics