Skip to main content

Assessment of Left Ventricular Systolic and Diastolic Function by Echocardiography

  • Chapter
  • First Online:
Current Approach to Heart Failure

Abstract

Echocardiography is the imaging method of choice in the evaluation of patients with heart failure (HF) due to its accuracy, availability, low cost and safety profile. It provides a wealth of information about left and right ventricular size, geometry and function, left atrium size, valve function, pulmonary pressures, and the pericardium. It provides evidence about the cause of HF, which is critical for the selection of the best treatment. The assessment of left ventricular (LV) ejection fraction (EF) is essential to differentiate HF with reduced ejection fraction from HF with preserved EF and HF with mid-range EF, and therefore to guide proper therapies based on LVEF cut-off values. Abnormalities in diastolic function are extremely common in patients with HF and either reduced or preserved LVEF and may have prognostic implications. Since LV diastolic dysfunction is thought to be the main pathophysiological abnormality in patients with HFpEF, evaluation of LV diastolic function and filling pressure is of utmost importance for both diagnostic and prognostic purposes. Thus, the information provided by a comprehensive echo exam aids greatly in the better management of HF patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kirkpatrick JN, Vannan MA, Narula J, Lang RM. Echocardiography in heart failure: applications, utility, and new horizons. J Am Coll Cardiol. 2007;50:381–96.

    Article  PubMed  Google Scholar 

  2. Garbi M, Edvardsen T, Bax J, Petersen SE, McDonagh T, Filippatos G, et al. EACVI appropriateness criteria for the use of cardiovascular imaging in heart failure derived from European National Imaging Societies voting. Eur Heart J Cardiovasc Imaging:Reviewer Panel. 2016;17(7):711–21. doi:10.1093/ehjci/jew081 [Epub ahead of print].

    Article  Google Scholar 

  3. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2016. pii: ehw128.[Epub ahead of print]

    Google Scholar 

  4. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355:251–9.

    Article  CAS  PubMed  Google Scholar 

  5. Douglas L. Mann, Douglas P. Zipes, Peter Libby,Robert O. Bonow. Braunwald's heart disease: a cardiovascular medicine, 10th Edition. ISBN-13, 9781455751341, Publisher Elsevier, Philadelphia

    Google Scholar 

  6. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16:233–70.

    Article  PubMed  Google Scholar 

  7. Bellenger NG, Burgess MI, Ray SG, Lahiri A, Coats AJ, Cleland JG, et al. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography, and cardiovascular magnetic resonance. Are they interchangeable? Eur Heart J. 2000;21:1387–96.

    Article  CAS  PubMed  Google Scholar 

  8. Jacobs LD, Salgo IS, Goonewardena S, Weinert L, Coon P, Bardo D, et al. Rapid online quantification of left ventricular volume from real-time three-dimensional echocardiographic data. Eur Heart J. 2006;27:460–8.

    Article  PubMed  Google Scholar 

  9. Lang RM, Badano LP, Tsang W, Adams DH, Agricola E, Buck T, et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. Eur Heart J Cardiovasc Imaging. 2012;13:1–46.

    Article  PubMed  Google Scholar 

  10. Dorosz JL, Lezotte DC, Weitzenkamp DA, Allen LA, Salcedo EE. Performance of 3-dimensional echocardiography in measuring left ventricular volumes and ejection fraction: a systematic review and meta-analysis. J Am CollCardiol. 2012;59:1799–808.

    Article  Google Scholar 

  11. Muraru D, Badano LP, Peluso D, Dal Bianco L, Casablanca S, Kocabay G, et al. Comprehensive analysis of left ventricular geometry and function by three-dimensional echocardiography in healthy adults. J Am Soc Echocardiogr. 2013;26:618–28.

    Article  PubMed  Google Scholar 

  12. Caiani EG, Corsi C, Zamorano J, Sugeng L, MacEneaney P, Weinert L, et al. Improved semiautomated quantification of left ventricular volumes and ejection fraction using 3-dimensional echocardiography with a full matrix-array transducer: comparison with magnetic resonance imaging. J Am Soc Echocardiogr. 2005;18:779–88.

    Article  PubMed  Google Scholar 

  13. Mor-Avi V, Jenkins C, Kuhl HP, Nesser HJ, Marwick TH, Franke A, et al. Real-time 3-dimensional echocardiographic quantification of left ventricular volumes: multicenter study for validation with magnetic resonance imaging and investigation of sources of error. JACC Cardiovasc Imaging. 2008;1:413–23.

    Article  PubMed  Google Scholar 

  14. Arai K, Hozumi T, Matsumura Y, Sugioka K, Takemoto Y, Yamagishi H et al. Accuracy of measurement of left ventricularvolume and ejection fraction by new real-time three-dimensionalechocardiography in patients with wall motionabnormalities secondary to myocardial infarction. Am J Cardiol 2004;94:552-558.

    Google Scholar 

  15. Mannaerts HF, van der Heide JA, Kamp O, Stoel MG, Twisk J, Visser CA. Early identification of left ventricular remodelling after myocardial infarction, assessed by transthoracic 3D echocardiography. Eur Heart J. 2004;25:680–7.

    Article  PubMed  Google Scholar 

  16. Hung J, Lang R, Flachskampf F, Shernan SK, McCulloch ML, Adams DB, et al. 3D echocardiography: a review of the current status and future directions. J Am Soc Echocardiogr. 2007;20:213–33.

    Article  PubMed  Google Scholar 

  17. Van der Heide JA, Kleijn SA, Aly MF, Slikkerveer J, Kamp O. Three-dimensional echocardiography for left ventricular quantification: fundamental validation and clinical applications. Neth Heart J. 2011;19(10):423–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Matsumura Y, Hozumi T, Arai K, Sugioka K, Ujino K, Takemoto Y, et al. Non-invasive assessment of myocardial ischaemia using new real-time three-dimensional dobutamine stress echocardiography: comparison with conventional two-dimensional methods. Eur Heart J. 2005;26:1625–32.

    Article  PubMed  Google Scholar 

  19. Ahmad M, Xie T, McCulloch M, Abreo G, Runge M. Realtime three-dimensional dobutamine stress echocardiography in assessment stress echocardiography in assessment of ischemia: comparison with two-dimensional dobutamine stress echocardiography. J Am Coll Cardiol. 2001;37:1303–9.

    Article  CAS  PubMed  Google Scholar 

  20. Kan G, Visser CA, Koolen JJ, Dunning AJ. Short and long term predictive value of admission wall motion score in acute myocardial infarction. A cross sectional echocardiographic study of 345 patients. Br Heart J. 1986;56:422–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kolias TJ, Aaronson KD, Armstrong WF. Doppler-derived dP/dt and -dP/dt predict survival in congestive heart failure. J Am Coll Cardiol. 2000;36(5):1594–9.

    Article  CAS  PubMed  Google Scholar 

  22. Beladan CC, Călin A, Roşca M, Ginghină C, Popescu BA. Left ventricular twist dynamics: principles and applications. Heart. 2014;100:731–40.

    Article  PubMed  Google Scholar 

  23. Sengupta PP, Tajik AJ, Chandrasekaran K, Khandheria BK. Twist mechanics of the left ventricle: principles and application.JACCCardiovasc. Imaging. 2008;1:366–76.

    Google Scholar 

  24. Nakatani S. Left ventricular rotation and twist:why should we learn? J Cardiovasc Ultrasound. 2011;19:1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yip G, Wang M, Zhang Y, Fung JW, Ho PY, Sanderson JE. Left ventricular long axis function in diastolic heart failure is reduced in both diastole and systole: time for a redefinition? Heart. 2002;87:121–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. CM Y, Lin H, Yang H, Kong SL, Zhang Q, Lee SW. Progression of systolic abnormalities in patients with “isolated” diastolic heart failure and diastolic dysfunction. Circulation. 2002;105:1195–201.

    Article  Google Scholar 

  27. Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr. 2011;24:277–313.

