Skip to main content

Hybrid Halide Perovskites: Fundamental Theory and Materials Design

  • Reference work entry
  • First Online:
Handbook of Materials Modeling

Abstract

Hybrid organic-inorganic halide perovskites have emerged as a disruptive new class of materials, exhibiting optimum properties for a broad range of optoelectronic applications, most notably for photovoltaics. The first report of highly efficient organic-inorganic perovskite solar cells in 2012 (Lee et al., Science 338:643–647, 2012) marked a new era for photovoltaics research, reporting a power conversion efficiency of over 10% (NREL, National renewable energy laboratory: best research-cell efficiencies. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg, Accessed Nov 2017). Only five years after this discovery, perovskite photovoltaic devices have reached a certified efficiency of 22.7%, making them the first-solution processable technology to surpass thin film and multi-crystalline silicon solar cells (NREL, National renewable energy laboratory: best research-cell efficiencies. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg, Accessed Nov 2017). The remarkable development of perovskite solar cells is due to the ideal optoelectronic properties of organic-inorganic lead-halide perovskites. The prototypical compound, methylammonium lead iodide, CH3NH3PbI3 (Stranks and Snaith, Nat Nanotechnol 10:391–402, 2015), is a direct band gap semiconductor with a band gap in the visible, high charge carrier mobility, long diffusion length, and low excitonic binding energy (Johnston and Herz, Acc Chem Res 49(1):146–154, 2016). Due to these ideal properties, CH3NH3PbI3 is also drawing interest across many other applications beyond photovoltaics, such as light-emitting devices (Tan et al., Nat Nanotechnol 9:687–692, 2014), lasers (Wehrenfennig et al., J Phys Chem Lett 5:1300–1306, 2014), photocatalysts (Chen et al., J Am Chem Soc 137(2):974–981, 2015), and transistors (Ward et al., ACS Appl Mater Interf 9(21):18,120–18,126, 2017).

The continued progress of metal-halide perovskite optoelectronics relies not only on a detailed understanding of the electronic and optical properties of materials in this class but also on the development of practical strategies to tune their properties by controlling parameters such as chemical composition. In this context, ab initio computational modelling can play a key role in providing a physical interpretation of experimental measurements and guiding the design of novel halide perovskites with tailored properties.

In this chapter we will present an account of the contributions to this fast-developing field of research from our computational modelling group. The chapter is organized in two sections. The first section focuses on the structural and optoelectronic properties of CH3NH3PbI3. Here, we expand on some of the challenging aspects of modelling the electronic and vibrational properties of CH3NH3PbI3 and discuss the main theoretical results alongside experimental data. The second section discusses the recent computationally led materials design of novel halide perovskites and the principal challenges in replacing Pb2+ in CH3NH3PbI3 by nontoxic elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baikie T, Fang Y, Kadro JM, Schreyer M, Wei F, Mhaisalkar SG, Grätzel M, White TJ (2013) Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3PbI3) for solid-state sensitized solar applications. J Chem Mater A 1:5628

    Article  Google Scholar 

  • Ball JM, Petrozza A (2017) Defects in perovskite-halides and their effects in solar cells. Nat Energ 1(16149)

    Google Scholar 

  • Biswas K, Du MH (2012) Energy transport and scintillation of cerium-doped elpasolite Cs2LiYCl6: hybrid density functional calculations. Phys Rev B 86(1):014102–014109

    Article  ADS  Google Scholar 

  • Brenner TM, Egger DA, Rappe AM, Kronik L, Hodes G, Cahen D (2015) Are mobilities in hybrid organic-inorganic halide perovskites actually high? J Phys Chem Lett 6:4754–4757

    Article  Google Scholar 

  • Brivio F, Bulter KT, Walsh A, van Schilfgaarde M (2014) Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Phys Rev B 89: 155204

    Article  ADS  Google Scholar 

  • Carignano MA, Kachmar A (2015) Thermal effects on CH3NH3PbI3 perovskite from ab initio molecular dynamics simulations. J Phys Chem C 119(17):8991–8997

    Article  Google Scholar 

  • Chen YS, Manser JS, Kamat PV (2015) All solution-processed lead halide perovskite-BiVO4 tandem assembly for photolytic solar fuels production. J Am Chem Soc 137(2):974–981

    Article  Google Scholar 

  • Comin R, Walters G, Thibau ES, Voznyy O, Lu ZH, Sargent EH (2015) Structural, optical, and electronic studies of wide-bandgap lead halide perovskites. J Mater Chem C 3:8839–8843

    Article  Google Scholar 

  • Davies CL, Filip MR, Patel JB, Crothers TW, Verdi C, Wright AD, Milot RL, Giustino F, Johnston MB, Herz LM (2018) Bimolecular recombination in methylammonium lead triiodide perovskite: an inverse absorption process. Nat Commun 9:293

    Article  ADS  Google Scholar 

  • De Wolf S, Holovsky J, Moon SJ, Löper P, Niesen B, Ledinsky M, Haug FJ, Yum JH, Ballif C (2014) Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J Phys Chem Lett 5:1035–1039

    Article  Google Scholar 

  • Deng Z, Wei F, Sun S, Kieslich G, Cheetham AK, Bristowe PD (2016) Exploring the properties of lead-free hybrid double perovskites using a combined computational-experimental approach. J Mater Chem A 4(31):12025–12029

    Article  Google Scholar 

  • D’Innocenzo V, Grancini G, Alcocer MJP, Kandada ARS, Stranks SD, Lee MM, Lanzani G, Snaith HJ, Petrozza A (2014) Excitons versus free charges in organo-lead tri-halide perovskites. Nat Commun 5:3586

    Article  ADS  Google Scholar 

  • Družbicki K, Pinna RS, Rudić S, Jura M, Gorini G, Fernandez-Alonso F (2016) Unexpected cation dynamics in the low-temperature phase of methylammonium lead iodide: the need for improved models. J Phys Chem Lett 7(22):4701–4709

    Google Scholar 

  • Du KZ, Meng W, Wang X, Yan Y, Mitzi DB (2017a) Bandgap engineering of lead-free double perovskite Cs2AgBiBr6 through trivalent metal alloying. Angew Chem Int Ed 56(28): 8158–8162

    Article  Google Scholar 

  • Du KZ, Wang X, Han Q, Yan Y, Mitzi DB (2017b) Heterovalent B-site co-alloying approach for halide perovskite bandgap engineering. ACS Energ Lett 2:2486–2490

    Article  Google Scholar 

  • Elliott RJ (1957) Intensity of the optical absorption by excitons. Phys Rev 108:1384

    Article  ADS  Google Scholar 

  • Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ (2014) Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energ Environ Sci 7:982–988

    Article  Google Scholar 

  • Eperon GE, Leijtens T, Bush KA, Prasanna R, Green T, Jacob Tse-Wei Wang JTW, McMeekin DP, Volonakis G, Milot RL, May R, Palmstrom A, Slotcavage DJ, Belisle RA, Patel JB, Parrott ES, Sutton RJ, Ma W, Moghadam F, Conings B, Babayigit A, Boyen HG, Bent S, Giustino F, Herz LM, Johnston MB, McGehee MD, J SH (2016) Perovskite-perovskite tandem photovoltaics with optimized bandgaps. Science 354:861–865

    Google Scholar 

  • Even J, Pedesseau L, Jancu JM, Katan C (2013) Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J Phys Chem Lett 119: 10161–10177

    Article  Google Scholar 

  • Filip MR, Giustino F (2014) GW quasiparticle band gap of the hybrid organic-inorganic perovskite CH3NH3PbI3. Phys Rev B 90:245145

    Article  ADS  Google Scholar 

  • Filip MR, Giustino F (2016) Computational screening of homovalent lead substitution in organic–inorganic halide perovskites. J Phys Chem C 120:166–173

    Article  Google Scholar 

  • Filip MR, Eperon GE, Snaith HJ, Giustino F (2014) Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat Commun 5:5757

    Article  ADS  Google Scholar 

  • Filip MR, Verdi C, Giustino F (2015) GW band structure and carrier effective mases of CH3NH3PbI3 and hypothetical perovskites of the type APbI3: A = NH4, PH4, AsH4 and SbH4. J Phys Chem C 119:24209–24219

