Skip to main content

Mechanisms of Memory Consolidation and Transformation

  • Chapter
  • First Online:
Cognitive Neuroscience of Memory Consolidation

Abstract

Memory consolidation is a dynamic process occurring over the lifetime of a memory, yet the underlying mechanisms are not well understood. The hippocampus is considered to be a critical structure for the acquisition, initial storage, and retrieval of a memory, but there is considerable debate over the continuing role of the hippocampus in representing a memory as it ages. Studies in rodents and humans both point towards a reorganization of hippocampus-dependent memory traces in the cortex over time, but when and how long it takes these large-scale network changes to occur is uncertain. In this chapter, we address how a memory that is initially dependent on the hippocampus becomes represented in the cortex, independently of the hippocampus. We also discuss how the quality of the memory changes (transforms) as the trace reorganizes over time, with a focus on hippocampal-cortical interactions as described by Trace Transformation Theory (TTT), and consider the degree to which evidence related to the mechanistic basis of memory consolidation in rodents applies to complex human memory. We conclude that theories like TTT provide a new approach to thinking about consolidation as an ongoing and interactive process involving the hippocampus, mPFC, and other brain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For this review, we will focus primarily on the type of memory that depends on the hippocampus for initial acquisition, including episodic memory in humans and episodic-like contextual and spatial memory in rodents.

Abbreviations

aCC :

Anterior cingulate cortex

CREB :

Cyclic-AMP response element binding protein

IEG :

Immediate early gene

L-LTP :

Late phase long-term potentiation

mPFC :

Medial prefrontal cortex

MTL :

Medial temporal lobe

MTT :

Multiple Trace Theory

PFC :

Prefrontal cortex

PRP :

Plasticity-related protein

SCT :

Standard Consolidation Theory

TGRA :

Temporally-graded retrograde amnesia

TTT :

Trace Transformation Theory

fMRI :

Functional magnetic resonance imaging

References

  • Addis DR, Moscovitch M, Crawley AP, McAndrews MP (2004) Recollective qualities modulate hippocampal activation during autobiographical memory retrieval. Hippocampus 14:752–762

    Article  PubMed  Google Scholar 

  • Alberini CM (2009) Transcription factors in long-term memory and synaptic plasticity. Physiol Rev 89:121–145

    Article  PubMed  Google Scholar 

  • Alvarez P, Squire LR (1994) Memory consolidation and the medial temporal lobe: a simple network model. Proc Natl Acad Sci 91:7041–7045

    Article  PubMed  PubMed Central  Google Scholar 

  • Atherton LA, Dupret D, Mellor JR (2015) Memory trace replay: the shaping of memory consolidation by neuromodulation. Trends Neurosci 38:560–570

    Article  PubMed  PubMed Central  Google Scholar 

  • Bahrick HP (1984) Semantic memory content in permastore: fifty years of memory for Spanish learned in school. J Exp Psychol Gen 113:1–29

    Article  PubMed  Google Scholar 

  • Bakker A, Kirwan CB, Miller M, Stark CE (2008) Pattern separation in the human hippocampal CA3 and dentate gyrus. Science 319(5870):1640–1642

    Article  PubMed  PubMed Central  Google Scholar 

  • Barco A, Marie H (2011) Genetic approaches to investigate the role of CREB in neuronal plasticity and memory. Mol Neurobiol 44:330–349

    Article  PubMed  Google Scholar 

  • Barco A, Alarcon JM, Kandel ER (2002) Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 108:689–703

    Article  PubMed  Google Scholar 

  • Bartlett FC (1932) Remembering: an experiment in experimental and social psychology. Cambridge, University Press, London

    Google Scholar 

  • Beatty WW, Salmon DP, Bernstein N, Butters N (1987) Remote memory in a patient with amnesia due to hypoxia. Psychol Med 17:657–665

    Article  PubMed  Google Scholar 

  • Ben-Yakov A, Dudai Y (2011) Constructing realistic engrams: poststimulus activity of hippocampus and dorsal striatum predicts subsequent episodic memory. J Neurosci 31:9032–9042

    Article  PubMed  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  PubMed  Google Scholar 

  • Bonnici HM, Chadwick MJ, Lutti A, Hassabis D, Weiskopf N, Maguire EA (2012) Detecting representations of recent and remote autobiographical memories in vmPFC and hippocampus. J Neurosci 32:16982–16991

    Article  PubMed  PubMed Central  Google Scholar 

  • Bontempi B, Laurent-Demir C, Destrade C, Jaffard R (1999) Time-dependent reorganization of brain circuitry underlying long-term memory storage. Nature 400:671–675

    Article  PubMed  Google Scholar 

  • Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva AJ (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79:59–68

    Article  PubMed  Google Scholar 

  • Burnham WH (1903) Retroactive amnesia: illustrative cases and a tentative explanation. Am J Psychol 118–132

    Google Scholar 

  • Cai DJ, Aharoni D, Shuman T, Shobe J, Biane J, Song W, Wei B, Veshkini M, La-Vu M, Lou J et al (2016) A shared neural ensemble links distinct contextual memories encoded close in time. Nature Adv Online Publ. doi:10.1038/nature17955

  • Cairney SA, Durrant SJ, Musgrove H, Lewis PA (2011) Sleep and environmental context: interactive effects for memory. Exp Brain Res 214(1):83–92

    Article  PubMed  Google Scholar 

  • Cajal SRY (1894) The croonian lecture: La fine structure des centres nerveux. Proc R Soc Lond 88:444–468

    Article  Google Scholar 

  • Chan JC, LaPaglia JA (2013) Impairing existing declarative memory in humans by disrupting reconsolidation. Proc Natl Acad Sci 110:9309–9313

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan JC, Thomas AK, Bulevich JB (2009) Recalling a witnessed event increases eyewitness suggestibility the reversed testing effect. Psychol Sci 20:66–73

    Article  PubMed  Google Scholar 

  • Ciaramelli E (2008) The role of ventromedial prefrontal cortex in navigation: a case of impaired way finding and rehabilitation. Neuropsychologia 46(7):2099–2105

    Article  PubMed  Google Scholar 

  • Ciaramelli E, Ghetti S (2007) What are confabulators’ memories made of? A study of subjective and objective measures of recollection in confabulation. Neuropsychologia 45:1489–1500

    Article  PubMed  Google Scholar 

  • Cole CJ, Mercaldo V, Restivo L, Yiu AP, Sekeres MJ, Han J-H, Vetere G, Pekar T, Ross PJ, Neve RL (2012) MEF2 negatively regulates learning-induced structural plasticity and memory formation. Nat Neurosci 15:1255–1264

    Article  PubMed  Google Scholar 

  • Corkin S (2002) What’s new with the amnesic patient H.M.? Nat Rev Neurosci 3:153–160

    Article  PubMed  Google Scholar 

  • Czajkowski R, Jayaprakash B, Wiltgen B, Rogerson T, Guzman-Karlsson MC, Barth AL, Trachtenberg JT, Silva AJ (2014) Encoding and storage of spatial information in the retrosplenial cortex. Proc Natl Acad Sci 111:8661–8666

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalla Barba G, La Corte V (2015) A neurophenomenological model for the role of the hippocampus in temporal consciousness. Evidence from confabulation. Frontiers Behav Neurosci 9

    Google Scholar 

  • Davachi L, DuBrow S (2015) How the hippocampus preserves order: the role of prediction and context. Trends Cogn Sci 19(2):92–99

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis HP, Squire LR (1984) Protein synthesis and memory: a review. Psychol Bull 96:518–559

    Article  PubMed  Google Scholar 

  • Debiec J, LeDoux JE, Nader K (2002) Cellular and systems reconsolidation in the hippocampus. Neuron 36:527–538

    Article  PubMed  Google Scholar 

  • Denny CA, Kheirbek MA, Alba EL, Tanaka KF, Brachman RA, Laughman KB, Tomm NK, Turi GF, Losonczy A, Hen R (2014) Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis. Neuron 83:189–201

    Article  PubMed  PubMed Central  Google Scholar 

  • Diekelmann S, Büchel C, Born J, Rasch B (2011) Labile or stable: opposing consequences for memory when reactivated during waking and sleep. Nat Neurosci 14:381–386

    Article  PubMed  Google Scholar 

  • Dudai Y (2012) The restless engram: consolidations never end. Annu Rev Neurosci 35:227–247

    Article  PubMed  Google Scholar 

  • Dudai Y, Karni A, Born J (2015) The consolidation and transformation of memory. Neuron 88:20–32

    Article  PubMed  Google Scholar 

  • Dunsmoor JE, Murty VP, Davachi L, Phelps EA (2015) Emotional learning selectively and retroactively strengthens memories for related events. Nature 520:345–348

    Article  PubMed  PubMed Central  Google Scholar 

  • Einarsson EO, Nader K (2012) Involvement of the anterior cingulate cortex in formation, consolidation, and reconsolidation of recent and remote contextual fear memory. Learn Mem 19:449–452

    Article  PubMed  Google Scholar 

  • Einarsson EO, Pors J, Nader K (2014) Systems reconsolidation reveals a selective role for the anterior cingulate cortex in generalized contextual fear memory expression. Neuropsychopharmacology 40:480–487

    Article  PubMed  PubMed Central  Google Scholar 

  • Finnie PS, Nader K (2012) The role of metaplasticity mechanisms in regulating memory destabilization and reconsolidation. Neurosci Biobehav Rev 36:1667–1707

    Article  PubMed  Google Scholar 

  • Foster DJ, Wilson MA (2006) Reverse replay of Behavioral sequences in hippocampal place cells during the awake state. Nature 440:680–683

    Article  PubMed  Google Scholar 

  • Frankland PW, Bontempi B (2005) The organization of recent and remote memories. Nat Rev Neurosci 6:119–130

    Article  PubMed  Google Scholar 

  • Frankland PW, Bontempi B, Talton LE, Kaczmarek L, Silva AJ (2004) The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 304:881–883

    Article  PubMed  Google Scholar 

  • Frey U, Morris RG (1997) Synaptic tagging and long-term potentiation. Nature 385:533–536