    Article  PubMed  Google Scholar 

  28. Koyama J, Ray-Sequin PA, Falk RH. Longitudinal myocardialfunction assessed by tissue velocity, strain, and strain rate tissueDoppler echocardiography in patients with AL (primary) cardiacamyloidosis. Circulation. 2003;107:2446–52.

    Article  PubMed  Google Scholar 

  29. Palka P, Lange A, Donnelly JE, Nihoyansnopoulos P. Differentiation between restrictive cardiomyopathy and constrictive pericarditis byearly diastolic Doppler myocardial velocity gradient at the posteriorwall. Circulation. 2000;102:655–62.

    Article  CAS  PubMed  Google Scholar 

  30. Bax JJ, Bleeker GB, Marwick TH, Molhoek SG, Boersma E, Steendijk P, et al. Left ventricular dyssynchronypredicts response and prognosis after cardiac resynchronizationtherapy. J Am CollCardiol. 2004;44:1834–40.

    Article  Google Scholar 

  31. Bax JJ, Abraham T, Barold SS, Breithardt OA, Fung JW, Garrigue S, et al. Cardiac resynchronizationtherapy: part 1—issues before device implantation. J Am CollCardiol. 2005;46:2153–67.

    Article  Google Scholar 

  32. Pitzalis MV, Iacoviello M, Romito R, Massari F, Rizzon B, Luzzi G, et al. Cardiac resynchronization therapy tailored by echocardiographic evaluation of ventricular asynchrony. J Am Coll Cardiol. 2002;40:1615–22.

    Article  PubMed  Google Scholar 

  33. CM Y, Bleeker GB, Fung JW, Schalij MJ, Zhang Q, van der Wall EE, et al. Left ventricular reverse remodeling but not clinical improvement predicts long-term survival after cardiac resynchronization therapy. Circulation. 2005;112:1580–6.

    Article  Google Scholar 

  34. Stellbrink C, Breithardt OA, Franke A, Sack S, Bakker P, Auricchio A, et al. Impact of cardiac resynchronization therapy using hemodynamically optimized pacing on left ventricular remodeling in patients with congestive heart failure and ventricular conduction disturbances. J Am Coll Cardiol. 2001;38:1957–65.

    Article  CAS  PubMed  Google Scholar 

  35. CM Y, Abraham WT, Bax J, Chung E, Fedewa M, Ghio S, et al. Predictors of response to cardiac resynchronization therapy (PROSPECT)-study design. Am Heart J. 2005;149:600–5.

    Article  Google Scholar 

  36. Voigt JU, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging. 2015;16:1–11.

    Article  CAS  PubMed  Google Scholar 

  37. Sengeløv M, Jørgensen PG, Jensen JS, Bruun NE, Olsen FJ, Fritz-Hansen T, et al. Global longitudinal strain is a superior predictor of all-cause mortality in heart failure with reduced ejection fraction. JACC Cardiovasc Imaging. 2015;8:1351–9.

    Article  PubMed  Google Scholar 

  38. Phelan D, Collier P, Thavendiranathan P, Popović ZB, Hanna M, Plana JC, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart. 2012;98:1442–8.

    Article  PubMed  Google Scholar 

  39. Kraigher-Krainer E, Shah AM, Gupta DK, Santos A, Claggett B, Pieske B, et al. Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J Am CollCardiol. 2014;63:447–56.

    Article  Google Scholar 

  40. Farsalinos KE, DarabanAM ÜS, Thomas JD, Badano LP, Voigt JU. Head-to-head comparison of global longitudinal strain measurements among nine different vendors: the EACVI/ASE inter-vendor comparison study. J Am Soc Echocardiogr. 2015;28:1171–81.

    Article  PubMed  Google Scholar 

  41. Negishi K, Negishi T, Kurosawa K, Hristova K, Popescu BA, Vinereanu D, et al. Practical guidance in echocardiographic assessment of global longitudinal strain. JACC Cardiovasc Imaging. 2015;8:489–92.

    Article  PubMed  Google Scholar 

  42. D'hooge J, Barbosa D, Gao H, Claus P, Prater D, Hamilton J, et al. Two-dimensional speckle tracking echocardiography: standardization efforts based on synthetic ultrasound data. Eur Heart J Cardiovasc Imaging. 2016;17:693–701.

    Article  PubMed  Google Scholar 

  43. Popescu BA, Beladan CC, Calin A, Muraru D, Deleanu D, Rosca M, et al. Left ventricular remodelling and torsional dynamics in dilated cardiomyopathy: reversed apical rotation as a marker of disease severity. Eur J Heart Fail. 2009;11:945–51.

    Article  PubMed  Google Scholar 

  44. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2016;29:277-314.

    Google Scholar 

  45. JK O, Park SJ, Nagueh SF. Established and novel clinical applications of diastolic function assessment by echocardiography. Circ Cardiovasc Imaging. 2011;4:444–55.

    Article  Google Scholar 

  46. Beladan CC, Iliesiu AM, Popescu AC, Coman IM, Ginghina C, Popescu BA. Imaging assessment of left ventricular diastolic function: current and emerging methods. Acta Cardiol. 2016;71(4):379–88 in press.

    CAS  PubMed  Google Scholar 

  47. Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med. 2004;350:1953–9.

    Article  CAS  PubMed  Google Scholar 

  48. Zile MR, Gottdiener JS, Hetzel SJ, McMurray JJ, Komajda M, McKelvie R, et al. Prevalence and significance of alterations in cardiac structure and function in patients with heart failure and a preserved ejection fraction. Circulation. 2011;124:2491–501.

    Article  PubMed  Google Scholar 

  49. Shah AM. Ventricular remodeling in heart failure with preserved ejection fraction. Curr Heart Fail Rep. 2013;10:341–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Asrar U, Haq M, Mutha V, Rudd N, Hare DL, Wong C. Heart failure with preserved ejection fraction - unwinding the diagnosis mystique. Am J Cardiovasc Dis. 2014;4:100–13.

    Google Scholar 

  51. Lester SJ, Ryan EW, Schiller NB, Foster E. Best method in clinical practice and in research studies to determine left atrial size. Am J Cardiol. 1999;84:829–32.

    Article  CAS  PubMed  Google Scholar 

  52. Pritchett AM, Jacobsen SJ, Mahoney DW, Rodeheffer RJ, Bailey KR, Redfield MM. Left atrial volume as an index of left atrial size: a population-based study. J Am Coll Cardiol. 2003;41:1036–43.

    Article  PubMed  Google Scholar 

  53. Melenovsky V, Borlaug BA, Rosen B, Hay I, Ferruci L, Morell CH, et al. Cardiovascular features of heart failure with preserved ejection fraction versus nonfailing hypertensive LVH in the urban Baltimore community: the role of atrial remodeling/dysfunction. J Am Coll Cardiol. 2007;49:198–207.

    Article  PubMed  Google Scholar 

  54. Ogunyankin KO. Assessment of left ventricular diastolic function: the power, possibilities, and pitfalls of echocardiographic imaging techniques. Can J Cardiol. 2011;27:311–8.

    Article  PubMed  Google Scholar 

  55. Kavianipour M, Farkhooy A, Flachskampf FA. Role of echocardiography in the diagnosis of heart failure with preserved left ventricular systolic function: Update 2013. Curr Cardiovasc Imaging Rep. 2013;6:523–33.

    Article  Google Scholar 

  56. Dalsgaard M, Kjaergaard J, Pecini R, Iversen KK, Kober L, Moller JE, et al. Left ventricular filling pressure estimation at rest and during exercise in patients with severe aortic valve stenosis: comparison of echocardiographic and invasive measurements. J Am Soc Echocardiogr. 2009;22:343–9.

    Article  PubMed  Google Scholar 

  57. Bogaty P, Mure ´P, Dumesnil JG. New insights into diastolic dysfunction as the cause of acute left-sided heart failure associated with systemic hypertension and/or coronary artery disease. Am J Cardiol. 2002;89:341–5.

    Article  PubMed  Google Scholar 

  58. Dumesnil JG, Pibarot P. Doppler assessment of diastolic function at rest and during exercise: distinguishing myth from reality. J Am Soc Echocardiogr. 2009;22:343–9.

    Article  Google Scholar 

  59. Lam CSP, Roger VL, Rodeheffer RJ, Borlaug BA, Enders FT, Redfield MM. Pulmonary hypertension in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2009;53:1119–26.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Oktay AA, Shah SJ. Diagnosis and management of heart failure with preserved ejection fraction: 10 key lessons. Curr Cardiol Rev. 2015;11:42–52.

    Article  PubMed  Google Scholar 

  61. Sohn DW, Chai IH, Lee DJ, Kim HC, Kim HS, BH O, et al. Assessment of mitral annulus velocity by Doppler tissue imaging in the evaluation of left ventricular diastolic function. J Am Coll Cardiol. 1997;30:474–80.

    Article  CAS  PubMed  Google Scholar 

  62. Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quinones MA. Doppler tissue imaging: a noninvasive technique for evaluation ofleft ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol. 1997;30:1527–33.

    Article  CAS  PubMed  Google Scholar 

  63. Garcia MJ, Thomas JD, Klein AL. New Doppler echocardiographic applications for the study of diastolic function. J Am Coll Cardiol. 1998;32:865–75.

    Article  CAS  PubMed  Google Scholar 

  64. Ommen SR, Nishimura RA, Appleton CP, Miller FA, JK O, Redfield MM, et al. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation. 2000;102:1788–94.

    Article  CAS  PubMed  Google Scholar 

  65. In ‘t Veld AE H, de Man FS, van Rossum AC, Handoko ML. How to diagnose heart failure with preserved ejection fraction: the value of invasive stress testing. Neth Heart J. 2016;24:244–51.

    Article  Google Scholar 

  66. Penicka M, Bartunek J, Trakalova H, Hrabakova H, Maruskova M, Karasek J, et al. Heart failure with preserved ejection fraction in outpatients with unexplained dyspnea: a pressure-volume loop analysis. J Am Coll Cardiol. 2010;55:1701–10.

    Article  PubMed  Google Scholar 

  67. Santos M, Rivero J, McCullough SD, West E, Opotowsky AR, Waxman AB, et al. E/e’ ratio in patients with unexplained dyspnea: lack of accuracy in estimating left ventricular filling pressure. Circ Heart Fail. 2015;8:749–56.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wang J, Khoury DS, Yue Y, Torre-Amione G, Nagueh SF. Preserved left ventricular twist and circumferential deformation, but depressed longitudinal and radial deformation in patients with diastolic heart failure. Eur Heart J. 2008;29:1283–9.

    Article  CAS  PubMed  Google Scholar 

  69. Wenzelburger FW, Tan YT, Choudhary FJ, Lee ES, Leyva F, Sanderson JE. Mitral annular plane systolic excursion on exercise: a simple diagnostic tool for heart failure with preserved ejection fraction. Eur J Heart Fail. 2011;13:953–60.

    Article  PubMed  Google Scholar 

  70. Borlaug BA, Nishimura RA, Sorajja P, Lam CSP, Redfield MM. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail. 2010;3:588–95.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Westermann D, Kasner M, Steendijk P, Spillmann F, Riad A, Weitmann K, et al. Role of left ventricular stiffness in heart failure with normal ejection fraction. Circulation. 2008;117:2051–60.

    Article  PubMed  Google Scholar 

  72. Borlaug BA, Olson TP, Lam CSP, Flood KS, Lerman A, Johnson BD, et al. Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2010;56:845–54.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Whalley GA, Doughty RN, Gamble GD, Wright SP, Walsh HJ, Muncaster SA, et al. Pseudonormal mitral filling pattern predicts hospital re-admission in patients with congestive heart failure. J Am Coll Cardiol. 2002;39:1787–95.

    Article  PubMed  Google Scholar 

  74. Pozzoli M, Traversi E, Cioffi G, Stenner R, Sanarico M, Tavazzi L. Loading manipulations improve the prognostic value of Doppler evaluation of mitral flow in patients with chronic heart failure. Circulation. 1997;95:1222–30.

    Article  CAS  PubMed  Google Scholar 

  75. Somaratne JB, Whalley GA, Gamble GD, Doughty RN. Restrictive filling pattern is a powerful predictor of heart failure events post acute myocardial infarction and in established heart failure: a literature-based metaanalysis. J Card Fail. 2007;13:346–5.

    Article  PubMed  Google Scholar 

  76. Traversi E, Pozzoli M, Cioffi G, Capomolla S, Forni G, Sanarico M, et al. Mitral flow velocity changes after 6 months of optimized therapy provide important hemodynamic and prognostic information in patients with chronic heart failure. Am Heart J. 1996;132(4):809–19.

    Article  CAS  PubMed  Google Scholar 

  77. Giannuzzi P, Temporelli PL, Bosmini E, Silva P, Imparato A, Corra U, et al. Independent and incremental prognostic value of Doppler-derived mitral deceleration time of early filling in both symptomatic and asymptomatic patients with left ventricular dysfunction. J Am Coll Cardiol. 1996;28:383–90.

    Article  CAS  PubMed  Google Scholar 

  78. Bruch C, Klem I, Breithardt G, Wichter T, Gradaus R. Diagnostic usefulness and prognostic implications of the mitral E/E’ ratio in patients with heart failure and severe secondary mitral regurgitation. Am J Cardiol. 2007;100:860–5.

    Article  PubMed  Google Scholar 

  79. Dini FL, Conti U, Fontanive P, Andreini D, Panicucci E, De Tommasi SM. Prognostic value of N-terminal pro-type-B natriuretic peptide and Doppler left ventricular diastolic variables in patients with chronic systolic heart failure stabilized by therapy. Am J Cardiol. 2008;102:463–8.

    Article  CAS  PubMed  Google Scholar 

  80. Damy T, Goode KM, Kallvikbacka-Bennett A, Lewinter C, Hobkirk J, Nikitin NP, et al. Determinants and prognostic value of pulmonary arterial pressure in patients with chronic heart failure. Eur Heart J. 2010;31:2280–90.

    Article  CAS  PubMed  Google Scholar 

  81. Miller WL, Grill DE, Borlaug BA. Clinical features, hemodynamics, and outcomes of pulmonary hypertension due to chronic heart failure with reduced ejection fraction: pulmonary hypertension and heart failure. JACC Heart Fail. 2013;1:290–9.

    Article  PubMed  Google Scholar 

  82. Meris A, Amigoni M, Uno H, Thune JJ, Verma A, Køber L, et al. Left atrial remodelling in patients with myocardial infarction complicated by heart failure, left ventricular dysfunction, or both: the VALIANT Echo study. Eur Heart J. 2009;30:56–65.

    Article  PubMed  Google Scholar 

  83. Shah AM, Claggett B, Sweitzer NK, Shah SJ, Anand IS, O’Meara E, et al. Cardiac structure and function and prognosis in heart failure with preserved ejection fraction: findings from the echocardiographic study of the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) Trial. Circ Heart Fail. 2014;7:740–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mullens W, Borowski AG, Curtin RJ, Thomas JD, Tang WH. Tissue Doppler imaging in the estimation of intracardiac filling pressure in decompensated patients with advanced systolic heart failure. Circulation. 2009;119:62–70.

    Article  PubMed  Google Scholar 

  85. Bhella PS, Pacini EL, Prasad A, Hastings JL, Adams-Huet B, Thomas JD, et al. Echocardiographic indices do not reliably track changes in left-sided filling pressure in healthy subjects or patients with heart failure with preserved ejection fraction. Circ Cardiovasc Imaging. 2011;4:482–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan A. Popescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Popescu, B.A., Beladan, C.C., Mateescu, A.D. (2016). Assessment of Left Ventricular Systolic and Diastolic Function by Echocardiography. In: Dorobanţu, M., Ruschitzka, F., Metra, M. (eds) Current Approach to Heart Failure. Springer, Cham. https://doi.org/10.1007/978-3-319-45237-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45237-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45236-4

  • Online ISBN: 978-3-319-45237-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics