Skip to main content

Posterior Approaches to the Thoracolumbar Spine: Open Versus MISS

  • Reference work entry
  • First Online:
Handbook of Spine Technology
  • 802 Accesses

Abstract

The traditional open approach to the thoracolumbar spine remains one of the most powerful and widely practiced approaches in all of spine surgery. Over the past 2 decades or so, minimally invasive options have gained increasing traction and have been associated with reduced blood loss, paraspinal musculature disruption, infection rates, and length of stay, as well as hospitalization costs, without compromising clinical outcomes or radiographic fusion rates. The minimally invasive approach is not necessarily appropriate for all patients and pathologies, and the two approaches are not mutually exclusive. Currently an array of open and minimally invasive options exist for posterior thoracolumbar fusion, including midline and paramedian approaches, conventional and tubular retractors, posterior and transforaminal interbody as well as posterolateral fusion options, static and expandable cages, and various fixation systems, including pedicle (both open and percutaneous) and cortical bone trajectory screws. More recently, endoscopic spine surgery has garnered growing attention as an ultra minimally invasive alternative and may yet play a significant role in neural decompression and spinal fusion. Furthermore, advances in navigation, robotics, osteobiologics, and perioperative protocols will hopefully translate into increased safety, efficacy, and reproducibility for posterior thoracolumbar fusion procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdu WA, Sacks OA, Tosteson ANA, Zhao W, Tosteson TD, Morgan TS et al (2018) Long-term results of surgery compared with nonoperative treatment for lumbar degenerative spondylolisthesis in the spine patient outcomes research trial (SPORT). Spine (Phila Pa 1976) 43:1619–1630

    Article  Google Scholar 

  • Abudou M, Chen X, Kong X, Wu T (2013) Surgical versus non-surgical treatment for thoracolumbar burst fractures without neurological deficit. Cochrane Database Syst Rev 6:CD005079

    Google Scholar 

  • Adogwa O, Parker SL, Bydon A, Cheng J, Mcgirt MJ (2011) Comparative effectiveness of minimally invasive versus open transforaminal lumbar interbody fusion: 2-year assessment of narcotic use, return to work, disability, and quality of life. J Spinal Disord Tech 24(8):479–484

    Article  PubMed  Google Scholar 

  • Alvi MA, Alkhataybeh R, Wahood W et al (2018) The impact of adding posterior instrumentation to transpsoas lateral fusion: a systematic review and meta-analysis. J Neurosurg Spine 30(2):211–221

    Article  PubMed  Google Scholar 

  • Banwart JC, Asher MA, Hassanein RS (1995) Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine 20(9):1055–1060

    Article  CAS  PubMed  Google Scholar 

  • Benglis D, Wang MY, Levi AD (2008) A comprehensive review of the safety profile of bone morphogenetic protein in spine surgery. Neurosurgery 62(5 Suppl 2):ONS423–ONS431

    PubMed  Google Scholar 

  • Blumenthal C, Curran J, Benzel EC et al (2013) Radiographic predictors of delayed instability following decompression without fusion for degenerative grade I lumbar spondylolisthesis. J Neurosurg Spine 18(4):340–346

    Article  PubMed  Google Scholar 

  • Boktor JG, Pockett RD, Verghese N (2018) The expandable transforaminal lumbar interbody fusion – two years follow-up. J Craniovertebr Junction Spine 9(1):50–55

    PubMed  PubMed Central  Google Scholar 

  • Brox JI, Sørensen R, Friis A, Nygaard Ø, Indahl A, Keller A et al (2003) Randomized clinical trial of lumbar instrumented fusion and cognitive intervention and exercises in patients with chronic low back pain and disc degeneration. Spine (Phila Pa 1976) 28:1913–1921

    Article  Google Scholar 

  • Brusko GD, Perez-roman RJ, Tapamo H, Burks SS, Serafini AN, Wang MY (2019) Preoperative SPECT imaging as a tool for surgical planning in patients with axial neck and back pain. Neurosurg Focus 47(6):E19

    Article  PubMed  Google Scholar 

  • Carlson BB, Saville P, Dowdell J et al (2019) Restoration of lumbar lordosis after minimally invasive transforaminal lumbar interbody fusion: a systematic review. Spine J 19(5):951–958

    Article  PubMed  Google Scholar 

  • Chung KJ, Suh SW, Desai S, Song HR (2008) Ideal entry point for the thoracic pedicle screw during the free hand technique. Int Orthop 32(5):657–662

    Article  PubMed  Google Scholar 

  • Cloward RB (1952) The treatment of ruptured lumbar intervertebral disc by vertebral body fusion. III. Method of use of banked bone. Ann Surg 136:987–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Court C, Vincent C (2012) Percutaneous fixation of thoracolumbar fractures: current concepts. Orthop Traumatol Surg Res 98(8):900–909

    Article  CAS  PubMed  Google Scholar 

  • Deininger MH, Unfried MI, Vougioukas VI, Hubbe U (2009) Minimally invasive dorsal percutaneous spondylodesis for the treatment of adult pyogenic spondylodiscitis. Acta Neurochir 151(11):1451–1457