    Article  PubMed  Google Scholar 

  • Frey U, Morris R (1998) Weak before strong: dissociating synaptic tagging and plasticity-factor accounts of late-LTP. Neuropharmacology 37:545–552

    Article  PubMed  Google Scholar 

  • Fu M, Yu X, Lu J, Zuo Y (2012) Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo. Nature 483:92–95

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujii T, Moscovitch M, Nadel L (2000) Memory consolidation, retrograde amnesia, and the temporal lobe. Handbook of neuropsychology, 2nd ed., vol 2. Memory and its disorders. Elsevier Science Publishers, pp 223–250

    Google Scholar 

  • Furman O, Mendelsohn A, Dudai Y (2012) The episodic engram transformed: Time reduces retrieval-related brain activity but correlates it with memory accuracy. Learn Mem 19:575–587

    Article  PubMed  Google Scholar 

  • Gallistel CR, Matzel LD (2013) The neuroscience of learning: beyond the Hebbian synapse. Annu Rev Psychol 64:169–200

    Article  PubMed  Google Scholar 

  • Gelbard-Sagiv H, Mukamel R, Harel M, Malach R, Fried I (2008) Internally generated reactivation of single neurons in human hippocampus during free recall. Science 322(5898):96–101

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh VE, Gilboa A (2014) What is a memory schema? A historical perspective on current neuroscience literature. Neuropsychologia 53:104–114

    Article  PubMed  Google Scholar 

  • Ghosh VE, Moscovitch M, Colella BM, Gilboa A (2014) Schema representation in patients with ventromedial PFC lesions. J Neurosci 34:12057–12070

    Article  PubMed  Google Scholar 

  • Gilboa A, Moscovitch M, Baddeley A, Kopelman M, Wilson B (2002) The cognitive neuroscience of confabulation: a review and a model. Handb Mem Disord 2:315–342

    Google Scholar 

  • Gilboa A, Winocur G, Grady CL, Hevenor SJ, Moscovitch M (2004) Remembering our past: functional neuroanatomy of recollection of recent and very remote personal events. Cereb Cortex 14:1214–1225

    Article  PubMed  Google Scholar 

  • Gilboa A, Alain C, Stuss DT, Melo B, Miller S, Moscovitch M (2006) Mechanisms of spontaneous confabulations: a strategic retrieval account. Brain 129:1399–1414

    Article  PubMed  Google Scholar 

  • Goshen I, Brodsky M, Prakash R, Wallace J, Gradinaru V, Ramakrishnan C, Deisseroth K (2011) Dynamics of retrieval strategies for remote memories. Cell 147:678–689

    Article  PubMed  Google Scholar 

  • Govindarajan A, Kelleher RJ, Tonegawa S (2006) A clustered plasticity model of long-term memory engrams. Nat Rev Neurosci 7:575–583

    Article  PubMed  Google Scholar 

  • Greenberg ME, Ziff EB (1983) Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature 311(5985):433–438

    Article  Google Scholar 

  • Han JH, Kushner SA, Yiu AP, Cole CJ, Matynia A, Brown RA, Neve RL, Guzowski JF, Silva AJ, Josselyn SA (2007) Neuronal competition and selection during memory formation. Science 316:457–460

    Article  PubMed  Google Scholar 

  • Hardt O, Nader K, Nadel L (2013) Decay happens: the role of active forgetting in memory. Trends Cogn Sci 17(3):111–120

    Article  PubMed  Google Scholar 

  • Hebb DO (1949) The organization of behavior: a neuropsychological approach. Wiley

    Google Scholar 

  • Hebscher M, Barkan-Abramski M, Goldsmith M, Aharon-Peretz J, Gilboa A (2015) Memory, decision-making, and the Ventromedial Prefrontal Cortex (vmPFC): the roles of subcallosal and posterior orbitofrontal cortices in monitoring and control processes. Cerebral Cortex, bhv220

    Google Scholar 

  • Hirshhorn M, Grady C, Rosenbaum RS, Winocur G, Moscovitch M (2012) Brain regions involved in the retrieval of spatial and episodic details associated with a familiar environment: an fMRI study. Neuropsychologia 50:3094–3106

    Article  PubMed  Google Scholar 

  • Howard MW, Kahana MJ (1999) Contextual variability and serial position effects in free recall. J Exp Psychol Learn Mem Cogn 25(4):923

    Article  PubMed  Google Scholar 

  • Hupbach A, Hardt O, Gomez R, Nadel L (2008) The dynamics of memory: context-dependent updating. Learn Mem 15:574–579

    Article  PubMed  Google Scholar 

  • St. Jacques PL, Schacter DL (2013) Modifying memory selectively enhancing and updating personal memories for a museum tour by reactivating them. Psychol sci 24:537–543

    Google Scholar 

  • St. Jacques PL, Olm C, Schacter DL (2013) Neural mechanisms of reactivation-induced updating that enhance and distort memory. Proc Nat Acad Sci 110:19671–19678

    Google Scholar 

  • Josselyn SA, Shi C, Carlezon WA Jr, Neve RL, Nestler EJ, Davis M (2001) Long-term memory is facilitated by cAMP response element-binding protein overexpression in the amygdala. J Neurosci 21:2404–2412

    PubMed  Google Scholar 

  • Josselyn SA, Köhler S, Frankland PW (2015) Finding the engram. Nat Rev Neurosci 16:521–534

    Article  PubMed  Google Scholar 

  • Kandel ER, Dudai Y, Mayford MR (2014) The molecular and systems biology of memory. Cell 157:163–186

    Article  PubMed  Google Scholar 

  • Kim JJ, Fanselow MS (1992) Modality-specific retrograde amnesia of fear. Science 256:675–677

    Article  PubMed  Google Scholar 

  • Kroes MC, Fernández G (2012) Dynamic neural systems enable adaptive, flexible memories. Neurosci Biobehav Rev 36:1646–1666

    Article  PubMed  Google Scholar 

  • Landauer TK (1975) Memory without organization: properties of a model with random storage and undirected retrieval. Cogn Psychol 7(4):495–531

    Article  Google Scholar 

  • Lashley KS (1950) In search of the engram. In: Society for experimental biology, symposium IV: physiological mechanisms in animal behavior, pp 454–482 (Academic Press)

    Google Scholar 

  • Lee JQ, Zelinski EL, McDonald RJ, Sutherland RJ (2016) Heterarchic reinstatement of long-term memory: a concept on hippocampal amnesia in rodent memory research. Neurosci Biobehav Rev 71:154–166

    Google Scholar 

  • Leutgeb JK, Leutgeb S, Moser M-B, Moser EI (2007) Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315(5814):961–966

    Article  PubMed  Google Scholar 

  • Lewis PA, Durrant SJ (2011) Overlapping memory replay during sleep builds cognitive schemata. Trends Cogn Sci 15(8):343–351

    Article  PubMed  Google Scholar 

  • Ling DS, Benardo LS, Serrano PA, Blace N, Kelly MT, Crary JF, Sacktor TC (2002) Protein kinase Mζ is necessary and sufficient for LTP maintenance. Nat Neurosci 5:295–296

    Article  PubMed  Google Scholar 

  • Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K, Tonegawa S (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484:381–385

    Article  PubMed  PubMed Central  Google Scholar 

  • Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35:605–623

    Article  PubMed  Google Scholar 

  • Lorenté de No R (1934) Studies on the structure of the cerebral cortex II: continuation of the study if the ammonic system. J Psychol Neurol 46:113–177

    Google Scholar 

  • Maguire EA (2014) Memory consolidation in humans: new evidence and opportunities. Exp Physiol 99:471–486

    Article  PubMed  PubMed Central  Google Scholar 

  • Maguire EA, Nannery R, Spiers HJ (2006) Navigation around London by a taxi driver with bilateral hippocampal lesions. Brain 129:2894–2907

    Article  PubMed  Google Scholar 

  • Manning JR, Polyn SM, Baltuch GH, Litt B, Kahana MJ (2011) Oscillatory patterns in temporal lobe reveal context reinstatement during memory search. Proc Natl Acad Sci 108(31):12893–12897

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin KC, Kandel ER (1996) Cell adhesion molecules, CREB, and the formation of new synaptic connections. Neuron 17:567–570

    Article  PubMed  Google Scholar 

  • Maviel T, Durkin TP, Menzaghi F, Bontempi B (2004) Sites of neocortical reorganization critical for remote spatial memory. Science 305:96–99

    Article  PubMed  Google Scholar 

  • McClelland JL, McNaughton BL, O’Reilly RC (1995) Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 102:419

    Article  PubMed  Google Scholar 

  • Mendelsohn A, Furman O, Dudai Y (2010) Signatures of memory: brain coactivations during retrieval distinguish correct from incorrect recollection. Front Behav Neurosci 4:18

    PubMed  PubMed Central  Google Scholar 

  • Milner B, Corkin S, Teuber H-L (1968) Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of HM. Neuropsychologia 6:215–234

    Article  Google Scholar 

  • Misanin JR, Miller RR, Lewis DJ (1968) Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science 160:554–555

    Article  PubMed  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  PubMed  Google Scholar 

  • Morris R, Garrud P, Rawlins J, O’Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683

    Article  PubMed  Google Scholar 

  • Moscovitch M (1989) Confabulation and the frontal systems: strategic versus associative retrieval in neuropsychological theories of memory. In: Roediger HL, Craik FIM (eds) Varieties of memory and consciousness: essays in honour of Endel Tulving. Lawrence Erlbaum Associates, Hillsdale, pp 133–160

    Google Scholar 

  • Moscovitch M (1992) A neuropsychological model of memory and consciousness. Neuropsychol Mem 2:5–22

    Google Scholar 

  • Moscovitch M (1995a) Confabulation. In: Schacter DL (Ed) Memory distortions: how minds, brains, and societies reconstruct the past. Harvard University Press, Cambridge, MA, US, pp 226–251

    Google Scholar 

  • Moscovitch M (1995b) Recovered consciousness: a hypothesis concerning modularity and episodic memory. J Clin Exp Neuropsychol 17:276–290

    Article  PubMed  Google Scholar 

  • Moscovitch M, Winocur G (2002) The frontal cortex and working with memory. Principles of frontal lobe function, pp 188–209

    Google Scholar 

  • Moscovitch M, Rosenbaum RS, Gilboa A, Addis DR, Westmacott R, Grady C, McAndrews MP, Levine B, Black S, Winocur G, Nadel L (2005) Functional neuroanatomy of remote episodic, semantic and spatial memory: a unified account based on multiple trace theory. J Anat 207:35–66

    Article  PubMed  PubMed Central  Google Scholar 

  • Moscovitch M, Nadel L, Winocur G, Gilboa A, Rosenbaum RS (2006) The cognitive neuroscience of remote episodic, semantic and spatial memory. Curr Opin Neurobiol 16:179–190

    Article  PubMed  Google Scholar 

  • Moscovitch M (2007) Why the engram is elusive: memory does not exist until it is recovered. In: Tulving E, Roediger HL III, Dudai Y, Fitzpatrick SM (eds) Science of memory: concepts. Oxfod, UK: Oxford University Press, pp 17–22

    Google Scholar 

  • Moscovitch M, Cabeza R, Winocur G, Nadel L (2016) Episodic memory and beyond: the hippocampus and neocortex in transformation. Annu Rev Psychol 67:105–134

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller GE, Pilzecker A (1900) Experimentelle beiträge zur lehre vom gedächtniss (Vol 1). JA Barth

    Google Scholar 

  • Nadel L, Moscovitch M (1997) Memory consolidation, retrograde amnesia and the hippocampal complex. Curr Opin Neurobiol 7:217–227

    Article  PubMed  Google Scholar 

  • Nader K, Hardt O (2009) A single standard for memory: the case for reconsolidation. Nat Rev Neurosci 10:224–234

    Article  PubMed  Google Scholar 

  • Nader K, Schafe GE, Le Doux JE (2000) Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406:722–726

    Article  PubMed  Google Scholar 

  • Nieuwenhuis IL, Takashima A (2011) The role of the ventromedial prefrontal cortex in memory consolidation. Behav Brain Res 218:325–334

    Article  PubMed  Google Scholar 

  • O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map, vol 3. Clarendon Press, Oxford

    Google Scholar 

  • Paz R, Gelbard-Sagiv H, Mukamel R, Harel M, Malach R, Fried I (2010) A neural substrate in the human hippocampus for linking successive events. Proc Natl Acad Sci 107(13):6046–6051

    Article  PubMed  PubMed Central  Google Scholar 

  • Penfield W, Milner B (1958) Memory deficit produced by bilateral lesions in the hippocampal zone. AMA Arch Neurol Psychiatry 79:475–497

    Article  PubMed  Google Scholar 

  • Ramirez S, Liu X, Lin P-A, Suh J, Pignatelli M, Redondo RL, Ryan TJ, Tonegawa S (2013) Creating a false memory in the hippocampus. Science 341:387–391

    Article  PubMed  Google Scholar 

  • Restivo L, Tafi E, Ammassari-Teule M, Marie H (2009a) Viral-mediated expression of a constitutively active form of CREB in hippocampal neurons increases memory. Hippocampus 19:228–234

    Article  PubMed  Google Scholar 

  • Restivo L, Vetere G, Bontempi B, Ammassari-Teule M (2009b) The formation of recent and remote memory is associated with time-dependent formation of dendritic spines in the hippocampus and anterior cingulate cortex. J Neurosci 29:8206–8214

    Article  PubMed  Google Scholar 

  • Ribot TA (1882) Diseases of memory, an essay in the positive psychology, vol 43

    Google Scholar 

  • Richards BA, Xia F, Santoro A, Husse J, Woodin MA, Josselyn SA, Frankland PW (2014) Patterns across multiple memories are identified over time. Nat Neurosci 17:981–986

    Article  PubMed  Google Scholar 

  • Ritchey M, Montchal ME, Yonelinas AP, Ranganath C (2015) Delay-dependent contributions of medial temporal lobe regions to episodic memory retrieval. eLife 4, e05025

    Google Scholar 

  • Rogerson T, Cai DJ, Frank A, Sano Y, Shobe J, Lopez-Aranda MF, Silva AJ (2014) Synaptic tagging during memory allocation. Nat Rev Neurosci 15:157–169

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenbaum RS, Priselac S, Kohler S, Black SE, Gao F, Nadel L, Moscovitch M (2000) Remote spatial memory in an amnesic person with extensive bilateral hippocampal lesions. Nat Neurosci 3:1044–1048

    Article  PubMed  Google Scholar 

  • Rosenbaum RS, McKinnon MC, Levine B, Moscovitch M (2004) Visual imagery deficits, impaired strategic retrieval, or memory loss: disentangling the nature of an amnesic person’s autobiographical memory deficit. Neuropsychologia 42:1619–1635

    Article  PubMed  Google Scholar 

  • Rosenbaum RS, Kohler S, Schacter DL, Moscovitch M, Westmacott R, Black SE, Gao F, Tulving E (2005) The case of K.C.: contributions of a memory-impaired person to memory theory. Neuropsychologia 43:989–1021

    Article  PubMed  Google Scholar 

  • Rugg MD, Vilberg KL (2013) Brain networks underlying episodic memory retrieval. Curr Opin Neurobiol 23:255–260

    Article  PubMed  Google Scholar 

  • Sadeh T, Ozubko JD, Winocur G, Moscovitch M (2013) How we forget may depend on how we remember. Trends Cogn Sci 18(1):26–36

    Article  PubMed  Google Scholar 

  • Sadeh T, Moran R, Goshen-Gottstein Y (2015) When items ‘pop into mind’: Variability in temporal-context reinstatement in free-recall. Psychon Bull Rev 22(3):779–790

    Article  PubMed  Google Scholar 

  • Sadeh T, Ozubko JD, Winocur G, Moscovitch M (2016) Forgetting patterns differentiate between two forms of memory representation. Psychol Sci 0956797616638307

    Google Scholar 

  • Sanders HI, Warrington EK (1971) Memory for remote events in amnesic patients. Brain 94:661–668

    Article  PubMed  Google Scholar 

  • Sano Y, Shobe JL, Zhou M, Huang S, Shuman T, Cai DJ, Golshani P, Kamata M, Silva AJ (2014) CREB regulates memory allocation in the insular cortex. Curr Biol 24:2833–2837

    Article  PubMed  PubMed Central  Google Scholar 

  • Sara SJ (2000) Retrieval and reconsolidation: toward a neurobiology of remembering. Learn Mem 7:73–84

    Article  PubMed  Google Scholar 

  • Schacter DL, Eich JE, Tulving E (1978) Richard Semon’s theory of memory. J Verbal Learn Verbal Behav 17:721–743

    Article  Google Scholar 

  • Schiller D, Monfils M-H, Raio CM, Johnson DC, LeDoux JE, Phelps EA (2010) Preventing the return of fear in humans using reconsolidation update mechanisms. Nature 463:49–53

    Article  PubMed  Google Scholar 

  • Schnider A (2008) The confabulating mind: how the brain creates reality. Oxford University Press, New York

    Book  Google Scholar 

  • Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20:11–21

    Article  PubMed  PubMed Central  Google Scholar 

  • Sekeres MJ, Neve RL, Frankland PW, Josselyn SA (2010) Dorsal hippocampal CREB is both necessary and sufficient for spatial memory. Learn Mem 17:280–283

    Article  PubMed  Google Scholar 

  • Sekeres MJ, Mercaldo V, Richards B, Sargin D, Mahadevan V, Woodin MA, Frankland PW, Josselyn SA (2012a) Increasing CRTC1 function in the dentate gyrus during memory formation or reactivation increases memory strength without compromising memory quality. J Neurosci 32:17857–17868

    Article  PubMed  Google Scholar 

  • Sekeres MJ, Sargin D, Ross PJ, Josselyn SA (2012b) The role of CREB and CREB Co-activators in memory formation. Memory Mechanisms in Health and Disease: Mechanistic Basis of Memory pp 171–194 (World Scientific)

    Google Scholar 

  • Sekeres MJ, Anderson JAE, Winocur G, Moscovitch M, Grady C (2015) The neural correlates of episodic memory transformation in humans. Soc Neurosci 2016, Abstract 18.03

    Google Scholar 

  • Sekeres MJ, Bonasia K, St-Laurent M, Pishdadian S, Winocur G, Grady C, Moscovitch M (2016a) Recovering and preventing loss of detailed memory: differential rates of forgetting for detail types in episodic memory. Learn Memory 23:72–82

    Article  Google Scholar 

  • Sekeres MJ, Winocur G, Moscovitch M, Anderson JAE, Pishdadian S, Wojtowicz JM, St-Laurent M, McAndrews MP, Grady C (2016b) Changes in patterns of neural activity underlie a time-dependent transformation of memory across species (submitted)

    Google Scholar 

  • Semon R (1923) Mnemic psychology (1909). George Allen and Unwin, Ltd, London

    Google Scholar 

  • Sheldon S, Levine B (2013) Same as it ever was: vividness modulates the similarities and differences between the neural networks that support retrieving remote and recent autobiographical memories. Neuroimage 83:880–891

    Article  PubMed  Google Scholar 

  • Shema R, Haramati S, Ron S, Hazvi S, Chen A, Sacktor TC, Dudai Y (2011) Enhancement of consolidated long-term memory by overexpression of protein kinase Mzeta in the neocortex. Science 331:1207–1210

    Article  PubMed  Google Scholar 

  • Silva AJ, Zhou Y, Rogerson T, Shobe J, Balaji J (2009) Molecular and cellular approaches to memory allocation in neural circuits. Science 326:391–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Squire LR (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 99:195–231

    Article  PubMed  Google Scholar 

  • Squire LR (2004) Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem 82:171–177

    Article  PubMed  Google Scholar 

  • Squire LR, Bayley PJ (2007) The neuroscience of remote memory. Curr Opin Neurobiol 17:185–196

    Article  PubMed  PubMed Central  Google Scholar 

  • Squire LR, Wixted JT (2011) The cognitive neuroscience of human memory since HM. Annu Rev Neurosci 34:259

    Article  PubMed  PubMed Central  Google Scholar 

  • Steinvorth S, Levine B, Corkin S (2005) Medial temporal lobe structures are needed to re-experience remote autobiographical memories: evidence from H.M. and W.R. Neuropsychologia 43:479–496

    Article  PubMed  Google Scholar 

  • St-Laurent M, Moscovitch M, Levine B, McAndrews MP (2009) Determinants of autobiographical memory in patients with unilateral temporal lobe epilepsy or excisions. Neuropsychologia 47:2211–2221

    Article  PubMed  Google Scholar 

  • St-Laurent M, Moscovitch M, Jadd R, McAndrews MP (2014) The perceptual richness of complex memory episodes is compromised by medial temporal lobe damage. Hippocampus 24:560–576

    Article  PubMed  Google Scholar 

  • St-Laurent M, Moscovitch M, McAndrews MP (2016) The retrieval of perceptual memory details depends on right hippocampal integrity and activation. Cortex (under review)

    Google Scholar 

  • Takashima A, Nieuwenhuis IL, Jensen O, Talamini LM, Rijpkema M, Fernández G (2009) Shift from hippocampal to neocortical centered retrieval network with consolidation. J Neurosci 29:10087–10093

    Article  PubMed  Google Scholar 

  • Tayler KK, Tanaka KZ, Reijmers LG, Wiltgen BJ (2013) Reactivation of neural ensembles during the retrieval of recent and remote memory. Curr Biol 23:99–106

    Article  PubMed  Google Scholar 

  • Teixeira CM, Pomedli SR, Maei HR, Kee N, Frankland PW (2006) Involvement of the anterior cingulate cortex in the expression of remote spatial memory. J Neurosci 26:7555–7564

    Article  PubMed  Google Scholar 

  • Teng E, Squire LR (1999) Memory for places learned long ago is intact after hippocampal damage. Nature 400:675–677

    Article  PubMed  Google Scholar 

  • Thorndyke PW (1977) Cognitive structures in comprehension and memory of narrative discourse. Cogn Psychol 9:77–110

    Article  Google Scholar 

  • Tonegawa S, Pignatelli M, Roy DS, Ryan TJ (2015) Memory engram storage and retrieval. Curr Opin Neurobiol 35:101–109

    Article  PubMed  Google Scholar 

  • Tse D, Langston RF, Kakeyama M, Bethus I, Spooner PA, Wood ER, Witter MP, Morris RG (2007) Schemas and memory consolidation. Science 316:76–82

    Article  PubMed  Google Scholar 

  • Tse D, Takeuchi T, Kakeyama M, Kajii Y, Okuno H, Tohyama C, Bito H, Morris RG (2011) Schema-dependent gene activation and memory encoding in neocortex. Science 333:891–895

    Article  PubMed  Google Scholar 

  • Tulving E (1972) Episodic and semantic memory. Organization of memory. Academic, London 381(4)

    Google Scholar 

  • van Kesteren MT, Ruiter DJ, Fernández G, Henson RN (2012) How schema and novelty augment memory formation. Trends Neurosci 35(4):211–219

    Article  PubMed  Google Scholar 

  • van Kesteren MT, Beul SF, Takashima A, Henson RN, Ruiter DJ, Fernández G (2013) Differential roles for medial prefrontal and medial temporal cortices in schema-dependent encoding: from congruent to incongruent. Neuropsychologia 51(12):2352–2359

    Article  PubMed  Google Scholar 

  • Varela C, Weiss S, Meyer R, Halassa M, Biedenkapp J, Wilson MA, Goosens KA, Bendor D (2016) Tracking the time-dependent role of the hippocampus in memory recall using DREADDs. PLoS ONE 11:e0154374

    Article  PubMed  PubMed Central  Google Scholar 

  • Vetere G, Restivo L, Cole CJ, Ross PJ, Ammassari-Teule M, Josselyn SA, Frankland PW (2011) Spine growth in the anterior cingulate cortex is necessary for the consolidation of contextual fear memory. Proc Natl Acad Sci 108:8456–8460

    Article  PubMed  PubMed Central  Google Scholar 

  • Vetere G, Kenney JW, Tran L, Wheeler A, Josselyn S, Frankland PW (2015) In vivo and in silico interrogation of a fear memory network. Soc Neurosci 2016, Abstract 534.17

    Google Scholar 

  • Viskontas IV, Carr VA, Engel SA, Knowlton BJ (2009) The neural correlates of recollection: hippocampal activation declines as episodic memory fades. Hippocampus 19:265–272

    Article  PubMed  Google Scholar 

  • Vousden DA, Epp J, Okuno H, Nieman BJ, van Eede M, Dazai J, Ragan T, Bito H, Frankland PW, Lerch JP (2015) Whole-brain mapping of Behaviorally induced neural activation in mice. Brain Struct Funct 220:2043–2057

    Article  PubMed  Google Scholar 

  • Wang S-H, Morris RG (2010) Hippocampal-neocortical interactions in memory formation, consolidation, and reconsolidation. Annu Rev Psychol 61:49–79

    Article  PubMed  Google Scholar 

  • Wang S-H, Redondo RL, Morris RG (2010) Relevance of synaptic tagging and capture to the persistence of long-term potentiation and everyday spatial memory. Proc Natl Acad Sci 107:19537–19542

    Article  PubMed  PubMed Central  Google Scholar 

  • Wheeler AL, Teixeira CM, Wang AH, Xiong X, Kovacevic N, Lerch JP, McIntosh AR, Parkinson J, Frankland PW (2013) Identification of a functional connectome for long-term fear memory in mice. PLoS Comput Biol 9:e1002853

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiltgen BJ, Silva AJ (2007) Memory for context becomes less specific with time. Learn Mem 14:313–317

    Article  PubMed  Google Scholar 

  • Winocur G (1990) Anterograde and retrograde amnesia in rats with dorsal hippocampal or dorsomedial thalamic lesions. Behav Brain Res 38:145–154

    Article  PubMed  Google Scholar 

  • Winocur G, Mills JA (1970) Transfer between related and unrelated problems following hippocampal lesions in rats. J Comp Physiol Psychol 73(1):162

    Article  Google Scholar 

  • Winocur G, Moscovitch M (2011) Memory transformation and systems consolidation. J Int Neuropsychol Soc 17:766–780

    Article  PubMed  Google Scholar 

  • Winocur G, Weiskrantz L (1976) An investigation of paired-associate learning in amnesic patients. Neuropsychologia 14(1):97–110

    Article  PubMed  Google Scholar 

  • Winocur G, Moscovitch M, Caruana DA, Binns MA (2005a) Retrograde amnesia in rats with lesions to the hippocampus on a test of spatial memory. Neuropsychologia, 43(11):1580–1590

    Google Scholar 

  • Winocur G, Moscovitch M, Fogel S, Rosenbaum RS, Sekeres M (2005b) Preserved spatial memory after hippocampal lesions: effects of extensive experience in a complex environment. Nat Neurosci 8:273–275

    Article  PubMed  Google Scholar 

  • Winocur G, Moscovitch M, Sekeres M (2007) Memory consolidation or transformation: context manipulation and hippocampal representations of memory. Nat Neurosci 10:555–557

    Article  PubMed  Google Scholar 

  • Winocur G, Frankland PW, Sekeres M, Fogel S, Moscovitch M (2009) Changes in context-specificity during memory reconsolidation: selective effects of hippocampal lesions. Learn Mem 16:722–729

    Article  PubMed  Google Scholar 

  • Winocur G, Moscovitch M, Rosenbaum RS, Sekeres M (2010) An investigation of the effects of hippocampal lesions in rats on pre- and postoperatively acquired spatial memory in a complex environment. Hippocampus 20:1350–1365

    Article  PubMed  Google Scholar 

  • Winocur G, Becker S, Luu P, Rosenzweig S, Wojtowicz JM (2012) Adult hippocampal neurogenesis and memory interference. Behav Brain Res 227:464–469

    Article  PubMed  Google Scholar 

  • Winocur G, Sekeres MJ, Binns MA, Moscovitch M (2013) Hippocampal lesions produce both nongraded and temporally graded retrograde amnesia in the same rat. Hippocampus, 23(5):330–341

    Google Scholar 

  • Xu T, Yu X, Perlik AJ, Tobin WF, Zweig JA, Tennant K, Jones T, Zuo Y (2009) Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462:915–919

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye L, Allen WE, Thompson KR, Tian Q, Hsueh B, Ramakrishnan C et al.(2016). Wiring and molecular features of frefrontal ensembles representing distinct experiences. Cell (in press)

    Google Scholar 

  • Zhou Y, Won J, Karlsson MG, Zhou M, Rogerson T, Balaji J, Neve R, Poirazi P, Silva AJ (2009) CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nat Neurosci 12:1438–1443

    Article  PubMed  PubMed Central  Google Scholar 

  • Zola-Morgan SM, Squire LR (1990) The primate hippocampal formation: evidence for a time-limited role in memory storage. Science 250:288–290

    Article  PubMed  Google Scholar 

  • Zola-Morgan S, Squire LR, Amaral D (1986) Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci 6:2950–2967

    PubMed  Google Scholar 

Download references

Acknowledgements

The preparation of this chapter was supported by a grant to MM and GW from the Canadian Institutes for Health Research (CIHR—grant # MGP 6694). Research by the authors reported in this paper was supported by CIHR grant MGP 6694 and by grants from the Natural Sciences and Engineering Research Council to GW (# A8181) and MM (# A8347). MJS was supported by a CIHR post-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Melanie J. Sekeres , Morris Moscovitch or Gordon Winocur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sekeres, M.J., Moscovitch, M., Winocur, G. (2017). Mechanisms of Memory Consolidation and Transformation. In: Axmacher, N., Rasch, B. (eds) Cognitive Neuroscience of Memory Consolidation. Studies in Neuroscience, Psychology and Behavioral Economics. Springer, Cham. https://doi.org/10.1007/978-3-319-45066-7_2

Download citation

Publish with us

Policies and ethics