Skip to main content

Nervous System Ageing

  • Chapter
  • First Online:
Ageing: Lessons from C. elegans

Part of the book series: Healthy Ageing and Longevity ((HAL))

Abstract

In the face of ever-changing cellular environments during life and ageing, the nervous system ensures the coordination of behaviour and physiology. Over time, however, the nervous system declines structurally and functionally, leading to age-related cognitive and behavioural decline in humans. Aspects of nervous system ageing are being studied using C. elegans as a model system. Here we review the age-related neuronal changes that occur at the structural, cellular and functional levels in normally ageing animals, as well as how these changes relate to lifespan in healthy ageing and in neurodegenerative conditions. Understanding the cellular mechanisms that result in neuronal decline in C. elegans will help identify cellular factors that protect the nervous system structure and function during normal ageing and in disease states. Ultimately, elucidating the molecular networks and cellular processes underlying the ageing of the nervous system will fuel research and design of interventions to improve human life at old age.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. López-Otín C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194–1217. doi:10.1016/j.cell.2013.05.039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. DiLoreto R, Murphy CT (2015) The cell biology of aging. Mol Biol Cell 26:4524–4531. doi:10.1091/mbc.E14-06-1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512. doi:10.1038/nature08980

    Article  CAS  PubMed  Google Scholar 

  4. Hekimi S, Guarente L (2003) Genetics and the specificity of the aging process. Science 299:1351–1354. doi:10.1126/science.1082358

    Article  CAS  PubMed  Google Scholar 

  5. Herndon LA, Schmeissner PJ, Dudaronek JM et al (2002) Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419:808–814. doi:10.1038/nature01135

    Article  CAS  PubMed  Google Scholar 

  6. Pan C-L, Peng C-Y, Chen C-H, McIntire S (2011) Genetic analysis of age-dependent defects of the C. elegans touch receptor neurons. Proc Natl Acad Sci U S A 108:9274–9279. doi:10.1073/pnas.1011711108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Toth ML, Melentijevic I, Shah L et al (2012) Neurite sprouting and synapse deterioration in the aging C. elegans nervous system. J Neurosci 32:8778–8790. doi:10.1523/JNEUROSCI.1494-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tank EMH, Rodgers KE, Kenyon C (2011) Spontaneous age-related neurite branching in C. elegans. J Neurosci 31:9279–9288. doi:10.1523/JNEUROSCI.6606-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Khandekar A (2015) Age-related changes in the neuronal architecture of C. elegans. Doctoral thesis, Bénard Laboratory, University of Massachusetts Medical School, 2015

    Google Scholar 

  10. Peng C-Y, Chen C-H, Hsu J-M, Pan C-L (2011) C. elegans model of neuronal aging. Commun Integr Biol 4:696–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li L-B, Lei H, Arey RN et al (2016) The neuronal kinesin UNC-104/KIF1A is a key regulator of synaptic aging and insulin signaling-regulated memory. Curr Biol 26:605–615. doi:10.1016/j.cub.2015.12.068

    Article  CAS  PubMed  Google Scholar 

  12. Sann SB, Crane MM, Lu H, Jin Y (2012) Rabx-5 regulates RAB-5 early endosomal compartments and synaptic vesicles in C. elegans. PLoS One 7, e37930. doi:10.1371/journal.pone.0037930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu J, Zhang B, Lei H et al (2013) Functional aging in the nervous system contributes to age-dependent motor activity decline in C. elegans. Cell Metab 18:392–402. doi:10.1016/j.cmet.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  14. Valdez G, Tapia JC, Kang H et al (2010) Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. Proc Natl Acad Sci U S A 107:14863–14868. doi:10.1073/pnas.1002220107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen S, Hillman DE (1999) Dying-back of Purkinje cell dendrites with synapse loss in aging rats. J Neurocytol 28:187–196. doi:10.1023/A:1007015721754

    Article  CAS  PubMed  Google Scholar 

  16. Rogers J, Zornetzer SF, Bloom FE, Mervis RE (1984) Senescent microstructural changes in rat cerebellum. Brain Res 292:23–32. doi:10.1016/0006-8993(84)90886-2

    Article  CAS  PubMed  Google Scholar 

  17. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in C. elegans. Science 277:942–946. doi:10.1126/science.277.5328.942

    Article  CAS  PubMed  Google Scholar 

  18. Kenyon C, Chang J, Gensch E et al (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461

    Article  CAS  PubMed  Google Scholar 

  19. Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: an HNF-3/forkhead family member that can function to double the life-span of C. elegans. Science 278:1319–1322. doi:10.1126/science.278.5341.1319

    Article  CAS  PubMed  Google Scholar 

  20. Ogg S, Paradis S, Gottlieb S et al (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389:994–999. doi:10.1038/40194

    Article  CAS  PubMed  Google Scholar 

  21. McKay JP (2004) eat-2 and eat-18 are required for nicotinic neurotransmission in the C. elegans pharynx. Genetics 166:161–169. doi:10.1534/genetics.166.1.161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lakowski B, Hekimi S (1998) The genetics of caloric restriction in C. elegans. Proc Nat Acad Sci U S A 95:13091

    Google Scholar 

  23. Ewbank JJ, Barnes TM, Lakowski B et al (1997) Structural and functional conservation of the C. elegans timing gene clk-1. Science 275:980–983. doi:10.1126/science.275.5302.980

    Article  CAS  PubMed  Google Scholar 

  24. Lakowski B, Hekimi S (1996) Determination of life-span in C. elegans by four clock genes. Science 272:1010–1013. doi:10.1126/science.272.5264.1010

    Article  CAS  PubMed  Google Scholar 

  25. Bansal A, Zhu LJ, Yen K, Tissenbaum HA (2015) Uncoupling lifespan and healthspan in C. elegans longevity mutants. Proc Natl Acad Sci U S A 112:E277–E286. doi:10.1073/pnas.1412192112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bénard C, Hobert O (2009) Chapter 6 looking beyond development: maintaining nervous system architecture. In: Development of Neural Circuitry. Elsevier, Amsterdam, pp 175–194

    Google Scholar 

  27. Bénard CY, Boyanov A, Hall DH, Hobert O (2006) DIG-1, a novel giant protein, non-autonomously mediates maintenance of nervous system architecture. Development 133:3329–3340. doi:10.1242/dev.02507

    Article  PubMed  CAS  Google Scholar 

  28. Burket CT, Higgins CE, Hull LC et al (2006) The C. elegans gene dig-1 encodes a giant member of the immunoglobulin superfamily that promotes fasciculation of neuronal processes. Dev Biol 299:193–205

    Article  CAS  PubMed  Google Scholar 

  29. Johnson RP, Kramer JM (2012) Neural maintenance roles for the matrix receptor dystroglycan and the nuclear anchorage complex in C. elegans. Genetics 190:1365–1377. doi:10.1534/genetics.111.136184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sasakura H, Inada H, Kuhara A et al (2005) Maintenance of neuronal positions in organized ganglia by SAX-7, a C. elegans homologue of L1. EMBO J 24:1477–1488. doi:10.1038/sj.emboj.7600621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pocock R, Bénard CY, Shapiro L, Hobert O (2008) Functional dissection of the C. elegans cell adhesion molecule SAX-7, a homologue of human L1. Mol Cell Neurosci 37:56–68

    Article  CAS  PubMed  Google Scholar 

  32. Wang X, Kweon J, Larson S, Chen L (2005) A role for the C. elegans L1CAM homologue lad-1/sax-7 in maintaining tissue attachment. Dev Biol 284:273–291. doi:10.1016/j.ydbio.2005.05.020

    Article  CAS  PubMed  Google Scholar 

  33. Cherra SJ III, Jin Y (2016) A two-immunoglobulin-domain transmembrane protein mediates an epidermal-neuronal interaction to maintain synapse density. Neuron 89:325–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sheng Z-H (2014) Mitochondrial trafficking and anchoring in neurons: new insight and implications. J Cell Biol 204:1087–1098. doi:10.1083/jcb.201312123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lionaki E, Markaki M, Palikaras K, Tavernarakis N (2015) Mitochondria, autophagy and age-associated neurodegenerative diseases: new insights into a complex interplay. Biochim Biophys Acta 1847:1412–1423. doi:10.1016/j.bbabio.2015.04.010

    Article  CAS  PubMed  Google Scholar 

  36. Morsci NS, Hall DH, Driscoll M, Sheng Z-H (2016) Age-related phasic patterns of mitochondrial maintenance in adult C. elegans neurons. J Neurosci 36:1373–1385. doi:10.1523/JNEUROSCI.2799-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chew YL, Fan X, Götz J, Nicholas HR (2013) PTL-1 regulates neuronal integrity and lifespan in C. elegans. J Cell Sci 126:2079–2091. doi:10.1242/jcs.jcs124404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jiang H-C, Hsu J-M, Yen C-P et al (2015) Neural activity and CaMKII protect mitochondria from fragmentation in aging C. elegans neurons. Proc Natl Acad Sci U S A 112:8768–8773. doi:10.1073/pnas.1501831112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Palikaras K, Lionaki E, Tavernarakis N (2015) Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 521:525–528. doi:10.1038/nature14300

    Article  CAS  PubMed  Google Scholar 

  40. Burke SN, Barnes CA (2006) Neural plasticity in the ageing brain. Nat Rev Neurosci 7:30–40. doi:10.1038/nrn1809

    Article  CAS  PubMed  Google Scholar 

  41. Yankner BA, Lu T, Loerch P (2008) The aging brain. Annu Rev Pathol 3:41–66. doi:10.1146/annurev.pathmechdis.2.010506.092044

    Article  CAS  PubMed  Google Scholar 

  42. Nimchinsky EA, Bernardo L, Sabatini A, Svoboda K (2003) Structure and function of dendritic spines. http://dx.doi.org/10.1146/annurev.physiol.64.081501.160008. 64:313–353. doi: 10.1146/annurev.physiol.64.081501.160008

  43. Hof PR, Morrison JH (2004) The aging brain: morphomolecular senescence of cortical circuits. Trends Neurosci 27:607–613

    Article  CAS  PubMed  Google Scholar 

  44. Hammarlund M, Jin Y (2014) Axon regeneration in C. elegans. Curr Opin Neurobiol 27:199–207

    Article  CAS  PubMed  Google Scholar 

  45. Yanik MF, Cinar H, Cinar HN et al (2004) Neurosurgery: functional regeneration after laser axotomy. Nature 432:822

    Article  CAS  PubMed  Google Scholar 

  46. Yanik MF, Cinar H, Cinar HN, Gibby A (2006) Nerve regeneration in C. elegans after femtosecond laser axotomy. IEEE J 12:1283

    Google Scholar 

  47. Wu Z, Ghosh-Roy A, Yanik MF et al (2007) C. elegans neuronal regeneration is influenced by life stage, ephrin signaling, and synaptic branching. Proc Natl Acad Sci U S A 104:15132–15137. doi:10.1073/pnas.0707001104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gabel CV, Antoine F, Chuang C-F et al (2008) Distinct cellular and molecular mechanisms mediate initial axon development and adult-stage axon regeneration in C. elegans. Development 135:1129–1136. doi:10.1242/dev.013995

    Article  CAS  PubMed  Google Scholar 

  49. El Bejjani R, Hammarlund M (2012) Notch signaling inhibits axon regeneration. Neuron 73:268–278. doi:10.1016/j.neuron.2011.11.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Chen L, Wang Z, Ghosh-Roy A et al (2011) Axon regeneration pathways identified by systematic genetic screening in C. elegans. Neuron 71:1043–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nix P, Hammarlund M, Hauth L et al (2014) Axon regeneration genes identified by RNAi screening in C. elegans. J Neurosci 34:629–645. doi:10.1523/JNEUROSCI.3859-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hilliard MA (2009) Axonal degeneration and regeneration: a mechanistic tug-of-war. J Neurochem 108:23–32. doi:10.1111/j.1471-4159.2008.05754.x

    Article  CAS  PubMed  Google Scholar 

  53. Wang Z, Jin Y (2011) Genetic dissection of axon regeneration. Curr Opin Neurobiol 21:189–196

    Article  CAS  PubMed  Google Scholar 

  54. Rachid El Bejjani MH (2012) Neural regeneration in C. elegans. Annu Rev Genet 46:499–513. doi:10.1146/annurev-genet-110711-155550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Chen L, Chisholm AD (2011) Axon regeneration mechanisms: insights from C. elegans. Trends Cell Biol 21:577–584. doi:10.1016/j.tcb.2011.08.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Chisholm AD (2013) Cytoskeletal Dynamics in C. elegans Axon Regeneration. http://dx.doi.org/10.1146/annurev-cellbio-101512-122311 29:271–297. doi: 10.1146/annurev-cellbio-101512-122311

  57. Hammarlund M, Nix P, Hauth L et al (2009) Axon regeneration requires a conserved MAP kinase pathway. Science 323:802–806. doi:10.1126/science.1165527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nix P, Hisamoto N, Matsumoto K, Bastiani M (2011) Axon regeneration requires coordinate activation of p38 and JNK MAPK pathways. Proc Natl Acad Sci U S A 108:10738–10743. doi:10.1073/pnas.1104830108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yan D, Wu Z, Chisholm AD, Jin Y (2009) The DLK-1 kinase promotes mRNA stability and local translation in C. elegans synapses and axon regeneration. Cell 138:1005–1018. doi:10.1016/j.cell.2009.06.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Byrne AB, Walradt T, Gardner KE et al (2014) Insulin/IGF1 signaling inhibits age-dependent axon regeneration. Neuron 81:561–573. doi:10.1016/j.neuron.2013.11.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li C, Hisamoto N, Nix P et al (2012) The growth factor SVH-1 regulates axon regeneration in C. elegans via the JNK MAPK cascade. Nat Neurosci 15:551–557. doi:10.1038/nn.3052

    Article  CAS  PubMed  Google Scholar 

  62. Yan D, Jin Y (2012) Regulation of DLK-1 kinase activity by calcium-mediated dissociation from an inhibitory isoform. Neuron 76:534–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ghosh-Roy A, Goncharov A, Jin Y, Chisholm AD (2012) Kinesin-13 and tubulin posttranslational modifications regulate microtubule growth in axon regeneration. Dev Cell 23:716–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kirszenblat L, Neumann B, Coakley S (2013) A dominant mutation in mec-7/β-tubulin affects axon development and regeneration in C. elegans neurons. Mol Biol Cell 24:285

    Google Scholar 

  65. Zou Y, Chiu H, Zinovyeva A et al (2013) Developmental decline in neuronal regeneration by the progressive change of two intrinsic timers. Science 340:372–376. doi:10.1126/science.1231321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kaletsky R, Lakhina V, Arey R et al (2016) The C. elegans adult neuronal IIS/FOXO transcriptome reveals adult phenotype regulators. Nature 529:92–96. doi:10.1038/nature16483

    Article  CAS  PubMed  Google Scholar 

  67. Chiu H, Alqadah A, Chuang C-F, Chang C (2011) C. elegans as a genetic model to identify novel cellular and molecular mechanisms underlying nervous system regeneration. Cell Adh Migr 5:387–394. doi:10.4161/cam.5.5.17985

    Article  PubMed  PubMed Central  Google Scholar 

  68. Park KK, Liu K, Hu Y et al (2008) Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322:963–966. doi:10.1126/science.1161566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Christie KJ, Webber CA, Martinez JA et al (2010) PTEN inhibition to facilitate intrinsic regenerative outgrowth of adult peripheral axons. J Neurosci 30:9306–9315. doi:10.1523/JNEUROSCI.6271-09.2010

    Article  CAS  PubMed  Google Scholar 

  70. Geoffroy CG, Hilton BJ, Tetzlaff W, Zheng B (2016) Evidence for an age-dependent decline in axon regeneration in the adult mammalian central nervous system. Cell Rep 15:238–246. doi:10.1016/j.celrep.2016.03.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wood WB (1987) The nematode C. elegans. Cold Spring Harbour Laboratory, Cold Spring Harbor

    Google Scholar 

  72. Hart A (2006) Behavior. WormBook, ed. The C. elegans Research Community, WormBook, doi:10.1895/wormbook. 1.7. 1. doi:10.1895/wormbook

  73. Collins JJ, Huang C, Hughes S, Kornfeld K (2008) The measurement and analysis of age-related changes in C. elegans. WormBook 1–21. doi:10.1895/wormbook.1.137.1

  74. Croll NA, Smith JM, Zuckerman BM (2007) The aging process of the nematode C. elegans in bacterial and axenic culture. Exp Aging Res 3:175–189. doi:10.1080/03610737708257101

    Article  Google Scholar 

  75. Bolanowski MA, Russell RL, Jacobson LA (1981) Quantitative measures of aging in the nematode C. elegans. I. Population and longitudinal studies of two behavioral parameters. Mech Ageing Dev 15:279–295

    Article  CAS  PubMed  Google Scholar 

  76. Duhon SA, Johnson TE (1995) Movement as an index of vitality: comparing wild type and the age-1 mutant of C. elegans. J Gerontol A Biol Sci Med Sci 50A:B254–B261. doi:10.1093/gerona/50A.5.B254

    Article  Google Scholar 

  77. Wolkow CA (2006) Identifying factors that promote functional aging in C. elegans. Exp Gerontol 41:1001–1006. doi:10.1016/j.exger.2006.06.033

    Article  CAS  PubMed  Google Scholar 

  78. Johnson TE (1987) Aging can be genetically dissected into component processes using long-lived lines of C. elegans. Proc Natl Acad Sci U S A 84:3777–3781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Huang C, Xiong C, Kornfeld K (2004) Measurements of age-related changes of physiological processes that predict lifespan of C. elegans. Proc Natl Acad Sci U S A 101:8084–8089. doi:10.1073/pnas.0400848101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Glenn CF, Chow DK, David L et al (2004) Behavioral deficits during early stages of aging in C. elegans result from locomotory deficits possibly linked to muscle frailty. J Gerontol A Biol Sci Med Sci 59:1251–1260

    Article  PubMed  PubMed Central  Google Scholar 

  81. Mulcahy B, Holden-Dye L, O’Connor V (2013) Pharmacological assays reveal age-related changes in synaptic transmission at the C. elegans neuromuscular junction that are modified by reduced insulin signalling. J Exp Biol 216:492–501. doi:10.1242/jeb.068734

    Article  CAS  PubMed  Google Scholar 

  82. García LR (2014) Regulation of sensory motor circuits used in C. elegans male intromission behavior. Semin Cell Dev Biol 33:42–49. doi:10.1016/j.semcdb.2014.05.006

    Article  PubMed  CAS  Google Scholar 

  83. Guo X, García LR (2014) SIR-2.1 integrates metabolic homeostasis with the reproductive neuromuscular excitability in early aging male C. elegans. Elife 3:e01730. doi:10.7554/eLife.01730

    PubMed  PubMed Central  Google Scholar 

  84. Guarente L (2001) SIR2 and aging – the exception that proves the rule. Trends Genet 17:391–392

    Article  CAS  PubMed  Google Scholar 

  85. Ben-Yakar A, Chronis N, Lu H (2009) Microfluidics for the analysis of behavior, nerve regeneration, and neural cell biology in C. elegans. Curr Opin Neurobiol 19:561–567. doi:10.1016/j.conb.2009.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Stirman JN, Brauner M, Gottschalk A, Lu H (2010) High-throughput study of synaptic transmission at the neuromuscular junction enabled by optogenetics and microfluidics. J Neurosci Methods 191:90–93. doi:10.1016/j.jneumeth.2010.05.019

    Article  PubMed  PubMed Central  Google Scholar 

  87. Chokshi TV, Bazopoulou D, Chronis N (2010) An automated microfluidic platform for calcium imaging of chemosensory neurons in C. elegans. Lab Chip 10:2758–2763. doi:10.1039/c004658b

    Article  CAS  PubMed  Google Scholar 

  88. Leinwand SG, Yang CJ, Bazopoulou D et al (2015) Circuit mechanisms encoding odors and driving aging-associated behavioral declines in C. elegans. Elife 4, e10181. doi:10.7554/eLife.10181

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kato S, Kaplan HS, Schrödel T et al (2015) Global brain dynamics embed the motor command sequence of C. elegans. Cell 163:656–669. doi:10.1016/j.cell.2015.09.034

    Article  CAS  PubMed  Google Scholar 

  90. Nguyen JP, Shipley FB, Linder AN et al (2016) Whole-brain calcium imaging with cellular resolution in freely behaving C. elegans. Proc Natl Acad Sci U S A 113:E1074–E1081. doi:10.1073/pnas.1507110112

    Article  CAS  PubMed  Google Scholar 

  91. Hedden T, Gabrieli JDE (2004) Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci 5:87–96. doi:10.1038/nrn1323

    Article  CAS  PubMed  Google Scholar 

  92. Yeoman M, Scutt G, Faragher R (2012) Insights into CNS ageing from animal models of senescence. Nat Rev Neurosci 13:435–445. doi:10.1038/nrn3230

    Article  CAS  PubMed  Google Scholar 

  93. Ardiel EL, Rankin CH (2010) An elegant mind: learning and memory in C. elegans. Learn Mem 17:191–201. doi:10.1101/lm.960510

    Article  CAS  PubMed  Google Scholar 

  94. Kimata T, Sasakura H, Ohnishi N et al (2012) Thermotaxis of C. elegans as a model for temperature perception, neural information processing and neural plasticity. Worm 1:31–41. doi:10.4161/worm.19504

    Article  PubMed  PubMed Central  Google Scholar 

  95. Nishida Y, Sugi T, Nonomura M, Mori I (2011) Identification of the AFD neuron as the site of action of the CREB protein in C. elegans thermotaxis. EMBO Rep 12:855–862. doi:10.1038/embor.2011.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Murakami S, Murakami H (2005) The effects of aging and oxidative stress on learning behavior in C. elegans. Neurobiol Aging 26:899–905. doi:10.1016/j.neurobiolaging.2004.08.007

    Article  CAS  PubMed  Google Scholar 

  97. Murakami H, Bessinger K, Hellmann J, Murakami S (2005) Aging-dependent and -independent modulation of associative learning behavior by insulin/insulin-like growth factor-1 signal in C. elegans. J Neurosci 25:10894–10904. doi:10.1523/JNEUROSCI.3600-04.2005

    Article  CAS  PubMed  Google Scholar 

  98. Kodama E, Kuhara A, Mohri-Shiomi A et al (2006) Insulin-like signaling and the neural circuit for integrative behavior in C. elegans. Genes Dev 20:2955–2960. doi:10.1101/gad.1479906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang Y, Hekimi S (2015) Mitochondrial dysfunction and longevity in animals: untangling the knot. Science 350:1204–1207. doi:10.1126/science.aac4357

    Article  CAS  PubMed  Google Scholar 

  100. Feng J, Bussière F, Hekimi S (2001) Mitochondrial electron transport is a key determinant of life span in C. elegans. Dev Cell 1:633–644

    Article  CAS  PubMed  Google Scholar 

  101. Adachi H, Fujiwara Y, Ishii N (1998) Effects of oxygen on protein carbonyl and aging in C. elegans mutants with long (age-1) and short (mev-1) life spans. J Gerontol A Biol Sci Med Sci 53A:B240–B244. doi:10.1093/gerona/53A.4.B240

    Article  CAS  Google Scholar 

  102. Ishii N, Fujii M, Hartman PS et al (1998) A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394:694–697. doi:10.1038/29331

    Article  CAS  PubMed  Google Scholar 

  103. Bargmann CI (2006) Chemosensation in C. elegans (October 25, 2006), WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook. 1.123. 1

  104. Kauffman AL, Ashraf JM, Corces-Zimmerman MR et al (2010) Insulin signaling and dietary restriction differentially influence the decline of learning and memory with age. PLoS Biol 8, e1000372. doi:10.1371/journal.pbio.1000372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Beck CD, Rankin CH (1993) Effects of aging on habituation in the nematode C. elegans. Behav Processes 28:145–163. doi:10.1016/0376-6357(93)90088-9

    Article  CAS  PubMed  Google Scholar 

  106. Timbers TA, Giles AC, Ardiel EL et al (2013) Intensity discrimination deficits cause habituation changes in middle-aged C. elegans. Neurobiol Aging 34:621–631. doi:10.1016/j.neurobiolaging.2012.03.016

    Article  PubMed  Google Scholar 

  107. Pereira S, van der Kooy D (2012) Two forms of learning following training to a single odorant in C. elegans AWC neurons. J Neurosci 32:9035–9044. doi:10.1523/JNEUROSCI.4221-11.2012

    Article  CAS  PubMed  Google Scholar 

  108. Stein GM, Murphy CT (2012) The intersection of aging, longevity pathways, and learning and memory in C. elegans. Front Genet 3:259. doi:10.3389/fgene.2012.00259

    Article  PubMed  PubMed Central  Google Scholar 

  109. Brightwell J (2004) Hippocampal CREB1 but not CREB2 is decreased in aged rats with spatial memory impairments. Neurobiol Learn Mem 81:19–26. doi:10.1016/j.nlm.2003.08.001

    Article  CAS  PubMed  Google Scholar 

  110. Mouravlev A, Dunning J, Young D, During MJ (2006) Somatic gene transfer of cAMP response element-binding protein attenuates memory impairment in aging rats. Proc Natl Acad Sci U S A 103:4705–4710. doi:10.1073/pnas.0506137103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038. doi:10.1126/science.1067020

    Article  CAS  PubMed  Google Scholar 

  112. Salih DAM, Rashid AJ, Colas D et al (2012) FoxO6 regulates memory consolidation and synaptic function. Genes Dev 26:2780–2801. doi:10.1101/gad.208926.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Singh-Manoux A, Kivimaki M, Glymour MM et al (2012) Timing of onset of cognitive decline: results from Whitehall II prospective cohort study. BMJ 344:d7622–d7622. doi:10.1136/bmj.d7622

    Article  PubMed  PubMed Central  Google Scholar 

  114. Steculorum SM, Solas M, Brüning JC (2014) The paradox of neuronal insulin action and resistance in the development of aging-associated diseases. Alzheimers Dement 10:S3–S11. doi:10.1016/j.jalz.2013.12.008

    Article  PubMed  Google Scholar 

  115. Prehn K, Jumpertz von Schwartzenberg R, Mai K, et al (2016) Caloric restriction in older adults—differential effects of weight loss and reduced weight on brain structure and function. Cereb Cortex bhw008. doi:10.1093/cercor/bhw008

  116. Bischof GN, Park DC (2015) Obesity and aging: consequences for cognition, brain structure, and brain function. Psychosom Med 77:697–709. doi:10.1097/PSY.0000000000000212

    Article  PubMed  Google Scholar 

  117. Miller AA, Spencer SJ (2014) Obesity and neuroinflammation: a pathway to cognitive impairment. Brain Behav Immun 42:10–21. doi:10.1016/j.bbi.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  118. Witte AV, Fobker M, Gellner R et al (2009) Caloric restriction improves memory in elderly humans. Proc Natl Acad Sci U S A 106:1255–1260. doi:10.1073/pnas.0808587106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kyriazis M (2009) Calorie restriction mimetics: examples and mode of action. Open Longev Sci 3:17

    Google Scholar 

  120. Witte AV, Kerti L, Margulies DS, Flöel A (2014) Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. J Neurosci 34:7862–7870. doi:10.1523/JNEUROSCI.0385-14.2014

    Article  CAS  PubMed  Google Scholar 

  121. Onken B, Driscoll M (2010) Metformin induces a dietary restriction–like state and the oxidative stress response to extend C. elegans healthspan via AMPK, LKB1, and SKN-1. PLoS One 5, e8758. doi:10.1371/journal.pone.0008758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. de Lau LML, Giesbergen PCLM, De Rijk MC et al (2004) Incidence of parkinsonism and Parkinson disease in a general population: the Rotterdam Study. Neurology 63:1240–1244. doi:10.1212/01.WNL.0000140706.52798.BE

    Article  PubMed  Google Scholar 

  123. Niccoli T, Partridge L (2012) Ageing as a risk factor for disease. Curr Biol 22:R741–R752

    Article  CAS  PubMed  Google Scholar 

  124. Bargmann CI, Hartwieg E, Horvitz HR (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74:515–527. doi:10.1016/0092-8674(93)80053-H

    Article  CAS  PubMed  Google Scholar 

  125. Avery L, Horvitzt HR (1989) Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of C. elegans. Neuron 3:473–485. doi:10.1016/0896-6273(89)90206-7

    Article  CAS  PubMed  Google Scholar 

  126. Dimitriadi M, Hart AC (2010) Neurodegenerative disorders: insights from the nematode C. elegans. Neurobiol Dis 40:4–11. doi:10.1016/j.nbd.2010.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li J, Le W (2013) Modeling neurodegenerative diseases in C. elegans. Exp Neurol 250:94–103. doi:10.1016/j.expneurol.2013.09.024

    Article  CAS  PubMed  Google Scholar 

  128. Markaki M, Tavernarakis N (2010) Modeling human diseases in C. elegans. Biotechnol J 5:1261–1276. doi:10.1002/biot.201000183

    Article  CAS  PubMed  Google Scholar 

  129. Harrington AJ, Hamamichi S, Caldwell GA, Caldwell KA (2010) C. elegans as a model organism to investigate molecular pathways involved with Parkinson’s disease. Dev Dyn 239:1282–1295. doi:10.1002/dvdy.22231

    Article  CAS  PubMed  Google Scholar 

  130. Caldwell GA, Caldwell KA (2008) Traversing a wormhole to combat Parkinson’s disease. Dis Model Mech 1:32–36. doi:10.1242/dmm.000257

    Article  PubMed  PubMed Central  Google Scholar 

  131. Hannan SB, Dräger N, Rasse TM et al (2016) Cellular and molecular modifier pathways in tauopathies: the big picture from screening invertebrate models. J Neurochem. doi:10.1111/jnc.13532, n/a–n/a

    PubMed  Google Scholar 

  132. Link CD (2006) C. elegans models of age-associated neurodegenerative diseases: lessons from transgenic worm models of Alzheimer’s disease. Exp Gerontol 41:1007–1013. doi:10.1016/j.exger.2006.06.059

    Article  CAS  PubMed  Google Scholar 

  133. Lublin AL, Link CD (2013) Alzheimer’s disease drug discovery: in vivo screening using C. elegans as a model for β-amyloid peptide-induced toxicity. Drug Discov Today 10:e115–e119. doi:10.1016/j.ddtec.2012.02.002

    Article  CAS  Google Scholar 

  134. Pouladi MA, Morton AJ, Hayden MR (2013) Choosing an animal model for the study of Huntington’s disease. Nat Rev Neurosci 14:708–721. doi:10.1038/nrn3570

    Article  CAS  PubMed  Google Scholar 

  135. Therrien M, Parker JA (2014) Worming forward: amyotrophic lateral sclerosis toxicity mechanisms and genetic interactions in C. elegans. Front Genet 5:85. doi:10.3389/fgene.2014.00085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Nikoletopoulou V, Tavernarakis N (2014) Necrotic cell death in C. elegans. Meth Enzymol 545:127–155. doi:10.1016/B978-0-12-801430-1.00006-8

    Article  CAS  PubMed  Google Scholar 

  137. Mano I, Driscoll M (2009) C. elegans glutamate transporter deletion induces AMPA-receptor/adenylyl cyclase 9-dependent excitotoxicity. J Neurochem 108:1373–1384. doi:10.1111/j.1471-4159.2008.05804.x

    Article  CAS  PubMed  Google Scholar 

  138. Nagarajan A, Ning Y, Reisner K et al (2014) Progressive degeneration of dopaminergic neurons through TRP channel-induced cell death. J Neurosci 34:5738–5746. doi:10.1523/JNEUROSCI.4540-13.2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Hamamichi S, Rivas RN, Knight AL et al (2008) Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson’s disease model. Proc Natl Acad Sci U S A 105:728–733. doi:10.1073/pnas.0711018105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gitler AD, Chesi A, Geddie ML, Strathearn KE (2009) α-Synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nature 41:308

    CAS  Google Scholar 

  141. Qiao L, Hamamichi S, Caldwell KA, et al (2008) Lysosomal enzyme cathepsin D protects against alpha-synuclein aggregation and toxicity. Mol Brain 2008 1:1 1:1. doi:10.1186/1756-6606-1-17

  142. Knight AL, Yan X, Hamamichi S et al (2014) The glycolytic enzyme, GPI, is a functionally conserved modifier of dopaminergic neurodegeneration in Parkinson’s models. Cell Metab 20:145–157. doi:10.1016/j.cmet.2014.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kraemer BC, Burgess JK, Chen JH et al (2006) Molecular pathways that influence human tau-induced pathology in C. elegans. Hum Mol Genet 15:1483–1496. doi:10.1093/hmg/ddl067

    Article  CAS  PubMed  Google Scholar 

  144. Amaducci L, Tesco G (1994) Aging as a major risk for degenerative diseases of the central nervous system. Curr Opin Neurol 7:283–286

    Article  CAS  PubMed  Google Scholar 

  145. Volovik Y, Marques FC, Cohen E (2014) The nematode C. elegans: a versatile model for the study of proteotoxicity and aging. Methods 68:458–464. doi:10.1016/j.ymeth.2014.04.014

    Article  CAS  PubMed  Google Scholar 

  146. Morley JF, Brignull HR, Weyers JJ, Morimoto RI (2002) The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in C. elegans. Proc Natl Acad Sci U S A 99:10417–10422. doi:10.1073/pnas.152161099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Hsu A-L, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300:1142–1145. doi:10.1126/science.1083701

    Article  CAS  PubMed  Google Scholar 

  148. Cohen E, Bieschke J, Perciavalle RM et al (2006) Opposing activities protect against age-onset proteotoxicity. Science 313:1604–1610. doi:10.1126/science.1124646

    Article  CAS  PubMed  Google Scholar 

  149. Florez-McClure ML, Hohsfield LA, Fonte G et al (2007) Decreased insulin-receptor signaling promotes the autophagic degradation of beta-amyloid peptide in C. elegans. Autophagy 3:569–580

    Article  CAS  PubMed  Google Scholar 

  150. Zhang T, Mullane PC, Periz G, Wang J (2011) TDP-43 neurotoxicity and protein aggregation modulated by heat shock factor and insulin/IGF-1 signaling. Hum Mol Genet 20:1952–1965. doi:10.1093/hmg/ddr076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. David DC, Ollikainen N, Trinidad JC et al (2010) Widespread protein aggregation as an inherent part of aging in C. elegans. PLoS Biol 8, e1000450. doi:10.1371/journal.pbio.1000450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Steinkraus KA, Smith ED, Davis C et al (2008) Dietary restriction suppresses proteotoxicity and enhances longevity by an hsf-1-dependent mechanism in C. elegans. Aging Cell 7:394–404. doi:10.1111/j.1474-9726.2008.00385.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Jadiya P, Chatterjee M, Sammi SR et al (2011) Sir-2.1 modulates ‘calorie-restriction-mediated’ prevention of neurodegeneration in C. elegans: implications for Parkinson’s disease. Biochem Biophys Res Commun 413:306–310. doi:10.1016/j.bbrc.2011.08.092

    Article  CAS  PubMed  Google Scholar 

  154. Shemesh N, Shai N, Ben-Zvi A (2013) Germline stem cell arrest inhibits the collapse of somatic proteostasis early in C. elegans adulthood. Aging Cell 12:814–822. doi:10.1111/acel.12110

    Article  CAS  PubMed  Google Scholar 

  155. Cohen E, Paulsson JF, Blinder P et al (2009) Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell 139:1157–1169. doi:10.1016/j.cell.2009.11.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gontier G, George C, Chaker Z et al (2015) Blocking IGF signaling in adult neurons alleviates Alzheimer’s disease pathology through amyloid-β clearance. J Neurosci 35:11500–11513. doi:10.1523/JNEUROSCI.0343-15.2015

    Article  CAS  PubMed  Google Scholar 

  157. De Magalhaes Filho CD, Kappeler L, Dupont J, et al (2016) Deleting IGF-1 receptor from forebrain neurons confers neuroprotection during stroke and upregulates endocrine somatotropin. J Cereb Blood Flow Metab 0271678X15626718. doi:10.1177/0271678X15626718

  158. Wang J, Ho L, Qin W et al (2005) Caloric restriction attenuates beta-amyloid neuropathology in a mouse model of Alzheimer’s disease. FASEB J 19:659–661. doi:10.1096/fj.04-3182fje

    Article  PubMed  CAS  Google Scholar 

  159. Maswood N, Young J, Tilmont E et al (2004) Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson’s disease. Proc Natl Acad Sci U S A 101:18171–18176. doi:10.1073/pnas.0405831102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Cohen E, Du D, Joyce D et al (2010) Temporal requirements of insulin/IGF-1 signaling for proteotoxicity protection. Aging Cell 9:126–134. doi:10.1111/j.1474-9726.2009.00541.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Arantza Barrios, Emanuel K. Busch and Cassandra Blanchette for feedback on the manuscript. Research in the lab of Dr. Maria Doitsidou is supported by the Norwegian Research Council and the Wellcome Trust, UK. Research in the lab of Dr. Claire Bénard is supported by grant R01 AG041870-01 from the National Institutes of Health of the USA to C.B., the Ellison Medical Foundation New Scholar Aging Award to C.B., and the American Federation for Aging Research Award to C.B..

Dedicated to the memory of Muhammad Ali (January 17, 1942–June 3, 2016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Claire Bénard or Maria Doitsidou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bénard, C., Doitsidou, M. (2017). Nervous System Ageing. In: Olsen, A., Gill, M. (eds) Ageing: Lessons from C. elegans. Healthy Ageing and Longevity. Springer, Cham. https://doi.org/10.1007/978-3-319-44703-2_8

Download citation

Publish with us

Policies and ethics