Skip to main content

Computational Modeling of Color Vision

  • Chapter
  • First Online:
Human Color Vision

Part of the book series: Springer Series in Vision Research ((SSVR,volume 5))

  • 2532 Accesses

Abstract

Modeling approaches have contributed in various ways to our understanding of the neural principles and mechanisms of color vision. We review computational models addressing aspects of color vision at different levels, from the photoreceptors to neural processing and color perception, and we consider the kinds of insights that have been enabled by different kinds of models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Attneave F. Some informational aspects of visual perception. Psychol Rev. 1954;61(3):183.

    Article  CAS  PubMed  Google Scholar 

  2. Barlow HB. Possible principles underlying the transformations of sensory messages. In: Rosenblith WA, editor. Sensory communication. Cambridge, MA: MIT press; 1961. p. 217–34.

    Google Scholar 

  3. Marr D. Vision. San Francisco: W.H. Freeman and Company; 1982.

    Google Scholar 

  4. Barlow H. The exploitation of regularities in the environment by the brain. Behav Brain Sci. 2001;24(04):602–7.

    CAS  PubMed  Google Scholar 

  5. Barlow H. Redundancy reduction revisited. Netw Comput Neural Syst. 2001;12(3):241–53.

    Article  CAS  Google Scholar 

  6. Osorio D, Vorobyev M. Colour vision as an adaptation to frugivory in primates. Proc R Soc Lond B Biol Sci. 1996;263(1370):593–9.

    Article  CAS  Google Scholar 

  7. Sumner P, Mollon J. Catarrhine photopigments are optimized for detecting targets against a foliage background. J Exp Biol. 2000;203(13):1963–86.

    CAS  PubMed  Google Scholar 

  8. Chiao CC, Vorobyev M, Cronin TW, Osorio D. Spectral tuning of dichromats to natural scenes. Vis Res. 2000;40(23):3257–71.

    Article  CAS  PubMed  Google Scholar 

  9. Lewis A, Zhaoping L. Are cone sensitivities determined by natural color statistics? J Vis. 2006;6(3):8.

    Article  Google Scholar 

  10. Garrigan P, Ratliff CP, Klein JM, Sterling P, Brainard DH, Balasubramanian V. Design of a trichromatic cone array. PLoS Comput Biol. 2010;6(2):e1000677.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wachtler T, Doi E, Lee TW, Sejnowski TJ. Cone selectivity derived from the responses of the retinal cone mosaic to natural scenes. J Vis. 2007;7(8):6.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Buchsbaum G, Gottschalk A. Trichromacy, opponent colours coding and optimum colour information transmission in the retina. Proc R Soc Lond B Biol Sci. 1983;220(1218):89–113.

    Article  CAS  PubMed  Google Scholar 

  13. Ingling CR, Tsou BHP. Orthogonal combination of the three visual channels. Vis Res. 1977;17(9):1075–82.

    Article  PubMed  Google Scholar 

  14. Guth SL. Model for color vision and light adaptation. J Opt Soc Am A. 1991;8(6):976–93.

    Article  CAS  PubMed  Google Scholar 

  15. Vorobyev M, Osorio D. Receptor noise as a determinant of colour thresholds. Proc R Soc Lond B Biol Sci. 1998;265(1394):351–8.

    Article  CAS  Google Scholar 

  16. Kelber A. Receptor based models for spontaneous colour choices in flies and butterflies. Entomol Exp Appl. 2001;99(2):231–44.

    Article  Google Scholar 

  17. Kelber A, Vorobyev M, Osorio D. Animal colour vision–behavioural tests and physiological concepts. Biol Rev. 2003;78(01):81–118.

    Article  PubMed  Google Scholar 

  18. Koshitaka H, Kinoshita M, Vorobyev M, Arikawa K. Tetrachromacy in a butterfly that has eight varieties of spectral receptors. Proc R Soc B Biol Sci. 2008;275(1637):947–54.

    Article  Google Scholar 

  19. Schnaitmann C, Garbers C, Wachtler T, Tanimoto H. Color discrimination with broadband photoreceptors. Curr Biol. 2013;23(23):2375–82.

    Article  CAS  PubMed  Google Scholar 

  20. Atick JJ, Redlich AN. What does the retina know about natural scenes? Neural Comput. 1992;4(2):196–210.

    Article  Google Scholar 

  21. Atick JJ, Li Z, Redlich AN. Understanding retinal color coding from first principles. Neural Comput. 1992;4(4):559–72.

    Article  Google Scholar 

  22. Daw NW. Colour-coded ganglion cells in the goldfish retina: extension of their receptive fields by means of new stimuli. J Physiol. 1968;197(3):567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dacey DM, Lee BB. The ’blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature. 1994;367(6465):731–5.

    Article  CAS  PubMed  Google Scholar 

  24. Mollon JD. “Tho’ she kneel’d in that place where they grew …”: the uses and origins of primate colour vision. J Exp Biol. 1989;146(1):21–38.

    CAS  PubMed  Google Scholar 

  25. Nathans J. The evolution and physiology of human color vision: insights from molecular genetic studies of visual pigments. Neuron. 1999;24(2):299–312.

    Article  CAS  PubMed  Google Scholar 

  26. Boycott B, Wässle H. Parallel processing in the mammalian retina: the Proctor Lecture. Invest Ophthalmol Vis Sci. 1999;40(7):1313–27.

    CAS  PubMed  Google Scholar 

  27. Paulus W, Kröger-Paulus A. A new concept of retinal colour coding. Vis Res. 1983;23(5):529.

    Article  CAS  PubMed  Google Scholar 

  28. Lennie P, Haake PW, Williams DR. The design of chromatically opponent receptive fields. In: Computational models of visual processing, Vol 71. Cambridge, MA: MIT Press; 1991, p. 82.

    Google Scholar 

  29. Buzás P, Blessing EM, Szmajda BA, Martin PR. Specificity of M and L cone inputs to receptive fields in the parvocellular pathway: random wiring with functional bias. J Neurosci. 2006;26(43):11148–61.

    Article  PubMed  CAS  Google Scholar 

  30. Martin PR, Lee BB, White AJ, Solomon SG, Rüttiger L. Chromatic sensitivity of ganglion cells in the peripheral primate retina. Nature. 2001;410(6831):933–6.

    Article  CAS  PubMed  Google Scholar 

  31. Doi E, Inui T, Lee TW, Wachtler T, Sejnowski TJ. Spatiochromatic receptive field properties derived from information-theoretic analyses of cone mosaic responses to natural scenes. Neural Comput. 2003;15(2):397–417.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jordan G, Mollon JD. A study of women heterozygous for colour deficiencies. Vis Res. 1993;33(11):1495–508.

    Article  CAS  PubMed  Google Scholar 

  33. Jordan G, Deeb SS, Bosten JM, Mollon JD. The dimensionality of color vision in carriers of anomalous trichromacy. J Vis. 2010;10(8):12.

    Article  PubMed  Google Scholar 

  34. Benson NC, Manning JR, Brainard DH. Unsupervised learning of cone spectral classes from natural images. PLoS Comput Biol. 2014;10(6):e1003652.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Párraga C, Brelstaff G, Troscianko T, Moorehead I. Color and luminance information in natural scenes. J Opt Soc Am A. 1998;15(3):563–9.

    Article  Google Scholar 

  36. Ruderman DL, Cronin TW, Chiao CC. Statistics of cone responses to natural images: implications for visual coding. J Opt Soc Am A. 1998;15(8):2036–45.

    Article  Google Scholar 

  37. Bell AJ, Sejnowski TJ. The “independent components” of natural scenes are edge filters. Vis Res. 1997;37(23):3327–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Laughlin S. A simple coding procedure enhances a neuron’s information capacity. Z Naturforsch. 1981;36(9-10):910–2.

    CAS  Google Scholar 

  39. Bell AJ, Sejnowski TJ. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 1995;7(6):1129–59.

    Article  CAS  PubMed  Google Scholar 

  40. Lee TW, Wachtler T, Sejnowski TJ. The spectral independent components of natural scenes. In: Biologically motivated computer vision. Springer; 2000. p. 527–34

    Google Scholar 

  41. Wachtler T, Lee TW, Sejnowski TJ. Chromatic structure of natural scenes. J Opt Soc Am A. 2001;18(1):65–77.

    Article  CAS  Google Scholar 

  42. Hoyer PO, Hyvärinen A. Independent component analysis applied to feature extraction from colour and stereo images. Netw Comput Neural Syst. 2000;11(3):191–210.

    Article  CAS  Google Scholar 

  43. Tailor DR, Finkel LH, Buchsbaum G. Color-opponent receptive fields derived from independent component analysis of natural images. Vis Res. 2000;40(19):2671–6.

    Article  CAS  PubMed  Google Scholar 

  44. Lee TW, Wachtler T, Sejnowski TJ. Color opponency is an efficient representation of spectral properties in natural scenes. Vis Res. 2002;42(17):2095–103.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Caywood MS, Willmore B, Tolhurst DJ. Independent components of color natural scenes resemble V1 neurons in their spatial and color tuning. J Neurophysiol. 2004;91(6):2859–73.

    Article  PubMed  Google Scholar 

  46. Webster MA, Mollon J. Adaptation and the color statistics of natural images. Vis Res. 1997;37(23):3283–98.

    Article  CAS  PubMed  Google Scholar 

  47. Thorell LG, de Valois RL, Albrecht DG. Spatial mapping of monkey VI cells with pure color and luminance stimuli. Vis Res. 1984;24(7):751–69.

    Article  CAS  PubMed  Google Scholar 

  48. Lennie P, Krauskopf J, Sclar G. Chromatic mechanisms in striate cortex of macaque. J Neurosci. 1990;10(2):649–69.

    CAS  PubMed  Google Scholar 

  49. Wachtler T, Sejnowski TJ, Albright TD. Representation of color stimuli in awake macaque primary visual cortex. Neuron. 2003;37(4):681–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Usui S, Nakauchi S, Miyamoto Y. A decorrelating neural network for color constancy. In: 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 1992. p. 1030–1.

    Google Scholar 

  51. von der Twer T, MacLeod DIA. Optimal nonlinear codes for the perception of natural colours. Netw Comput Neural Syst. 2001;12(3):395–407.

    Google Scholar 

  52. Michael CR. Color vision mechanisms in monkey striate cortex: dual-opponent cells with concentric receptive fields. J Neurophysiol. 1978;41(3):572–88.

    CAS  PubMed  Google Scholar 

  53. Leventhal AG, Thompson KG, Liu D, Zhou Y, Ault SJ. Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex. J Neurosci. 1995;15(3):1808–18.

    CAS  PubMed  Google Scholar 

  54. Friedman HS, Zhou H, Heydt R. The coding of uniform colour figures in monkey visual cortex. J Physiol. 2003;548(2):593–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Johnson EN, Hawken MJ, Shapley R. The spatial transformation of color in the primary visual cortex of the macaque monkey. Nat Neurosci. 2001;4(4):409–16.

    Article  CAS  PubMed  Google Scholar 

  56. Conway BR, Hubel DH, Livingstone MS. Color contrast in macaque V1. Cereb Cortex. 2002;12(9):915–25.

    Article  PubMed  Google Scholar 

  57. Johnson EN, Hawken MJ, Shapley R. The orientation selectivity of color-responsive neurons in macaque V1. J Neurosci. 2008;28(32):8096–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Daw NW. Goldfish retina: organization for simultaneous color contrast. Science. 1967;158:942–4.

    Article  CAS  PubMed  Google Scholar 

  59. Livingstone MS, Hubel DH. Anatomy and physiology of a color system in the primate visual cortex. J Neurosci. 1984;4:309–56.

    CAS  PubMed  Google Scholar 

  60. Conway BR. Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1). J Neurosci. 2001;21(8):2768–83.

    CAS  PubMed  Google Scholar 

  61. Shapley R, Hawken MJ. Color in the cortex: single-and double-opponent cells. Vis Res. 2011;51(7):701–17.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Spitzer H, Barkan Y. Computational adaptation model and its predictions for color induction of first and second orders. Vis Res. 2005;45(27):3323–42.

    Article  PubMed  Google Scholar 

  63. Rubin JM, Richards W. Color vision and image intensities: when are changes material? Biol Cybern. 1982;45(3):215–26.

    Article  CAS  PubMed  Google Scholar 

  64. Gershon R, Jepson AD, Tsotsos JK. Ambient illumination and the determination of material changes. J Opt Soc Am A. 1986;3(10):1700–7.

    Article  CAS  PubMed  Google Scholar 

  65. De Valois RL, Cottaris NP, Elfar SD, Mahon LE, Wilson JA. Some transformations of color information from lateral geniculate nucleus to striate cortex. Proc Natl Acad Sci. 2000;97(9):4997–5002.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kellner CJ, Wachtler T. A distributed code for color in natural scenes derived from center-surround filtered cone signals. Front Psychol. 2013;4.

    Google Scholar 

  67. Lehky SR, Pouget A, Sejnowski T. Neural models of binocular depth perception. In: Cold Spring Harbor symposia on quantitative biology, Vol. 55. Cold Spring Harbor Laboratory Press; 1990. p. 765–77.

    Google Scholar 

  68. Paradiso M. A theory for the use of visual orientation information which exploits the columnar structure of striate cortex. Biol Cybern. 1988;58(1):35–49.

    Article  CAS  PubMed  Google Scholar 

  69. Schwartz O, Hsu A, Dayan P. Space and time in visual context. Nat Rev Neurosci. 2007;8(7):522–35.

    Article  CAS  PubMed  Google Scholar 

  70. Webster MA, Mollon JD. Changes in colour appearance following post-receptoral adaptation. Nature. 1991;349(6306):235–8.

    Article  CAS  PubMed  Google Scholar 

  71. Webster MA. Human colour perception and its adaptation. Netw Comput Neural Syst. 1996;7(4):587–634.

    Article  Google Scholar 

  72. Juricevic I, Webster MA. Variations in normal color vision. V. Simulations of adaptation to natural color environments. Vis Neurosci. 2009;26(01):133–45.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Webster MA. Adaptation and visual coding. J Vis. 2011;11(5):3.

    Article  PubMed  Google Scholar 

  74. Gilbert CD, Wiesel TN. The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat. Vis Res. 1990;30(11):1689–701.

    Article  CAS  PubMed  Google Scholar 

  75. Clifford CWG, Wenderoth P, Spehar B. A functional angle on some after-effects in cortical vision. Proc R Soc Lond B Biol Sci. 2000;267(1454):1705–10.

    Article  CAS  Google Scholar 

  76. Schwartz O, Sejnowski TJ, Dayan P. Perceptual organization in the tilt illusion. J Vis. 2009;9(4):19.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kellner CJ, Haas O, Obando M, Wachtler T. A model of lateral interactions in color vision. Bernstein Conference 2013. 2013;doi:10.12751/nncn.bc2013.0230.

    Google Scholar 

  78. Klauke S, Wachtler T. “Tilt” in color space: hue changes induced by chromatic surrounds. J Vis. 2015;15(13):7.

    Article  Google Scholar 

  79. Teufel HJ, Wehrhahn C. Evidence for the contribution of S cones to the detection of flicker brightness and red–green. J Opt Soc Am A. 2000;17(6):994–1006.

    Article  CAS  Google Scholar 

  80. Teufel HJ, Wehrhahn C. Chromatic induction in humans: How are the cone signals combined to provide opponent processing? Vis Res. 2004;44(20):2425–35.

    Article  PubMed  Google Scholar 

  81. Wehrhahn C, Teufel HJ. How are lateral chromatic interactions computed from cone signals? Neural Comput. 2010;22(11):2763–84.

    Article  PubMed  Google Scholar 

  82. Locke NM. Color constancy in the rhesus monkey and in man. Columbia University; 1935.

    Google Scholar 

  83. Dörr S, Neumeyer C. The goldfish—a colour-constant animal. Perception. 1996;25(2):243–50.

    Article  PubMed  Google Scholar 

  84. Werner A, Menzel R, Wehrhahn C. Color constancy in the honeybee. J Neurosci. 1988;8(1):156–9.

    CAS  PubMed  Google Scholar 

  85. Garbers C, Henke J, Leibold C, Wachtler T, Thurley K. Contextual processing of brightness and color in Mongolian gerbils. J Vis. 2015;15(1):13.

    Article  PubMed  Google Scholar 

  86. Foster DH. Color constancy. Vis Res. 2011;51(7):674–700.

    Article  PubMed  Google Scholar 

  87. Hurlbert AC. Computational models of color constancy. In: Walsh V, Kulikowski J, editors. Perceptual constancy: why things look as they do. Cambridge University Press: Cambridge; 1998. p. 283–322.

    Google Scholar 

  88. Yilmaz H. Color vision and an new approach to general perception. In: Bernard EE, editor. Biological prototypes and synthetic systems. New York: Plenum; 1973. p. 126–41.

    Google Scholar 

  89. Sällström P. Colour and physics: Some remarks concerning the physical aspects of human colour vision. USIP Report 73-09. University of Stockholm; 1973.

    Google Scholar 

  90. Buchsbaum G. A spatial processor model for object colour perception. J Franklin Inst. 1980;310(1):1–26.

    Article  Google Scholar 

  91. Maloney LT, Wandell BA. Color constancy: a method for recovering surface spectral reflectance. J Opt Soc Am A. 1986;3(1):29–33.

    Article  CAS  PubMed  Google Scholar 

  92. Yuille A. A method for computing spectral reflectance. Biol Cybern. 1987;56(2-3):195–201.

    Article  CAS  PubMed  Google Scholar 

  93. Hurlbert A. Formal connections between lightness algorithms. J Opt Soc Am A. 1986;3(10):1684–93.

    Article  CAS  PubMed  Google Scholar 

  94. D’Zmura M, Lennie P. Mechanisms of color constancy. J Opt Soc Am A. 1986;3(10):1662–72.

    Article  PubMed  Google Scholar 

  95. Forsyth DA. A novel algorithm for color constancy. Int J Comput Vis. 1990;5(1):5–35.

    Article  Google Scholar 

  96. D’Zmura M. Color constancy: surface color from changing illumination. J Opt Soc Am A. 1992;9(3):490–3.

    Article  Google Scholar 

  97. Brainard DH, Freeman WT. Bayesian color constancy. J Opt Soc Am A. 1997;14(7):1393–411.

    Article  CAS  Google Scholar 

  98. Maloney LT. Evaluation of linear models of surface spectral reflectance with small numbers of parameters. J Opt Soc Am A. 1986;3(10):1673–83.

    Article  CAS  PubMed  Google Scholar 

  99. Nascimento SMC, Foster DH, Amano K. Psychophysical estimates of the number of spectral-reflectance basis functions needed to reproduce natural scenes. J Opt Soc Am A. 2005;22(6):1017–22.

    Article  Google Scholar 

  100. Tikhonov AN, Arsenin VY. Solutions of ill-posed problems. Washington, DC: VH Winston & Sons; 1977.

    Google Scholar 

  101. Rubner J, Schulten K. A regularized approach to color constancy. Biol Cybern. 1989;61(1):29–36.

    Article  CAS  PubMed  Google Scholar 

  102. Takebe K, Nakauchi S, Usui S. A computational model for color constancy by separating reflectance and illuminant edges within a scene. Neural Netw. 1996;9(8):1405–15.

    Article  PubMed  Google Scholar 

  103. Knill DC, Richards W, editors. Perception as Bayesian inference. New York: Cambridge University Press; 1996.

    Google Scholar 

  104. Brainard DH, Longere P, Delahunt PB, Freeman WT, Kraft JM, Xiao B. Bayesian model of human color constancy. J Vis. 2006;6(11):10.

    Article  Google Scholar 

  105. Maloney LT. Illuminant estimation as cue combination. J Vis. 2002;2(6):6.

    Article  Google Scholar 

  106. Brainard DH, Maloney LT. Surface color perception and equivalent illumination models. J Vis. 2011;11(5):1.

    Article  PubMed  Google Scholar 

  107. Lee HC. Method for computing the scene-illuminant chromaticity from specular highlights. J Opt Soc Am A. 1986;3(10):1694–9.

    Article  CAS  PubMed  Google Scholar 

  108. Funt BV, Drew MS, Ho J. Color constancy from mutual reflection. Int J Comput Vis. 1991;6(1):5–24.

    Article  Google Scholar 

  109. Golz J, MacLeod DI. Influence of scene statistics on colour constancy. Nature. 2002;415(6872):637–40.

    Article  CAS  PubMed  Google Scholar 

  110. Brown RO, MacLeod DIA. Color appearance depends on the variance of surround colors. Curr Biol. 1997;7(11):844–9.

    Article  CAS  PubMed  Google Scholar 

  111. Mausfeld R, Andres J. Second-order statistics of colour codes modulate transformations that effectuate varying degrees of scene invariance and illumination invariance. Perception. 2002;31(2):209–24.

    Article  PubMed  Google Scholar 

  112. MacLeod DIA, Golz J. A computational analysis of color constancy. In: Heyer D, Mausfeld R, editors. Colour perception: mind and the physical world. Chichester, UK: Wiley; 2004. p. 205–46.

    Google Scholar 

  113. Granzier JJM, Brenner E, Cornelissen FW, Smeets JBJ. Luminance—color correlation is not used to estimate the color of the illumination. J Vis. 2005;5(1):2.

    Article  Google Scholar 

  114. Golz J. The role of chromatic scene statistics in color constancy: spatial integration. J Vis. 2008;8(13):6.

    Article  PubMed  Google Scholar 

  115. Maloney LT. Physics-based approaches to modeling surface color perception. In: Gegenfurtner KR, Sharpe LT, editors. Color vision: from genes to perception. Cambridge, UK: Cambridge University Press; 1999. p. 387–416.

    Google Scholar 

  116. Yang JN, Maloney LT. Illuminant cues in surface color perception: tests of three candidate cues. Vis Res. 2001;41(20):2581–600.

    Article  CAS  PubMed  Google Scholar 

  117. Land EH. Experiments in color vision. Sci Am. 1959;200(5):286–98.

    Article  Google Scholar 

  118. von Kries J. Die Gesichtsempfindungen. In: Nagel WA, editor. Handbuch der Physiologie des Menschen. Vieweg; 1905. p. 109–282.

    Google Scholar 

  119. Jameson D, Hurvich LM. Essay concerning color constancy. Annu Rev Psychol. 1989;40(1):1–24.

    Article  CAS  PubMed  Google Scholar 

  120. Land EH, McCann JJ. Lightness and retinex theory. J Opt Soc Am. 1971;61(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  121. Horn BKP. Determining lightness from an image. Comput Graphics Image Process. 1974;3(4):277–99.

    Article  Google Scholar 

  122. Blake A. On lightness computation in Mondrian world. In: Ottoson D, Zeki S, editors. Central and peripheral mechanisms of colour vision. New York: Springer; 1985. p. 45–59.

    Chapter  Google Scholar 

  123. Land EH. An alternative technique for the computation of the designator in the retinex theory of color vision. Proc Natl Acad Sci U S A. 1986;83(10):3078–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hurlbert A, Poggio T. Synthesizing a color algorithm from examples. Science. 1988;239(4839):482.

    Article  CAS  PubMed  Google Scholar 

  125. Foster DH, Nascimento SMC. Relational colour constancy from invariant cone-excitation ratios. Proc R Soc Lond B Biol Sci. 1994;257(1349):115–21.

    Article  CAS  Google Scholar 

  126. Dufort PA, Lumsden CJ. Color categorization and color constancy in a neural network model of V4. Biol Cybern. 1991;65(4):293–303.

    Article  CAS  PubMed  Google Scholar 

  127. Courtney SM, Finkel LH, Buchsbaum G. Network simulations of retinal and cortical contributions to color constancy. Vis Res. 1995;35(3):413–34.

    Article  CAS  PubMed  Google Scholar 

  128. Wray J, Edelman GM. A model of color vision based on cortical reentry. Cereb Cortex. 1996;6(5):701–16.

    Article  CAS  PubMed  Google Scholar 

  129. Shepard RN. The perceptual organization of colors: an adaptation to regularities of the terrestrial world? In: Barkow JH, Cosmides L, Tooby J, editors. The adapted mind: evolutionary psychology and the generation of culture. Oxford, UK: Oxford University Press; 1992. p. 495–532.

    Google Scholar 

  130. Mollon J, Jordan G. On the nature of unique hues. In: Dickinson C, Murray I, Carden D, editors. John Dalton’s colour vision legacy. London: Taylor & Francis; 1997. p. 381–92.

    Google Scholar 

  131. Valberg A. Unique hues: an old problem for a new generation. Vis Res. 2001;41(13):1645–57.

    Article  CAS  PubMed  Google Scholar 

  132. Bosten MJ, Boehm AE. Empirical evidence for unique hues. J Opt Soc Am A. 2014;31(4):385–93.

    Article  Google Scholar 

  133. De Valois RL, De Valois KK, Switkes E, Mahon L. Hue scaling of isoluminant and cone-specific lights. Vis Res. 1997;37(7):885–97.

    Article  PubMed  Google Scholar 

  134. Wuerger SM, Atkinson P, Cropper S. The cone inputs to the unique-hue mechanisms. Vis Res. 2005;45(25):3210–23.

    Article  PubMed  Google Scholar 

  135. Webster MA, Wilson JA. Interactions between chromatic adaptation and contrast adaptation in color appearance. Vis Res. 2000;40(28):3801–16.

    Article  CAS  PubMed  Google Scholar 

  136. De Valois RL, De Valois KK. A multi-stage color model. Vis Res. 1993;33(8):1053–65.

    Article  PubMed  Google Scholar 

  137. MacLeod D. Receptoral constraints on colour appearance. In: Ottoson D, Zeki S, editors. Central and peripheral mechanisms of colour vision. New York: Springer; 1985. p. 103–16.

    Chapter  Google Scholar 

  138. Lehky SR, Sejnowski TJ. Seeing white: Qualia in the context of decoding population codes. Neural Comput. 1999;11(6):1261–80.

    Article  CAS  PubMed  Google Scholar 

  139. Wachtler T, Dohrmann U, Hertel R. Modeling color percepts of dichromats. Vis Res. 2004;44(24):2843–55.

    Article  PubMed  Google Scholar 

  140. Yendrikhovskij SN. A computational model of colour categorization. Color Res Appl. 2001;26(S1):S235–8.

    Article  Google Scholar 

  141. Philipona DL, O’Regan JK. Color naming, unique hues, and hue cancellation predicted from singularities in reflection properties. Vis Neurosci. 2006;23(3-4):331–9.

    Article  PubMed  Google Scholar 

  142. Shepard RN. Perceptual-cognitive universals as reflections of the world. Psychon Bull Rev. 1994;1(1):2–28.

    Article  CAS  PubMed  Google Scholar 

  143. Parkkinen JPS, Hallikainen J, Jaaskelainen T. Characteristic spectra of Munsell colors. J Opt Soc Am A. 1989;6(2):318–22.

    Article  Google Scholar 

  144. Buchsbaum G, Bloch O. Color categories revealed by non-negative matrix factorization of Munsell color spectra. Vis Res. 2002;42(5):559–63.

    Article  PubMed  Google Scholar 

  145. Witzel C, Cinotti F, O’Regan JK. What determines the relationship between color naming, unique hues, and sensory singularities: illuminations, surfaces, or photoreceptors? J Vis. 2015;15(8):19.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wachtler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wachtler, T., Wehrhahn, C. (2016). Computational Modeling of Color Vision. In: Kremers, J., Baraas, R., Marshall, N. (eds) Human Color Vision. Springer Series in Vision Research, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-44978-4_9

Download citation

Publish with us

Policies and ethics