    Article  Google Scholar 

  • Filip MR, Hillman S, Haghighirad AA, Snaith HJ, Giustino F (2016) Band gaps of the lead-free halide double perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from theory and experiment. J Phys Chem Lett 7:2579–2585

    Article  Google Scholar 

  • Filip MR, Liu X, Miglio A, Hautier G, Giustino F (2017) Phase diagrams and stability of lead-free halide double perovskites Cs2BBX6. J Phys Chem C https://doi.org/10.1021/acs.jpcc.7b10370

    Google Scholar 

  • Giustino F, Snaith HJ (2016) Toward lead-free perovskite solar cells. ACS Energy Lett 1(6): 1233–1240

    Article  Google Scholar 

  • Greul E, Petrus ML, Binek A, Docampo P, Bein T (2017) Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications. J Mater Chem A 5(37): 19972–19981

    Article  Google Scholar 

  • Hao F, Stoumpos CC, Chang RPH, Kanatzidis MG (2014) Anomalous band gap behavior in mixed sn and pb perovskites enables broadening of absorption spectrum in solar cells. J Am Chem Soc 136(22):8094–8099

    Article  Google Scholar 

  • Hedin L (1965) New method for calculating the one-particle green’s function with application to the electron-gas problem. Phys Rev 139:A796

    Article  ADS  Google Scholar 

  • Herz LM (2016) Charge-carrier dynamics in organic-inorganic metal halide perovskites. Annu Rev Phys Chem 67:3.1–3.25

    Article  Google Scholar 

  • Hirasawa M, Ishihara T, Goto T, Uchida N Kand Miura (1994) Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3PbI3). Phys B 201:427–430

    Google Scholar 

  • Hybertsen MS, Louie SG (1986) Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys Rev B 34:5390

    Article  ADS  Google Scholar 

  • Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA (2013) The materials project: a materials genome approach to accelerating materials innovation. APL Mater 1:011002

    Article  ADS  Google Scholar 

  • Johnston MB, Herz LM (2016) Hybrid perovskites for photovoltaics: charge-carrier recombination, diffusion, and radiative efficiencies. Acc Chem Res 49(1):146–154

    Article  Google Scholar 

  • Kioupakis E, Zhang P, Cohen ML, Louie SG (2008) GW quasiparticle corrections to the LDA+U/GGA+U electronic structure of bcc hydrogen. Phys Rev B 77:155114

    Article  ADS  Google Scholar 

  • Korbel S, Marques MAL, Botti S (2016) Stability and electronic properties of new inorganic perovskites from high-throughput ab initio calculations. J Mater Chem C 4(15):3157–3167

    Article  Google Scholar 

  • Lahnsteiner J, Kresse G, Kumar A, Sarma DD, Franchini C, Bokdam M (2016) Room-temperature dynamic correlation between methylammonium molecules in lead-iodine based perovskites: an ab initio molecular dynamics perspective. Phys Rev B 94:214114

    Article  ADS  Google Scholar 

  • Ledinský M, Löper P, Niesen B, Holovský J, Moon SJ, Yum JH, De Wolf S, Fejfar A, Ballif C (2015) Raman spectroscopy of organic inorganic halide perovskites. J Phys Chem Lett 6: 401–406

    Article  Google Scholar 

  • Lee B, Stoumpos CC, Zhou N, Hao F, Malliakas C, Yeh C-Y, Marks TJ, Kanatzidis MG, Chang RPH (2014) Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2sni6 as a hole conductor. J Am Chem Soc 136(43):15379–15385

    Article  Google Scholar 

  • Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–647

    Article  ADS  Google Scholar 

  • Leijtens T, Bush K, Cheacharoen R, Beal R, Bowring A, McGehee MD (2017) Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and thermal stability. J Mater Chem A 5:11483

    Article  Google Scholar 

  • van Loef EVD, Dorenbos P, van Eijk CWE, Krämer KW, Güdel HU (2002) Scintillation and spectroscopy of the pure and Ce3+-doped elpasolites: Cs2LiYX6 (X = Cl, Br). Journal of Physics: Condensed Matter 14(36):8481

    ADS  Google Scholar 

  • Luo J, Li S, Wu H, Zhou Y, Li Y, Liu J, Li J, Li K, Yi F, Niu G, Tang J (2017) Cs2AgInCl6 double perovskite single crystals: Parity forbidden transitions and their application for sensitive and fast UV photodetectors. ACS Photonics https://doi.org/10.1021/acsphotonics.7b00837

    Google Scholar 

  • Marzari N, Vanderbilt D (1997) Maximally localized generalized Wannier functions for composite energy bands. Phys Rev B 56:12,847

    Article  Google Scholar 

  • McClure ET, Ball MR, Windl W, Woodward PM (2016) Cs2AgBiX6 (X = Br, Cl) - new visible light absorbing, lead-free halide perovskite semiconductors. Chem Mater 28:1348–1354

    Article  Google Scholar 

  • McMeekin DP, Sadoughi G, Rehman W, Eperon GE, Saliba M, Hörantner MT, Haghighirad AA, Sakai N, Korte L, Rech B, Johnston MB, Herz LM, Snaith HJ (2016) A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 8:151–155

    Article  ADS  Google Scholar 

  • Megaw H (1973) Crystal Structures. A working approach. W. B. Saunders Company, Philadelphia, London, Toronto

    Google Scholar 

  • Menéndez-Proupin E, Palacios P, Wahnón P, Conesa JC (2014) Self-consistent relativistic band structure of the CH3NH3PbI3 perovskite. Phys Rev B 90:045,207

    Article  Google Scholar 

  • Meyer G (1980) Halo-elpasolites. VI. the first iodo-elpasolites, Cs2BIMIIII6 (BI = Li, Na). Z Naturforsch B 35:268–276

    Article  Google Scholar 

  • Meyer G, Gaebell H (1978) Halo-elpasolites. iv. on bromo-elpasolites Cs2BIMIIIBr6, BI = Li, Na; MIII = Sc, Y, La–Lu, In, V, Cr). Z Naturforsch B 33(12):1476–1478

    Article  Google Scholar 

  • Milot RL, Eperon GE, Snaith HJ, Johnston MB, Herz LM (2015) Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films. Adv Func Mater 25:6218–6227

    Article  Google Scholar 

  • Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang JTW, Stranks SD, Snaith HJ, Nicholas RJ (2015) Direct measurement of the exciton binding energy and effective masses for charge carriers in an organic-inorganic tri-halide perovskite. Nat Phys 11:582–587

    Article  Google Scholar 

  • Morss LR, Robinson WR (1972) Crystal structure of Cs2BiNaCl6. Acta Cryst B 28:653–654

    Article  Google Scholar 

  • Morss LR, Siegal M, Stenger L, Edelstein N (1970) Preparation of cubic chloro complex compounds of trivalent metals: Cs2NaMCl6. Inorg Chem 9(7):1771–1775

    Article  Google Scholar 

  • Mosconi E, Quarti C, Ivanovska T, Ruani G, F DA (2014) Structural and electronic properties of organo-halide lead perovskites: a combined IR-spectroscopy and ab initio molecular dynamics investigation. Phys Chem Chem Phys 16:16137–16144

    Google Scholar 

  • Motta C, El-Mellouhi F, Kais S, Tabet N, Alharbi F, Sanvito S (2015) Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3. Nat Commun 6(7026):1–7

    Google Scholar 

  • Noh JH, Im SH, Heo JH, Mandal TN, Seok SI (2013) Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett 13(4):1764–1769

    Article  ADS  Google Scholar 

  • NREL (2017) National renewable energy laboratory: best research-cell efficiencies.

    Google Scholar 

  • Pan W, Wu H, Luo J, Deng Z, Ge C, Chen C, Jiang X, Yin WJ, Niu G, Zhu L, Yin L, Zhou Y, Xie Q, Ke X, Sui M, Tang J (2017) Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat Photon 11(11):726–732

    Article  ADS  Google Scholar 

  • Park BW, Philippe B, Zhang X, Rensmo H, Boschloo G, Johansson EMJ (2015) Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application. Adv Mater 27(43):6806–6813

    Article  Google Scholar 

  • Pérez-Osorio MA, Milot RL, Filip MR, Patel JB, Herz LM, Johnston MB, Giustino F (2015) Vibrational properties of the organic-inorganic halide perovskite CH3NH3PbI3 from theory and experiment: factor group analysis, first principles calculations, and low-temperature infrared spectra. J Phys Chem C 119:25703–25718

    Article  Google Scholar 

  • Pérez-Osorio MA, Champagne A, Zacharias M, Rignanese GM, Giustino F (2017) Van der Waals interactions and anharmonicity in the lattice vibrations, dielectric constants, effective charges, and infrared spectra of the organic-inorganic halide perovskite CH3NH3PbI3. J Phys Chem C 121:18459–18471

    Article  Google Scholar 

  • Poglitsch A, Weber D (1987) Dynamic disorder in methylammoniumhalogenoplumbates (II) observed by millimeter-wave spectroscopy. J Chem Phys 87:6373

    Article  ADS  Google Scholar 

  • van Roosbroeck W, Shockley W (1954) Photon-radiative recombination of electrons and holes in germanium. Phys Rev 94:1558–1560

    Article  ADS  Google Scholar 

  • Sakai N, Haghighirad AA, Filip MR, Nayak PK, Nayak S, Ramadan A, Wang Z, Giustino F, Snaith HJ (2017) Solution-processed cesium hexabromopalladate(iv), Cs2PdBr6, for optoelectronic applications. J Am Chem Soc 139(17):6030–6033

    Article  Google Scholar 

  • Saliba M, Matsui T, Domanski K, Seo JY, Ummadisingu A, Zakeeruddin SM, Correa-Baena JP, Tress WR, Abate A, Hagfeldt A, Grätzel M (2016) Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354:206–209 https://doi.org/10.1126/science.aah5557

    Article  ADS  Google Scholar 

  • Saparov B, Hong F, Sun JP, Duan HS, Meng W, Cameron S, Hill IG, Yan Y, Mitzi DB (2015) Thin-film preparation and characterization of Cs3Sb2I9: a lead-free layered perovskite semiconductor. Chem Mater 27(16):5622–5632

    Article  Google Scholar 

  • Scherpelz P, Govoni M, Hamada I, Galli G (2016) Implementation and validation of fully relativistic GW calculations: spin-orbit coupling in molecules, nanocrystals, and solids. J Chem Thory Comput 12(8):3523–3544

    Article  Google Scholar 

  • Slavney AH, Hu T, Lindenberg AM, Karunadasa HI (2016) A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J Am Chem Soc 138:2138–2141

    Article  Google Scholar 

  • Souza I, Marzari N, Vanderbilt D (2001) Maximally localized Wannier functions for entangled energy bands. Phys Rev B 65:035109

    Article  ADS  Google Scholar 

  • Stoumpos CC, Malliakas CD, Kanatzidis MG (2013) Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem 52(15):9019–9038

    Article  Google Scholar 

  • Stranks S, Snaith HJ (2015) Perovskites for photovoltaic and light-emitting devices. Nat Nanotechnol 10:391–402

    Article  ADS  Google Scholar 

  • Tan ZK, Moghaddam R, Lai ML, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos LM, Credgington D, Hanush F, Bein T, Snaith HJ, Friend RH (2014) Bright light-emitting diodes based on organometal halide perovskites. Nat Nanotechnol 9:687–692

    Article  ADS  Google Scholar 

  • Tran TT, Panella JR, Chamorro JR, Morey JR, McQueen TM (2017) Designing indirect-direct bandgap transitions in double perovskites. Mater Horiz 4:688–693

    Article  Google Scholar 

  • van Schilfgaarde M, Kotani T, Faleev S (2006) Quasiparticle self-consistent GW theory. Phys Rev Lett 96:226402

    Article  ADS  Google Scholar 

  • Vasala S, Karppinen M (2015) A2BB″O6 perovskites: a review. Prog Solid State Chem 43(1):1–36

    Article  Google Scholar 

  • Verdi C, Giustino F (2015) Fröhlich electron-phonon vertex from first principles. Phys Rev Lett 115(17):176401

    Article  ADS  Google Scholar 

  • Volonakis G, Filip MR, Haghighirad AA, Sakai N, Wenger B, Snaith HJ, Giustino F (2016) Lead-free halide double perovskites via heterovalent substitution of noble metals. J Phys Chem Lett 7:1254–1259

    Article  Google Scholar 

  • Volonakis G, Haghighirad AA, Milot RL, Sio WH, Filip MR, Wenger B, Johnston MB, Herz LM, Snaith HJ, Giustino F (2017a) Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap. J Phys Chem Lett 8(4):772–778

    Article  Google Scholar 

  • Volonakis G, Haghighirad AA, Snaith HJ, Giustino F (2017b) Route to stable lead-free double perovskites with the electronic structure of CH3NH3PbI3: a case for mixed-cation [Cs/CH3NH3/CH(NH2)2]2InBiBr6. J Phys Chem Lett 8:3917

    Article  Google Scholar 

  • Ward JW, Smith HL, Zeidell A, Diemer PJ, Baker SR, Lee H, Payne MM, Anthony JE, Guthold M, Jurchescu OD (2017) Solution-processed organic and halide perovskite transistors on hydrophobic surfaces. ACS Appl Mater Interf 9(21):18120–18126

    Article  Google Scholar 

  • Wehrenfennig C, Liu M, Snaith HJ, Johnston MB, Herz LM (2014) Homogeneous emission line broadening in the organo lead halide perovskite CH3NH3PbI3xClx. J Phys Chem Lett 5: 1300–1306

    Article  Google Scholar 

  • Wei F, Deng Z, Sun S, Xie F, Kieslich G, Evans DM, Carpenter MA, Bristowe PD, Cheetham AK (2016) The synthesis, structure and electronic properties of a lead-free hybrid inorganic-organic double perovskite (MA)2KBiCl6 (MA = methylammonium). Mater Horiz 3(4):328–332

    Article  Google Scholar 

  • Wei F, Deng Z, Sun S, Zhang F, Evans DM, Kieslich G, Tominaka S, Carpenter MA, Zhang J, Bristowe PD, Cheetham AK (2017) Synthesis and properties of a lead-free hybrid double perovskite: (CH3NH3)2AgBiBr6. Chem Mater 29(3):1089–1094

    Article  Google Scholar 

  • Weller MT, Weber OJ, Henry PF, DiPumpo AM, Hansen TC (2015) Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. Chem Commun 51:4180–4183

    Article  Google Scholar 

  • Wright AD, Verdi C, Milot RL, Eperon GE, Pérez-Osorio MA, Snaith HJ, Giustino F, Johnston MB, Herz LM (2016) Electron-phonon coupling in hybrid lead halide perovskites. Nat Commun 7(11755):1–9

    Google Scholar 

  • Xiao Z, Du KZ, Meng W, Wang J, Mitzi DB, Yan Y (2017a) Intrinsic instability of Cs2In(I)M(III)X6 (M = Bi, Sb; X = halogen) double perovskites: a combined density functional theory and experimental study. J Am Chem Soc 139(17):6054–6057

    Article  Google Scholar 

  • Xiao Z, Meng W, Wang J, Mitzi DB, Yan Y (2017b) Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. Mater Horiz 4(2):206–216

    Article  Google Scholar 

  • Zhao XG, Yang D, Sun Y, Li T, Zhang L, Yu L, Zunger A (2017a) Cu-In halide perovskite solar absorbers. J Am Chem Soc 139(19):6718–6725

    Article  Google Scholar 

  • Zhao XG, Yang JH, Fu Y, Yang D, Xu Q, Yu L, Wei SH, Zhang L (2017b) Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J Am Chem Soc 139(7):2630–2638

    Article  Google Scholar 

  • Zhou J, Xia Z, Molokeev MS, Zhang X, Peng D, Liu Q (2017) Composition design, optical gap and stability investigations of lead-free halide double perovskite Cs2AgInCl6. J Mater Chem A 5(29):15031–15037

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the Graphene Flagship (Horizon 2020 Grant No. 696656 – GrapheneCore1), the Leverhulme Trust (Grant RL-2012- 001), and the UK Engineering and Physical Sciences Research Council (Grant No. EP/J009857/1, EP/M020517/1 and EP/ L024667/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feliciano Giustino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Filip, M., Volonakis, G., Giustino, F. (2020). Hybrid Halide Perovskites: Fundamental Theory and Materials Design. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-44680-6_23

Download citation

Publish with us

Policies and ethics