Skip to main content

Mechanical Circulatory Support

  • Chapter
  • First Online:
Current Approach to Heart Failure

Abstract

Due to the marked increase in the number of advanced (end stage) heart failure patients and the lack of suitable donors to allow heart transplantation, the majority of these patients do not survive. Recent improvements in technology have allowed development of durable ventricular assist devices that can support an increasing number of patients for longer duration of time while allowing restoration of fairly normal quality of life. Over the past decade better patient selection has resulted in improved outcomes, with 3- and 5-year survival approaching survival after heart transplantation in individuals older than 60 years of age. Better understanding of the relation between severity of patient condition at the time of implant and outcomes has resulted in an increasing number of patients in cardiogenic shock being supported with temporary mechanical circulatory support to allow for restoration of multi organ function before the implantation of durable ventricular assist devices. This chapter provides a state of the art review of the current issues in mechanical circulatory support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mozaffarian D, Benjamin EJ, Go AS, et al. ; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Executive summary: heart disease and stroke statistics – 2016 update: a report from the American Heart Association. Circulation. 2016;133:447–54.

    Google Scholar 

  2. Metra M, Ponikowski P, Dickstein K, et al. Advanced chronic heart failure: a position statement from the study group on advanced heart failure of the heart failure association of the European Society of Cardiology. Eur J Heart Fail. 2007;9:684–94.

    Article  PubMed  Google Scholar 

  3. Mehra MR, Canter CE, Hannan MM, et al. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: a 10-year update. J Heart Lung Transplant. 2016;35:1–23.

    Article  PubMed  Google Scholar 

  4. Lund LH, Edwards LB, Kucheryavaya AY, et al. The registry of the International Society for Heart and Lung Transplantation: thirty-second official adult heart transplant report – 2015; Focus theme: early graft failure. J Heart Lung Transplant. 2015;34:1244–54.

    Article  PubMed  Google Scholar 

  5. Eurotransplant statistics library. At http://statistics.eurotransplant.org/index.php?search_type=&search_organ=heart&search_region=All+ET&search_period=by+year&search_characteristic=&search_text=. Accessed 1 July 2016.

  6. Meyer DM, Rogers JG, Edwards LB, et al. The future direction of the adult heart allocation system in the United States. Am J Transplant. 2015;15:44–54.

    Article  CAS  PubMed  Google Scholar 

  7. Fang JC, Ewald GA, Allen LA, et al. Advanced (stage D) heart failure: a statement from the Heart Failure Society of America Guidelines committee. J Card Fail. 2015;21:519–34.

    Article  PubMed  Google Scholar 

  8. Stevenson LW, Pagani FD, Young JB, et al. INTERMACS profiles of advanced heart failure: the current picture. J Heart Lung Transplant. 2009;28:535–41.

    Article  PubMed  Google Scholar 

  9. Kirklin JK, Naftel DC, Pagani FD, et al. Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transplant. 2015;34:1495–504.

    Article  PubMed  Google Scholar 

  10. Weiss ES, Nwakanma LU, Patel ND, Yuh DD. Outcomes in patients older than 60 years of age undergoing orthotopic heart transplantation: an analysis of the UNOS database. J Heart Lung Transplant. 2008;27:184–91.

    Article  PubMed  Google Scholar 

  11. Estep JD, Starling RC, Horstmanshof DA, et al. Risk assessment and comparative effectiveness of left ventricular assist device and medical management in ambulatory heart failure patients: results from the ROADMAP study. J Am Coll Cardiol. 2015;66:1747–61.

    Article  PubMed  Google Scholar 

  12. Atkinson TM, Ohman EM, O'Neill WW, Rab T, Cigarroa JE. Interventional Scientific Council of the American College of Cardiology. A practical approach to mechanical circulatory support in patients undergoing percutaneous coronary intervention: an interventional perspective. JACC Cardiovasc Interv. 2016;9:871–83.

    Article  PubMed  Google Scholar 

  13. Rihal CS, Naidu SS, Givertz MM, et al. ; Society for Cardiovascular Angiography and Interventions (SCAI); Heart Failure Society of America (HFSA); Society for Thoracic Surgeons (STS); American Heart Association (AHA); American College of Cardiology (ACC). 2015 SCAI/ACC/HFSA/STS Clinical expert consensus statement on the use of percutaneous mechanical circulatory support devices in cardiovascular care (endorsed by the American Heart Association, the Cardiological Society of India, and Sociedad Latino Americana de Cardiologia Intervencion; Affirmation of Value by the Canadian Association of Interventional Cardiology – Association Canadienne de Cardiologie d'intervention). J Card Fail. 2015;21:499–518.

    Google Scholar 

  14. Thiele H, Zeymer U, Neumann FJ, et al. Intra-aortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med. 2012;367:1287–96.

    Article  CAS  PubMed  Google Scholar 

  15. Lauten A, Engström AE, Jung C, et al. Percutaneous left-ventricular support with the Impella 2.5-assist device in acute cardiogenic shock: results of the Impella EUROSHOCK registry. Circ Heart Fail. 2013;6:23–30.

    Article  PubMed  Google Scholar 

  16. Tempelhof MW, Klein L, Cotts WG, et al. Clinical experience and patient outcomes associated with the Tandem Heart percutaneous transseptal assist device among a heterogeneous patient population. ASAIO J. 2011;57:254–61.

    Article  PubMed  Google Scholar 

  17. Tang GH, Malekan R, Kai M, Lansman SL, Spielvogel D. Peripheral veno-arterial extracorporeal membrane oxygenation improves survival in myocardial infarction with cardiogenic shock. J Thorac Cardiovasc Surg. 2013;145:e32–3.

    Article  PubMed  Google Scholar 

  18. Heatley G, Sood P, Goldstein D, et al. ; MOMENTUM 3 Investigators. Clinical trial design and rationale of the multicenter study of MagLev technology in patients undergoing mechanical circulatory support therapy with HeartMate 3 (MOMENTUM 3) investigational device exemption clinical study protocol. J Heart Lung Transplant. 2016;35:528–36.

    Google Scholar 

  19. Mancini D, Colombo PC. Left ventricular assist devices: a rapidly evolving alternative to transplant. J Am Coll Cardiol. 2015;65:2542–55.

    Article  PubMed  Google Scholar 

  20. Rose EA, Gelijns AC, Moskowitz AJ, et al. ; for the Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure (REMATCH) Study Group. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345:1435–43.

    Google Scholar 

  21. Griffith BP, Kormos RL, Borovetz HS, et al. HeartMate II left ventricular assist system: from concept to first clinical use. Ann Thorac Surg. 2001;71:S116–20.

    Article  CAS  PubMed  Google Scholar 

  22. Frazier OH, Myers TJ, Jarvik RK, et al. Research and development of an implantable, axial-flow left ventricular assist device: the Jarvik 2000 Heart. Ann Thorac Surg. 2001;71:S125–32.

    Article  CAS  PubMed  Google Scholar 

  23. Noon GP, Loebe M. Current status of the MicroMed DeBakey Noon ventricular assist device. Tex Heart Inst J. 2010;37:652–3.

    PubMed  PubMed Central  Google Scholar 

  24. Hetzer R, Weng Y, Potapov EV, et al. First experiences with a novel magnetically suspended axial flow left ventricular assist device. Eur J Cardiothorac Surg. 2004;25:964–70.

    Article  PubMed  Google Scholar 

  25. Larose JA, Tamez D, Ashenuga M, Reyes C. Design concepts and principle of operation of the HeartWare ventricular assist system. ASAIO J. 2010;56:285–9.

    PubMed  Google Scholar 

  26. Farrar DJ, Bourque K, Dague CP, Cotter CJ, Poirier VL. Design features, developmental status, and experimental results with the Heartmate III centrifugal left ventricular assist system with a magnetically levitated rotor. ASAIO J. 2007;53:310–5.

    Article  PubMed  Google Scholar 

  27. McGee Jr E, Chorpenning K, Brown MC, Breznock E, Larose JA, Tamez D. In vivo evaluation of the HeartWare MVAD Pump. J Heart Lung Transplant. 2014;33:366–71.

    Article  PubMed  Google Scholar 

  28. Pagani FD. Continuous-flow rotary left ventricular assist devices with 3rd generation design. Semin Thorac Cardiovasc Surg. 2008;20:255–63.

    Article  PubMed  Google Scholar 

  29. Giridharan GA, Koenig SC, Soucy KG, et al. Left ventricular volume unloading with axial and centrifugal rotary blood pumps. ASAIO J. 2015;61:292–300.

    Article  PubMed  Google Scholar 

  30. Feldman D, Pamboukian SV, Teuteberg JJ, et al. The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32:157–87.

    Article  PubMed  Google Scholar 

  31. Flint KM, Matlock DD, Lindenfeld JA, Allen LA. Frailty and selection of patients for destination therapy left ventricular assist device. Circ Heart Fail. 2012;5:286–93.

    Article  PubMed  Google Scholar 

  32. Topilsky Y, Pereira NL, Shah DK, et al. Left ventricular assist device therapy in patients with restrictive and hypertrophic cardiomyopathy. Circ Heart Fail. 2011;4:266–75.

    Article  PubMed  Google Scholar 

  33. Joyce DL, Crow SS, John R, et al. Mechanical circulatory support in patients with heart failure secondary to transposition of the great arteries. J Heart Lung Transplant. 2010;29:1302–5.

    Article  PubMed  Google Scholar 

  34. Miller LW, Pagani FD, Russell SD, et al. ; for the HeartMate II Clinical Investigators. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357:885–96.

    Google Scholar 

  35. Slaughter MS, Rogers JG, Milano CA, et al. ; for the HeartMate II Investigators. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361:2241–51.

    Google Scholar 

  36. Pagani FD, Milano CA, Tatooles AJ, et al. HeartWare HVAD for the treatment of patients with advanced heart failure ineligible for cardiac transplantation: results of the ENDURANCE destination therapy trial. J Heart Lung Transplant. 2015;34:S9.

    Article  Google Scholar 

  37. Aaronson KD, Slaughter MS, Miller LW, et al. ; for the HeartWare Ventricular Assist Device (HVAD) Bridge to Transplant ADVANCE Trial Investigators. Use of an intrapericardial, continuous flow, centrifugal pump in patients awaiting heart transplantation. Circulation. 2012;125:3191–200.

    Google Scholar 

  38. Starling RC, Naka Y, Boyle AJ, et al. Results of the post U.S. Food and Drug Administration approval study with a continuous flow left ventricular assist device as a bridge to heart transplantation: a prospective study using the INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol. 2011;57:1890–8.

    Article  PubMed  Google Scholar 

  39. Jorde UP, Kushwaha SS, Tatooles AJ, et al. ; for the HeartMate II Clinical Investigators. Results of the destination therapy post U.S. Food and Drug Administration approval study with a continuous flow left ventricular assist device: a prospective study using the INTERMACS registry (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol. 2014; 63:1751–7.

    Google Scholar 

  40. Uriel N, Pak SW, Jorde UP, et al. Acquired von Willebrand syndrome after continuous-flow mechanical device support contributes to a high prevalence of bleeding during long-term support and at the time of transplantation. J Am Coll Cardiol. 2010;56:1207–13.

    Article  PubMed  Google Scholar 

  41. Starling RC, Moazami N, Silvestry SC, et al. Unexpected abrupt increase in left ventricular assist device thrombosis. N Engl J Med. 2014;370:33–40.

    Article  CAS  PubMed  Google Scholar 

  42. Kirklin JK, Naftel DC, Kormos RL, et al. Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) analysis of pump thrombosis in the HeartMate II left ventricular assist device. J Heart Lung Transplant. 2014;33:12–22.

    Article  PubMed  Google Scholar 

  43. Loghmanpour NA, Kormos RL, Kanwar MK, Teuteberg JJ, Murali S, Antaki JFA. Bayesian model to predict right ventricular failure following left ventricular assist device therapy. JACC Heart Fail. 2016;4(9):711–21.

    Article  PubMed  Google Scholar 

  44. Jorde UP, Uriel N, Nahumi N, et al. Prevalence, significance, and management of aortic insufficiency in continuous flow left ventricular assist device recipients. Circ Heart Fail. 2014;7:310–9.

    Article  PubMed  Google Scholar 

  45. Kiernan MS, Joseph SM, Katz JN, et al. ; Evolving Mechanical Support Research Group (EMERG) Investigators. Sharing the care of mechanical circulatory support: collaborative efforts of patients/caregivers, shared-care sites, and left ventricular assist device implanting centers. Circ Heart Fail. 2015;8:629–35.

    Google Scholar 

  46. Saeed O, Jermyn R, Kargoli F, et al. Blood pressure and adverse events during continuous flow left ventricular assist device support. Circ Heart Fail. 2015;8:551–6.

    Article  PubMed  Google Scholar 

  47. Psotka MA, Lowe D, Cox JC, et al. Device-related infection rates of continuous-flow ventricular assist devices using a thoracic driveline exit site. J Heart Lung Transplant. 2016;35:S11.

    Article  Google Scholar 

  48. Suarez J, Patel CB, Felker GM, Becker R, Hernandez AF, Rogers JG. Mechanisms of bleeding and approach to patients with axial-flow left ventricular assist devices. Circ Heart Fail. 2011;4:779–84.

    Article  PubMed  Google Scholar 

  49. Nassif ME, Patel JS, Shuster JE, et al. Clinical outcomes with use of erythropoiesis stimulating agents in patients with the HeartMate II left ventricular assist device. JACC Heart Fail. 2015;3:146–53.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gordon RJ, Weinberg AD, Pagani FD, et al. ; Ventricular Assist Device Infection Study Group. Prospective, multicenter study of ventricular assist device infections. Circulation. 2013;127:691–702.

    Google Scholar 

  51. Hannan MM, Husain S, Mattner F, et al. Working formulation for the standardization of definitions of infections in patients using ventricular assist devices. J Heart Lung Transplant. 2011;30:375–84.

    Article  PubMed  Google Scholar 

  52. Sacher F, Reichlin T, Zado ES, et al. Characteristics of ventricular tachycardia ablation in patients with continuous flow left ventricular assist devices. Circ Arrhythm Electrophysiol. 2015;8:592–7.

    Article  PubMed  Google Scholar 

  53. Brisco MA, Sundareswaran KS, Milano CA, et al. The incidence, risk, and consequences of atrial arrhythmias in patients with continuous-flow left ventricular assist devices. J Card Surg. 2014;29:572–80.

    Article  PubMed  Google Scholar 

  54. Maury P, Delmas C, Trouillet C, et al. First experience of percutaneous radiofrequency ablation for atrial flutter and atrial fibrillation in a patient with HeartMate II left ventricular assist device. J Interv Card Electrophysiol. 2010;29:63–7.

    Article  PubMed  Google Scholar 

  55. Goldstein DJ, John R, Salerno C, et al. Algorithm for the diagnosis and management of suspected pump thrombus. J Heart Lung Transplant. 2013;32:667–70.

    Article  PubMed  Google Scholar 

  56. Najjar SS, Slaughter MS, Pagani FD, et al. ; HVAD Bridge to Transplant ADVANCE Trial Investigators. An analysis of pump thrombus events in patients in the HeartWare ADVANCE bridge to transplant and continued access protocol trial. J Heart Lung Transplant. 2014;33:23–34.

    Google Scholar 

  57. Levin AP, Saeed O, Willey JZ, et al. Watchful waiting in continuous-flow left ventricular assist device patients with ongoing hemolysis is associated with an increased risk for cerebrovascular accident or death. Circ Heart Fail. 2016;9:2896–3003.

    Google Scholar 

  58. Morris RJ. Total artificial heart – concepts and clinical use. Semin Thorac Cardiovasc Surg. 2008;20:247–54.

    Article  PubMed  Google Scholar 

  59. Copeland JG, Smith RG, Arabia FA, et al. Cardiac replacement with a total artificial heart as a bridge to transplantation. N Engl J Med. 2004;351:859–67.

    Article  CAS  PubMed  Google Scholar 

  60. Carpantier A, Latremouille C, Cholley B, et al. First clinical use of o bioprosthetic total artificial heart: report of two cases. Lancet. 2015;386:1556–63.

    Article  Google Scholar 

  61. Asgari SS, Bonde P. Implantable physiologic controller for left ventricular assist devices with telemetry capability. J Thorac Cardiovasc Surg. 2014;147:192–202.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liviu Klein MD, MS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Klein, L., Dorobanţu, L. (2016). Mechanical Circulatory Support. In: Dorobanţu, M., Ruschitzka, F., Metra, M. (eds) Current Approach to Heart Failure. Springer, Cham. https://doi.org/10.1007/978-3-319-45237-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45237-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45236-4

  • Online ISBN: 978-3-319-45237-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics