Skip to main content

Electrocatalysis Beyond the Computational Hydrogen Electrode

  • Reference work entry
  • First Online:
Handbook of Materials Modeling

Abstract

The computational hydrogen electrode approach allows the alignment of theoretical electrochemical potentials calculated with ab initio methods to those measured in experiment. It contributed greatly to opening up the fields of electrochemistry and photo-electrochemistry to theoretical treatment. Yet, virtually all practical implementations of the computational hydrogen electrode relied on a number of simplifications and approximations, which are not necessarily always justified. This chapter highlights three of these approximations as well as the challenges prompting them and gives a brief review of the computational methods available to overcome each. Specifically, it addresses the effects of the electrolyte, the important choice of the model reactive site – including surface defects and co-catalysts – and the evaluation of kinetic barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter T, Moses PG, Skulason E, Bligaard T, Nørskov JK (2007) Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett 99(1):016105

    Article  ADS  Google Scholar 

  • Aktins PW, de Paula J (2014) Atkins’ physical chemistry, 10th edn. Oxford University Press, Oxford

    Google Scholar 

  • Andreussi O, Dabo I, Marzari N (2012) Revised self-consistent continuum solvation in electronic-structure calculations. J Chem Phys 136(6):064102

    Article  ADS  Google Scholar 

  • Bardhan JP, Knepley MG (2014) Communication: modeling charge-sign asymmetric solvation free energies with nonlinear boundary conditions. J Chem Phys 141(13):131103. https://doi.org/10.1063/1.4897324

    Article  ADS  Google Scholar 

  • Berger D, Logsdail AJ, Oberhofer H, Farrow MR, Catlow CRA, Sherwood P, Sokol AA, Blum V, Reuter K (2014) Embedded-cluster calculations in a numeric atomic orbital density-functional theory framework. J Chem Phys 141(2):024105

    Article  ADS  Google Scholar 

  • Berger D, Oberhofer H, Reuter K (2015) First-principles embedded-cluster calculations of the neutral and charged oxygen vacancy at the rutile TiO2 (110) surface. Phys Rev B 92(7):075308

    Article  ADS  Google Scholar 

  • Bhattacharya S, Berger D, Reuter K, Ghiringhelli LM, Levchenko SV (2017) Theoretical evidence for unexpected O-rich phases at corners of MgO surfaces. Phys Rev Mat 1(7):071601

    Google Scholar 

  • Bi W, Li X, Zhang L, Jin T, Zhang L, Zhang Q, Luo Y, Wu C, Xie Y (2015) Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution. Nat Commun 6:8647

    Article  ADS  Google Scholar 

  • Blum V, Gehrke R, Hanke F, Havu P, Havu V, Ren X, Reuter K, Scheffler M (2009) Ab initio molecular simulations with numeric atom-centered orbitals. Comput Phys Commun 180(11):2175–2196

    Article  ADS  MATH  Google Scholar 

  • Boda D, Fawcett WR, Henderson D, Sokołowski S (2002) Monte Carlo, density functional theory, and Poisson–Boltzmann theory study of the structure of an electrolyte near an electrode. J Chem Phys 116(16):7170–7176

    Article  ADS  Google Scholar 

  • Bohinc K, Shrestha A, Brumen M, May S (2012) Poisson-Helmholtz-Boltzmann model of the electric double layer: analysis of monovalent ionic mixtures. Phys Rev E 85(3):031130

    Article  ADS  Google Scholar 

  • Borukhov I, Andelman D, Orland H (1997) Steric effects in electrolytes: a modified Poisson-Boltzmann equation. Phys Rev Lett 79(3):435

    Article  ADS  Google Scholar 

  • Chan K, Nørskov JK (2015) Electrochemical barriers made simple. J Phys Chem Lett 6(14):2663–2668

    Article  Google Scholar 

  • Chan K, Nørskov JK (2016) Potential dependence of electrochemical barriers from ab initio calculations. J Phys Chem Lett 7(9):1686–1690

    Article  Google Scholar 

  • Chapman DL (1913) LI. A contribution to the theory of electrocapillarity. Philos Mag 25(148):475–481

    Article  MATH  Google Scholar 

  • Chen J, Li YF, Sit P, Selloni A (2013) Chemical dynamics of the first proton-coupled electron transfer of water oxidation on TiO2 anatase. J Am Chem Soc 135(50):18774–18777

    Article  Google Scholar 

  • Cheng J, Sprik M (2010a) Acidity of the aqueous rutile TiO2 (110) surface from density functional theory based molecular dynamics. J Chem Theor Comput 6(3):880–889

    Article  Google Scholar 

  • Cheng J, Sprik M (2010b) Aligning electronic energy levels at the TiO2/H2O interface. Phys Rev B 82(8):081406

    Article  ADS  Google Scholar 

  • Cheng J, Sprik M (2014) The electric double layer at a rutile TiO2 water interface modelled using density functional theory based molecular dynamics simulation. J Phys Condens Matter 26(24):244108

    Article  Google Scholar 

  • Cheng J, Liu X, Kattirtzi JA, VandeVondele J, Sprik M (2014a) Aligning electronic and protonic energy levels of proton-coupled electron transfer in water oxidation on aqueous TiO2. Angew Chem Int Ed 53(45):12046–12050

    Article  Google Scholar 

  • Cheng J, Liu X, VandeVondele J, Sulpizi M, Sprik M (2014b) Redox potentials and acidity constants from density functional theory based molecular dynamics. Acc Chem Res 47(12):3522–3529

    Article  Google Scholar 

  • Cheng T, Xiao H, Goddard WA III (2015) Free-energy barriers and reaction mechanisms for the electrochemical reduction of CO on the Cu (100) surface, including multiple layers of explicit solvent at pH 0. J Phys Chem Lett 6(23):4767–4773

    Article  Google Scholar 

  • Cheng T, Xiao H, Goddard WA (2017) Full atomistic reaction mechanism with kinetics for CO reduction on Cu (100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc Natl Acad Sci USA 114:201612106

    Google Scholar 

  • Choyke WJ, Matsunami H, Pensl G (2013) Silicon carbide: recent major advances. Springer Science & Business Media, Berlin

    Google Scholar 

  • Cowan AJ, Durrant JR (2013) Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels. Chem Soc Rev 42(6):2281–2293

    Article  Google Scholar 

  • Demers S, van de Walle A (2012) Intrinsic defects and dopability of zinc phosphide. Phys Rev B 85(19):195208

    Article  ADS  Google Scholar 

  • Deskins NA, Rousseau R, Dupuis M (2010) Defining the role of excess electrons in the surface chemistry of TiO2. J Phys Chem C 114(13):5891–5897

    Article  Google Scholar 

  • Deskins NA, Rousseau R, Dupuis M (2011) Distribution of Ti3+ surface sites in reduced TiO2. J Phys Chem C 115(15):7562–7572

    Article  Google Scholar 

  • Diebold U (2003) Structure and properties of TiO2 surfaces: a brief review. Appl Phys A 76(5):681–687

    Article  ADS  Google Scholar 

  • Diebold U, Lehman J, Mahmoud T, Kuhn M, Leonardelli G, Hebenstreit W, Schmid M, Varga P (1998) Intrinsic defects on a TiO2 (110)(1× 1) surface and their reaction with oxygen: a scanning tunneling microscopy study. Surf Sci 411(1–2):137–153

    Article  ADS  Google Scholar 

  • Dupont C, Andreussi O, Marzari N (2013) Self-consistent continuum solvation (SCCS): the case of charged systems. J Chem Phys 139(21):214110

    Article  ADS  Google Scholar 

  • Fang YH, Liu ZP (2010) Mechanism and tafel lines of electro-oxidation of water to oxygen on RuO2 (110). J Am Chem Soc 132(51):18214–18222

    Article  Google Scholar 

  • Fang YH, Wei GF, Liu ZP (2013) Theoretical modeling of electrode/electrolyte interface from first-principles periodic continuum solvation method. Catal Today 202:98–104

    Article  Google Scholar 

  • Feibelman PJ (2002) Partial dissociation of water on Ru (0001). Science 295(5552):99–102

    Article  ADS  Google Scholar 

  • Filhol JS, Doublet ML (2013) An ab initio study of surface electrochemical disproportionation: the case of a water monolayer adsorbed on a Pd (111) surface. Catal Today 202:87–97

    Article  Google Scholar 

  • Filhol JS, Neurock M (2006) Elucidation of the electrochemical activation of water over Pd by first principles. Angew Chem Int Ed 45(3):402–406

    Article  Google Scholar 

  • Fisicaro G, Genovese L, Andreussi O, Mandal S, Nair NN, Marzari N, Goedecker S (2017) Soft-sphere continuum solvation in electronic-structure calculations. J Chem Theor Comput 13(8):3829–3845

    Article  Google Scholar 

  • Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, Van de Walle CG (2014) First-principles calculations for point defects in solids. Rev Mod Phys 86(1):253

    Article  ADS  Google Scholar 

  • Gambu TG, Petersen MA, van Steen E (2017) Probing the edge effect on the ORR activity using platinum nanorods: a DFT study. Catal Today. https://doi.org/10.1016/j.cattod.2017.12.026

  • Gauthier JA, Dickens CF, Chen LD, Doyle AD, Nørskov JK (2017) Solvation effects for oxygen evolution reaction catalysis on IrO2 (110). J Phys Chem C 121(21):11455–11463. https://doi.org/10.1021/acs.jpcc.7b02383

    Article  Google Scholar 

  • Gong XQ, Selloni A, Batzill M, Diebold U (2006) Steps on anatase TiO2 (101). Nat Mater 5(8):665

    Article  ADS  Google Scholar 

  • Gong XQ, Selloni A, Dulub O, Jacobson P, Diebold U (2008) Small Au and Pt clusters at the anatase TiO2 (101) surface: behavior at terraces, steps, and surface oxygen vacancies. J Am Chem Soc 130(1):370–381

    Article  Google Scholar 

  • Göttle AJ, Koper MT (2017) Proton-coupled electron transfer in the electrocatalysis of CO2 reduction: prediction of sequential vs. concerted pathways using DFT. Chem Sci 8(1):458–465

    Article  Google Scholar 

  • Gouy G (1917) Sur la fonction électrocapillaire. Ann Phys (Paris) 9:129–184

    ADS  MATH  Google Scholar 

  • Graetzel M (2012) Energy resources through photochemistry and catalysis. Elsevier, Amsterdam

    Google Scholar 

  • Groß A, Gossenberger F, Lin X, Naderian M, Sakong S, Roman T (2014) Water structures at metal electrodes studied by ab initio molecular dynamics simulations. J Electrochem Soc 161(8):E3015–E3020

    Article  Google Scholar 

  • Halter DP, Palumbo CT, Ziller JW, Gembicky M, Rheingold AL, Evans WJ, Meyer K (2018) Electrocatalytic H2O reduction with f-elements: mechanistic insight and overpotential tuning in a series of lanthanide complexes. J Am Chem Soc 140(7):2587–2594. https://doi.org/10.1021/jacs.7b11532

    Article  Google Scholar 

  • Hansen MH, Rossmeisl J (2016) pH in grand canonical statistics of an electrochemical interface. J Phys Chem C 120(51):29135–29143

    Article  Google Scholar 

  • Hansen MH, Nilsson A, Rossmeisl J (2017) Modelling pH and potential in dynamic structures of the water/Pt (111) interface on the atomic scale. Phys Chem Chem Phys 19(34):23505–23514

    Article  Google Scholar 

  • Haynes WM (2014) CRC handbook of chemistry and physics. CRC press, Boca Raton

    Google Scholar 

  • Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268(5214):1144–1149

    Article  ADS  Google Scholar 

  • Hou Y, Abrams BL, Vesborg PC, Björketun ME, Herbst K, Bech L, Setti AM, Damsgaard CD, Pedersen T, Hansen O et al (2011) Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat Mater 10(6):434

    Article  ADS  Google Scholar 

  • Hu QM, Reuter K, Scheffler M (2007) Towards an exact treatment of exchange and correlation in materials: application to the “CO adsorption puzzle” and other systems. Phys Rev Lett 98(17):176103

    Article  ADS  Google Scholar 

  • Ikeda S, Sugiyama N, Pal B, Marcí G, Palmisano L, Noguchi H, Uosaki K, Ohtani B (2001) Photocatalytic activity of transition-metal-loaded titanium (IV) oxide powders suspended in aqueous solutions: correlation with electron–hole recombination kinetics. Phys Chem Chem Phys 3(2):267–273

    Article  Google Scholar 

  • Janik MJ, Taylor CD, Neurock M (2007) First principles analysis of the electrocatalytic oxidation of methanol and carbon monoxide. Top Catal 46(3–4):306–319

    Article  Google Scholar 

  • Janotti A, Van de Walle CG (2011) LDA+U and hybrid functional calculations for defects in ZnO, SnO2, and TiO2. Phys Status Solidi B 248(4):799–804

    Article  ADS  Google Scholar 

  • Janotti A, Varley J, Rinke P, Umezawa N, Kresse G, Van de Walle C (2010) Hybrid functional studies of the oxygen vacancy in TiO2. Phys Rev B 81(8):085212

    Article  ADS  Google Scholar 

  • Kandoi S, Gokhale A, Grabow L, Dumesic J, Mavrikakis M (2004) Why Au and Cu are more selective than Pt for preferential oxidation of CO at low temperature. Catal Lett 93(1–2): 93–100

    Article  Google Scholar 

  • Keeley DF, Hoffpauir MA, Meriwether JR (1988) Solubility of aromatic hydrocarbons in water and sodium chloride solutions of different ionic strengths: benzene and toluene. J Chem Eng Data 33(2):87–89

    Article  Google Scholar 

  • Kick M, Reuter K, Oberhofer H (2019) Intricacies of DFT+U, Not Only in a Numeric Atom Centered Orbital Framework. J Chem Theory Comput 15(3):1705–1718

    Article  Google Scholar 

  • Kiriukhin MY, Collins KD (2002) Dynamic hydration numbers for biologically important ions. Biophys Chem 99(2):155–168

    Article  Google Scholar 

  • Kirkwood JG (1934) Theory of solutions of molecules containing widely separated charges with special application to zwitterions. J Chem Phys 2(7):351–361

    Article  ADS  MATH  Google Scholar 

  • Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2(5):799–805

    Article  Google Scholar 

  • Komsa HP, Pasquarello A (2013) Finite-size supercell correction for charged defects at surfaces and interfaces. Phys Rev Lett 110(9):095505

    Article  ADS  Google Scholar 

  • Koper MT (2013a) Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem Sci 4(7):2710–2723

    Article  Google Scholar 

  • Koper MT (2013b) Theory of the transition from sequential to concerted electrochemical proton–electron transfer. Phys Chem Chem Phys 15(5):1399–1407

    Article  Google Scholar 

  • Kubas A, Berger D, Oberhofer H, Maganas D, Reuter K, Neese F (2016) Surface adsorption energetics studied with “gold standard” wave-function-based ab initio methods: small-molecule binding to TiO2 (110). J Phys Chem Lett 7(20):4207–4212

    Article  Google Scholar 

  • Lany S, Zunger A (2009) Accurate prediction of defect properties in density functional supercell calculations. Model Simul Mater Sci Eng 17(8):084002

    Article  ADS  Google Scholar 

  • Latimer WM, Pitzer KS, Slansky CM (1993) The free energy of hydration of gaseous ions, and the absolute potential of the normal calomel electrode. In: Pitzer KS (ed) Molecular structure and statistical thermodynamics: selected papers of Kenneth S Pitzer. World Scientific, Singapore, pp 485–489

    Chapter  Google Scholar 

  • Li J, Cushing SK, Zheng P, Senty T, Meng F, Bristow AD, Manivannan A, Wu N (2014a) Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer. J Am Chem Soc 136(23):8438–8449

    Article  Google Scholar 

  • Li P, Henkelman G, Keith JA, Johnson JK (2014b) Elucidation of aqueous solvent-mediated hydrogen-transfer reactions by ab initio molecular dynamics and nudged elastic-band studies of NaBH4 hydrolysis. J Phys Chem C 118(37):21385–21399

    Article  Google Scholar 

  • Long F, McDevit W (1952) Activity coefficients of nonelectrolyte solutes in aqueous salt solutions. Chem Rev 51(1):119–169

    Article  Google Scholar 

  • Maayan G, Gluz N, Christou G (2018) A bioinspired soluble manganese cluster as a water oxidation electrocatalyst with low overpotential. Nat Catal 1(1):48

    Article  Google Scholar 

  • Makov G, Payne M (1995) Periodic boundary conditions in ab initio calculations. Phys Rev B 51(7):4014

    Article  ADS  Google Scholar 

  • Marcus Y (1985) Ions in solution and their solvation. Wiley, New Jersey

    Google Scholar 

  • Marenich A, Kelly C, Thompson J, Hawkins G, Chambers C, Giesen D, Winget P, Cramer C, Truhlar D (2012) Minnesota solvation database–version 2012. University of Minnesota, Minneapolis

    Google Scholar 

  • Mathew K, Sundararaman R, Letchworth-Weaver K, Arias T, Hennig RG (2014) Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J Chem Phys 140(8):084106

    Article  ADS  Google Scholar 

  • Matthey D, Wang J, Wendt S, Matthiesen J, Schaub R, Lægsgaard E, Hammer B, Besenbacher F (2007) Enhanced bonding of gold nanoparticles on oxidized TiO2 (110). Science 315(5819):1692–1696

    Article  ADS  Google Scholar 

  • Mattioli G, Giannozzi P, Amore Bonapasta A, Guidoni L (2013) Reaction pathways for oxygen evolution promoted by cobalt catalyst. J Am Chem Soc 135(41):15353–15363

    Article  Google Scholar 

  • Meng S, Wang E, Gao S (2004) Water adsorption on metal surfaces: a general picture from density functional theory studies. Phys Rev B 69(19):195404

    Article  ADS  Google Scholar 

  • Michaelides A, Alavi A, King DA (2004) Insight into H2O-ice adsorption and dissociation on metal surfaces from first-principles simulations. Phys Rev B 69(11):113404

    Article  ADS  Google Scholar 

  • Mobley DL, Barber AE, Fennell CJ, Dill KA (2008) Charge asymmetries in hydration of polar solutes. J Phys Chem B 112(8):2405–2414

    Article  Google Scholar 

  • Mones L, Csányi G (2012) Topologically invariant reaction coordinates for simulating multistate chemical reactions. J Phys Chem B 116(51):14876–14885

    Article  Google Scholar 

  • Mones L, Kulhánek P, Simon I, Laio A, Fuxreiter M (2009) The energy gap as a universal reaction coordinate for the simulation of chemical reactions. J Phys Chem B 113(22):7867–7873

    Article  Google Scholar 

  • Neurock M (2003) Perspectives on the first principles elucidation and the design of active sites. J Catal 216(1–2):73–88

    Article  Google Scholar 

  • Nielsen M, Björketun ME, Hansen MH, Rossmeisl J (2015) Towards first principles modeling of electrochemical electrode–electrolyte interfaces. Surf Sci 631:2–7

    Article  ADS  Google Scholar 

  • Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108(46):17886–17892

    Article  Google Scholar 

  • Oberhofer H, Reuter K (2013) First-principles thermodynamic screening approach to photo-catalytic water splitting with co-catalysts. J Chem Phys 139(4):044710

    Article  ADS  Google Scholar 

  • Ogasawara H, Brena B, Nordlund D, Nyberg M, Pelmenschikov A, Pettersson L, Nilsson A (2002) Structure and bonding of water on Pt (111). Phys Rev Lett 89(27):276102

    Article  Google Scholar 

  • Onsager L (1936) Electric moments of molecules in liquids. J Am Chem Soc 58(8):1486–1493

    Article  Google Scholar 

  • Otani M, Sugino O (2006) First-principles calculations of charged surfaces and interfaces: A plane-wave nonrepeated slab approach. Phys Rev B 73(11):115407

    Article  ADS  Google Scholar 

  • Otani M, Hamada I, Sugino O, Morikawa Y, Okamoto Y, Ikeshoji T (2008) Electrode dynamics from first principles. J Phys Soc Jpn 77(2):024802–024802

    Article  ADS  Google Scholar 

  • Pérez-Tejeda P, Maestre A, Balón M, Hidalgo J, Muñoz MA, Sánchez M (1987) Setschenow coefficients for caffeine, theophylline and theobromine in aqueous electrolyte solutions. J Chem Soc Farad Trans 1 83(4):1029–1039

    Article  Google Scholar 

  • Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Nørskov JK (2010) How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci 3(9):1311–1315

    Article  Google Scholar 

  • Qian M, Cui S, Jiang D, Zhang L, Du P (2017) Highly efficient and stable water-oxidation electrocatalysis with a very low overpotential using FeNiP substitutional-solid-solution nanoplate arrays. Adv Mater 29(46):1704075

    Article  Google Scholar 

  • Ran J, Zhang J, Yu J, Jaroniec M, Qiao SZ (2014) Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev 43(22):7787–7812

    Article  Google Scholar 

  • Ran J, Gao G, Li FT, Ma TY, Du A, Qiao SZ (2017) Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat Commun 8:13907

    Article  ADS  Google Scholar 

  • Rao RR, Kolb MJ, Halck NB, Pedersen AF, Mehta A, You H, Stoerzinger KA, Feng Z, Hansen HA, Zhou H et al (2017) Towards identifying the active sites on RuO2 (110) in catalyzing oxygen evolution. Energy Environ Sci 10(12):2626–2637

    Article  Google Scholar 

  • Rayalu SS, Jose D, Joshi MV, Mangrulkar PA, Shrestha K, Klabunde K (2013) Photocatalytic water splitting on Au/TiO2 nanocomposites synthesized through various routes: enhancement in photocatalytic activity due to SPR effect. Appl Catal B 142:684–693

    Article  Google Scholar 

  • Reda M, Hansen HA, Vegge T (2018) DFT study of stabilization effects on N-doped graphene for ORR catalysis. Catal Today 312:118–125

    Article  Google Scholar 

  • Reuter K (2016) Ab initio thermodynamics and first-principles microkinetics for surface catalysis. Catal Lett 146(3):541–563

    Article  Google Scholar 

  • Reuter K, Scheffler M (2001) Composition, structure, and stability of RuO2 (110) as a function of oxygen pressure. Phys Rev B 65(3):035406

    Article  ADS  Google Scholar 

  • Reuter K, Plaisance CP, Oberhofer H, Andersen M (2017) Perspective: on the active site model in computational catalyst screening. J Chem Phys 146(4):040901

    Article  ADS  Google Scholar 

  • Ringe S, Oberhofer H, Hille C, Matera S, Reuter K (2016) Function-space-based solution scheme for the size-modified Poisson–Boltzmann equation in full-potential DFT. J Chem Theor Comput 12(8):4052–4066

    Article  Google Scholar 

  • Ringe S, Oberhofer H, Reuter K (2017) Transferable ionic parameters for first-principles Poisson-Boltzmann solvation calculations: neutral solutes in aqueous monovalent salt solutions. J Chem Phys 146(13):134103

    Article  ADS  Google Scholar 

  • Rossmeisl J, Skúlason E, Björketun ME, Tripkovic V, Nørskov JK (2008) Modeling the electrified solid–liquid interface. Chem Phys Lett 466(1):68–71

    Article  ADS  Google Scholar 

  • Rossmeisl J, Chan K, Ahmed R, Tripković V, Björketun ME (2013) pH in atomic scale simulations of electrochemical interfaces. Phys Chem Chem Phys 15(25):10321–10325

    Article  Google Scholar 

  • Scherlis DA, Fattebert JL, Gygi F, Cococcioni M, Marzari N (2006) A unified electrostatic and cavitation model for first-principles molecular dynamics in solution. J Chem Phys 124(7):074103

    Article  ADS  Google Scholar 

  • Schnur S, Groß A (2009) Properties of metal–water interfaces studied from first principles. New J Phys 11(12):125003

    Article  Google Scholar 

  • Setchenow M (1892) Action de l’acide carbonique sur les solutions des sels á acides forts. Ann Chim Phys 25:226

    Google Scholar 

  • Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321):eaad4998

    Google Scholar 

  • Seitz LC, Dickens CF, Nishio K, Hikita Y, Montoya J, Doyle A, Kirk C, Vojvodic A, Hwang HY, Norskov JK et al (2016) A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353(6303):1011–1014

    Article  ADS  Google Scholar 

  • Setvin M, Hao X, Daniel B, Pavelec J, Novotny Z, Parkinson GS, Schmid M, Kresse G, Franchini C, Diebold U (2014) Charge trapping at the step edges of TiO2 anatase (101). Angew Chem Int Ed 53(18):4714–4716

    Article  Google Scholar 

  • Sherwood P, de Vries AH, Guest MF, Schreckenbach G, Catlow CRA, French SA, Sokol AA, Bromley ST, Thiel W, Turner AJ et al (2003) QUASI: a general purpose implementation of the QM/MM approach and its application to problems in catalysis. J Mol Struct 632(1–3):1–28

    Article  Google Scholar 

  • Shi C, Chan K, Yoo JS, Nørskov JK (2016) Barriers of electrochemical CO2 reduction on transition metals. Org Process Res Dev 20(8):1424–1430

    Article  Google Scholar 

  • Shibuya T, Yasuoka K, Mirbt S, Sanyal B (2012) A systematic study of polarons due to oxygen vacancy formation at the rutile TiO2 (110) surface by GGA+U and HSE06 methods. J Phys Condens Matter 24(43):435504

    Article  ADS  Google Scholar 

  • Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W (2010) Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theor Comput 6(5):1509–1519

    Article  Google Scholar 

  • Siahrostami S, Vojvodic A (2015) Influence of adsorbed water on the oxygen evolution reaction on oxides. J Phys Chem C 119(2):1032–1037. https://doi.org/10.1021/jp508932x

    Article  Google Scholar 

  • Sinstein M, Scheurer C, Matera S, Blum V, Reuter K, Oberhofer H (2017) Efficient implicit solvation method for full potential DFT. J Chem Theor Comput 13(11):5582–5603

    Article  Google Scholar 

  • Skúlason E, Karlberg GS, Rossmeisl J, Bligaard T, Greeley J, Jónsson H, Nørskov JK (2007) Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt (111) electrode. Phys Chem Chem Phys 9(25):3241–3250

    Article  Google Scholar 

  • Skúlason E, Tripkovic V, Björketun ME, Gudmundsdottir S, Karlberg G, Rossmeisl J, Bligaard T, Jónsson H, Nørskov JK (2010) Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J Phys Chem C 114(42):18182–18197

    Article  Google Scholar 

  • Sokol AA, Bromley ST, French SA, Catlow CRA, Sherwood P (2004) Hybrid QM/MM embedding approach for the treatment of localized surface states in ionic materials. Int J Quantum Chem 99(5):695–712

    Article  Google Scholar 

  • Stampfl C, Ganduglia-Pirovano MV, Reuter K, Scheffler M (2002) Catalysis and corrosion: the theoretical surface-science context. Surf Sci 500(1–3):368–394

    Article  ADS  Google Scholar 

  • Stecher T, Reuter K, Oberhofer H (2016) First-principles free-energy barriers for photoelectrochemical surface reactions: proton abstraction at TiO2 (110). Phys Rev Lett 117(27):276001

    Article  ADS  Google Scholar 

  • Stern O (1924) The theory of the electrolytic double-layer. Z Elektrochem 30(508):1014–1020

    Google Scholar 

  • Su R, Tiruvalam R, Logsdail AJ, He Q, Downing CA, Jensen MT, Dimitratos N, Kesavan L, Wells PP, Bechstein R et al (2014) Designer titania-supported Au–Pd nanoparticles for efficient photocatalytic hydrogen production. ACS Nano 8(4):3490–3497

    Article  Google Scholar 

  • Sumita M, Hu C, Tateyama Y (2010) Interface water on TiO2 anatase (101) and (001) surfaces: first-principles study with TiO2 slabs dipped in bulk water. J Phys Chem C 114(43):18529–18537

    Article  Google Scholar 

  • Thiyagarajan N, Janmanchi D, Tsai YF, Wanna WH, Ramu R, Chan SI, Zen JM, Yu SSF (2018) A carbon electrode functionalized by a tricopper cluster complex: overcoming overpotential and production of hydrogen peroxide in the oxygen reduction reaction. Angew Chem Int Ed 57:1

