Skip to main content

Errors in the Short-Term Forest Resource Information Update

  • Conference paper
  • First Online:
The Rise of Big Spatial Data

Abstract

Currently the forest sector in Finland is looking towards the next generation’s forest resource information systems. Information used in forest planning is currently collected by using an area-based approach (ABA) where airborne laser scanning (ALS) data are used to generalize field-measured inventory attributes over an entire inventory area. Inventories are typically updated at 10-year interval. Thus, one of the key challenges is the age of the inventory information and the cost-benefit trade-off between using the old data and obtaining new data. Prediction of future forest resource information is possible through growth modelling. In this paper, the error sources related to ALS-based forest inventory and the growth models applied in forest planning to update the forest resource information were examined. The error sources included (i) forest inventory, (ii) generation of theoretical stem distribution, and (iii) growth modelling. Error sources (ii) and (iii) stem from the calculations used for forest planning, and were combined in the investigations. Our research area, Evo, is located in southern Finland. In all, 34 forest sample plots (300 m2) have been measured twice tree-by-tree. First measurements have been carried out in 2007 and the second measurements in 2014 which leads to 7 year updating period. Respectively, ALS-based forest inventory data were available for 2007. The results showed that prediction of theoretical stem distribution and forest growth modelling affected only slightly to the quality of the predicted stem volume in short-term information update when compared to forest inventory error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Axelsson P (2000) DEM generation from laser scanner data using adaptive TIN models. Int Arch Photogramm Remote Sens Amst 33(B4):110–117

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  • Crookston NL, Finley AO (2008) yaImpute: an R package for kNN imputation. J Stat Softw 23(10):1–16

    Article  Google Scholar 

  • Eid T (2000) Use of uncertain inventory data in forestry scenario models and consequential incorrect harvest decisions. Silva Fenn 34:89–100

    Article  Google Scholar 

  • Eid T, Gobakken T, Næsset E (2004) Comparing stand inventories for large areas based on photo-interpretation and laser scanning by means of cost-plus-loss analyses. Scand J For Res 19:512–523

    Article  Google Scholar 

  • Franco-Lopez H, Ek AR, Bauer ME (2001) Estimation and mapping of forest stand density, volume, and cover type using k-nearest neighbors method. Remote Sens Environ 77(3):251–274

    Article  Google Scholar 

  • Haara A (2005) The uncertainty of forest management planning data in Finnish non-industrial private forestry. Doctoral thesis, Dissertationes Forestales 8, 34 p

    Google Scholar 

  • Haara A, Korhonen K (2004) Kuvioittaisen arvioinnin luotettavuus. Metsätieteen aikakauskirja 4:489–508 (in Finnish)

    Google Scholar 

  • Haralick R, Shanmugan K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621

    Article  Google Scholar 

  • Haralick R (1979) Statistical and structural approaches to texture. Proc IEEE 67(5):786–804

    Article  Google Scholar 

  • Holopainen M, Talvitie T (2006) Effects of data acquisition accuracy on timing of stand harvests and expected net present value. Silva Fenn 40(3):531–543

    Article  Google Scholar 

  • Holopainen M, Haapanen R, Tuominen S, Viitala R (2008) Performance of airborne laser scanning- and aerial photograph-based statistical and textural features in forest variable estimation. In: Hill R, Rossette J, Suárez J. Silvilaser 2008 proceedings, pp 105–112

    Google Scholar 

  • Holopainen M, Vastaranta M, Mäkinen A, Rasinmäki J, Hyyppä J, Hyyppä H, Kaartinen H (2009) The use of tree level ALS data in forest management planning simulations. Photogramm J Finl 21(2):13–24

    Google Scholar 

  • Holopainen M, Mäkinen A, Rasinmäki J, Hyyppä J, Hyyppä H, Kaartinen H, Kangas A (2010a) Effect of tree-level airborne laser-scanning measurement accuracy on the timing and expected value of harvest decisions. Eur J For Res 129(5):899–907

    Article  Google Scholar 

  • Holopainen M, Mäkinen A, Rasinmäki J, Hyytiäinen K, Bayazidi S, Vastaranta M, Pietilä I (2010b) Uncertainty in forest net present value estimations. Forests 1(3):177–193

    Article  Google Scholar 

  • Holopainen M, Mäkinen A, Rasinmäki J, Hyytiäinen K, Bayazidi S, Pietilä I (2010c) Comparison of various sources of uncertainty in stand-level net present value estimates. For Policy Econ 12(5):377–386

    Article  Google Scholar 

  • Hudak AT, Crookston NL, Evans JS, Hall DE, Falkowski MJ (2008) Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. Remote Sens Environ 112:2232–2245

    Article  Google Scholar 

  • Hynynen J, Ojansuu R, Hökkä H, Siipilehto J, Salminen H, Haapala P (2002) Models for predicting stand development in MELA system. Finn For Res Inst Res Pap 835

    Google Scholar 

  • Hyyppä J, Hyyppä H, Yu X, Kaartinen H, Kukko A, Holopainen M (2009) Forest inventory using small-footprint airborne LiDAR. In: Shan J, Toth CK (eds) Topographic laser ranging and scanning: principles and processing. CRC Press/Taylor & Francis Group, Boca Raton, pp 335–370

    Google Scholar 

  • Kangas A, Maltamo M (2000) Performance of percentile based diameter distribution prediction and Weibull method in independent data sets. Silva Fenn 34:381–398

    Google Scholar 

  • Kankare V, Vastaranta M, Holopainen M, Räty M, Yu X, Hyyppä J, Hyyppä H, Alho P, Viitala R (2013) Retrieval of forest aboveground biomass and volume with airborne scanning LiDAR. Remote Sens 5(5):2257–2274

    Article  Google Scholar 

  • Kankare V, Vauhkonen J, Holopainen M, Vastaranta M, Hyyppä J, Hyyppä H, Alho P (2015) Sparse density, leaf-off airborne laser scanning data in aboveground biomass component prediction. Forests 6:1839–1857

    Article  Google Scholar 

  • Kilkki P, Maltamo M, Mykkänen R, Päivinen R (1989) Use of the Weibull function in estimating the basal-area diameter distribution. Silva Fenn 23:311–318

    Article  Google Scholar 

  • Laasasenaho J (1982) Taper curve and volume functions for pine, spruce and birch. Communicationes. Institute Forestalis Fenniae 108:74 p

    Google Scholar 

  • Maltamo M, Kangas A (1998) Methods based on k-nearest neighbour regression in the prediction of basal area diameter distribution. Can J For Res 28:1107–1115

    Article  Google Scholar 

  • Næsset E, Gobakken T, Holmgren J, Hyyppä H, Hyyppä J, Maltamo M, Nilsson M, Olsson H, Persson Å, Söderman U (2004) Laser scanning of forest resources: the Nordic experience. Scand J For Res 18(19):482–499

    Article  Google Scholar 

  • Ojansuu R, Halinen M, Härkönen K (2002) Metsätalouden suunnittelujärjestelmän virhelähteet männyn esiharvennuskypsyyden määrittämisessä. Metsätieteen aikakauskirja 3(2002):441–457 (in Finnish)

    Google Scholar 

  • Rasinmäki J, Kalliovirta J, Mäkinen A (2009) SIMO: an adaptable simulation framework for multiscale forest resource data. Comput Electron Agric 66:76–84

    Article  Google Scholar 

  • Siipilehto J (1999) Improving the accuracy of predicted basal-area diameter distribution in advanced stands by determining stem number. Silva Fenn 34:331–349

    Google Scholar 

  • Salminen H, Lehtonen M, Hynynen J (2005) Reusing legacy FORTRAN in the MOTTI growth and yield simulator. Comput Electron Agric 49:103–113

    Article  Google Scholar 

  • Vastaranta M, Ojansuu R, Holopainen M (2010) Puustotunnusten laskennallisen ajantasaistuksen luotettavuus–tapaustutkimus Pohjois-Savossa. Metsätieteen aikakauskirja 4:367–381 (in Finnish)

    Google Scholar 

  • Vastaranta M, Holopainen M, Yu X, Haapanen R, Melkas T, Hyyppä J, Hyyppä H (2011) Individual tree detection and area-based approach in retrieval of forest inventory characteristics from low-pulse airborne laser scanning data. Photogramm J Finl 22(2):1–13

    Google Scholar 

  • Vastaranta M, Kankare V, Holopainen M, Yu X, Hyyppä J, Hyyppä H (2012) Combination of individual tree detection and area-based approach in imputation of forest variables using airborne laser data. ISPRS J Photogramm Remote Sens 67:73–79

    Article  Google Scholar 

  • Vastaranta M, Wulder MA, White JC, Pekkarinen A, Tuominen S, Ginzler C, Kankare V, Holopainen M, Hyyppä J, Hyyppä H (2013) Airborne laser scanning and digital stereo imagery measures of forest structure: comparative results and implications to forest mapping and inventory update. Can J Remote Sens 39(5):382–395

    Google Scholar 

  • White JC, Wulder MA, Varhola A, Vastaranta M, Coops NC, Cook BD, Pitt D, Woods M (2013) A best practices guide for generating forest inventory attributes from airborne laser scanning data using the area-based approach. Information report FI-X-10. Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre, Pacific Forestry Centre, Victoria, BC, 50 p

    Google Scholar 

  • Yu X, Hyyppä J, Holopainen M, Vastaranta M (2010) Comparison of area-based and individual tree-based methods for predicting plot-level forest attributes. Remote Sens 2:1481–1495

    Article  Google Scholar 

Download references

Acknowledgments

Our study was made possible by financial aid from the Finnish Academy project Centre of Excellence in Laser Scanning Research (CoE-LaSR, decision number 272195). We also wish to thank M.Sc. Risto Viitala at the HAMK University of Applied Sciences for organizing part of the field data collections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ville Luoma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Luoma, V. et al. (2017). Errors in the Short-Term Forest Resource Information Update. In: Ivan, I., Singleton, A., Horák, J., Inspektor, T. (eds) The Rise of Big Spatial Data. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-45123-7_12

Download citation

Publish with us

Policies and ethics