    Article  Google Scholar 

  • Tilocca A, Selloni A (2004) Structure and reactivity of water layers on defect-free and defective anatase TiO2 (101) surfaces. J Phys Chem B 108(15):4743–4751

    Article  Google Scholar 

  • Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(8):2999–3094

    Article  Google Scholar 

  • Tsuji I, Kato H, Kobayashi H, Kudo A (2004) Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)x(Zn2)(1−x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. J Am Chem Soc 126(41):13406– 13413

    Article  Google Scholar 

  • Valdes A, Qu ZW, Kroes GJ, Rossmeisl J, Nørskov JK (2008) Oxidation and photo-oxidation of water on TiO2 surface. J Phys Chem C 112:9872

    Article  Google Scholar 

  • Van de Walle CG, Neugebauer J (2004) First-principles calculations for defects and impurities: applications to III-nitrides. J Appl Phys 95(8):3851–3879

    Article  ADS  Google Scholar 

  • Wahlström E, Lopez N, Schaub R, Thostrup P, Rønnau A, Africh C, Lægsgaard E, Nørskov J, Besenbacher F (2003) Bonding of gold nanoclusters to oxygen vacancies on rutile TiO2 (110). Phys Rev Lett 90(2):026101

    Article  ADS  Google Scholar 

  • Wang J, Hammer B (2006) Role of Au+ in supporting and activating Au7 on TiO2 (110). Phys Rev Lett 97(13):136107

    Article  ADS  Google Scholar 

  • Wasileski SA, Janik MJ (2008) A first-principles study of molecular oxygen dissociation at an electrode surface: a comparison of potential variation and coadsorption effects. Phys Chem Chem Phys 10(25):3613–3627

    Article  Google Scholar 

  • Waxman EM, Elm J, Kurtén T, Mikkelsen KV, Ziemann PJ, Volkamer R (2015) Glyoxal and methylglyoxal setschenow salting constants in sulfate, nitrate, and chloride solutions: measurements and Gibbs energies. Environ Sci Technol 49(19):11500–11508

    Article  ADS  Google Scholar 

  • Wood BC, Schwegler E, Choi WI, Ogitsu T (2013) Hydrogen-bond dynamics of water at the interface with InP/GaP (001) and the implications for photoelectrochemistry. J Am Chem Soc 135(42):15774–15783

    Article  Google Scholar 

  • Yang J, Wang D, Han H, Li C (2013) Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res 46(8):1900–1909

    Article  Google Scholar 

  • Zawadzki P, Laursen AB, Jacobsen KW, Dahl S, Rossmeisl J (2012) Oxidative trends of TiO2—hole trapping at anatase and rutile surfaces. Energy Environ Sci 5(12):9866–9869

    Article  Google Scholar 

  • Zhang B, Zheng X, Voznyy O, Comin R, Bajdich M, García-Melchor M, Han L, Xu J, Liu M, Zheng L, García de Arquer FP, Dinh CT, Fan F, Yuan M, Yassitepe E, Chen N, Regier T, Liu P, Li Y, De Luna P, Janmohamed A, Xin HL, Yang H, Vojvodic A, Sargent EH (2016) Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352(6283):333–337

    Article  ADS  Google Scholar 

  • Zhao Z, Li Z, Zou Z (2012) Structure and properties of water on the anatase TiO2 (101) surface: from single-molecule adsorption to interface formation. J Phys Chem C 116(20):11054–11061

    Article  Google Scholar 

  • Zong X, Yan H, Wu G, Ma G, Wen F, Wang L, Li C (2008) Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J Am Chem Soc 130(23):7176–7177

    Article  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges support from the Solar Technologies Go Hybrid initiative of the State of Bavaria and the German Science Foundation DFG (grant no. OB425/4-1) as well as insightful discussions with Dr. Christoph Scheurer and Prof. Karsten Reuter. Creation of some illustrations was aided by Matthias Kick and Markus Sinstein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Oberhofer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Oberhofer, H. (2020). Electrocatalysis Beyond the Computational Hydrogen Electrode. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-44680-6_9

Download citation

Publish with us

Policies and ethics