    Article  PubMed  Google Scholar 

  • Dietz N, Sharma M, Adams S et al (2019) Enhanced recovery after surgery (ERAS) for spine surgery: a systematic review. World Neurosurg 130:415–426

    Article  PubMed  Google Scholar 

  • Duthey B (2013) Priority Medicines for Europe and the World “A Public Health Approach to Innovation”, Background Paper 6.24, Low back pain. WHO, Geneva

    Google Scholar 

  • Eck JC, Sharan A, Ghogawala Z et al (2014) Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 7: lumbar fusion for intractable low-back pain without stenosis or spondylolisthesis. J Neurosurg Spine 21(1):42–47

    Article  PubMed  Google Scholar 

  • Fan SW, Hu ZJ, Fang XQ, Zhao FD, Huang Y, Yu HJ (2010) Comparison of paraspinal muscle injury in one-level lumbar posterior inter-body fusion: modified minimally invasive and traditional open approaches. Orthop Surg 2(3):194–200

    Article  PubMed  PubMed Central  Google Scholar 

  • Fehlings MG, Brodke DS, Norvell DC, Dettori JR (2010) The evidence for intraoperative neurophysiological monitoring in spine surgery: does it make a difference? Spine 35(9 Suppl):S37–S46

    PubMed  Google Scholar 

  • Foley KT, Smith MM (1997) Microendoscopic discectomy. Tech Neurosurg 3:301–307

    Google Scholar 

  • Foley KT, Holly LT, Schwender JD (2003) Minimally invasive lumbar fusion. Spine 28(15 Suppl):S26–S35

    PubMed  Google Scholar 

  • Försth P, Ólafsson G, Carlsson T, Frost A, Borgström F, Fritzell P et al (2016) A randomized, controlled trial of fusion surgery for lumbar spinal stenosis. N Engl J Med 374:1413–1423

    Article  PubMed  CAS  Google Scholar 

  • Fritzell P, Hägg O, Wessberg P, Nordwall A (2001) Lumbar fusion versus nonsurgical treatment for chronic low back pain: a multicenter randomized controlled trial from the Swedish lumbar spine study group. Spine (Phila Pa 1976) 26:2521–2534

    Article  CAS  Google Scholar 

  • Fu R, Selph S, Mcdonagh M et al (2013) Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion: a systematic review and meta-analysis. Ann Intern Med 158(12):890–902

    Article  PubMed  Google Scholar 

  • Ghogawala Z, Dziura J, Butler WE, Dai F, Terrin N, Magge SN et al (2016) Laminectomy plus fusion versus laminectomy alone for lumbar spondylolisthesis. N Engl J Med 374:1424–1434

    Article  CAS  PubMed  Google Scholar 

  • Glassman SD, Bridwell K, Dimar JR, Horton W, Berven S, Schwab F (2005) The impact of positive sagittal balance in adult spinal deformity. Spine 30(18):2024–2029

    Article  PubMed  Google Scholar 

  • Goldstein CL, Macwan K, Sundararajan K, Rampersaud YR (2014) Comparative outcomes of minimally invasive surgery for posterior lumbar fusion: a systematic review. Clin Orthop Relat Res 472(6):1727–1737

    Article  PubMed  PubMed Central  Google Scholar 

  • Harms J, Rolinger H (1982) A one-stager procedure in operative treatment of spondylolistheses: dorsal traction-reposition and anterior fusion. Z Orthop Ihre Grenzgeb 120:343–347

    Article  CAS  PubMed  Google Scholar 

  • Harrington PR (1962) Treatment of scoliosis. Correction and internal fixation by spine instrumentation. J Bone Joint Surg Am 44:591–610

    Article  PubMed  Google Scholar 

  • Hibbs RA (1911) An operation for progressive spinal deformities. N Y Med 121:1013

    Google Scholar 

  • Hoy D, March L, Brooks P et al (2014) The global burden of low back pain: estimates from the global burden of disease 2010 study. Ann Rheum Dis 73(6):968–974

    Article  PubMed  Google Scholar 

  • Huang M, Brusko GD, Borowsky PA, Kolcun JPG, Heger JA, Epstein RH, Grossman J, Wang MY (2020) The University of Miami spine surgery ERAS protocol: a review of our journey. J Spine Surg 6(Suppl 1):S29–S34. https://doi.org/10.21037/jss.2019.11.10

    Article  PubMed  PubMed Central  Google Scholar 

  • Jagannathan J, Sansur CA, Oskouian RJ, Fu KM, Shaffrey CI (2009) Radiographic restoration of lumbar alignment after transforaminal lumbar interbody fusion. Neurosurgery 64(5):955–963

    Article  PubMed  Google Scholar 

  • Jeswani S, Drazin D, Hsieh JC et al (2014) Instrumenting the small thoracic pedicle: the role of intraoperative computed tomography image-guided surgery. Neurosurg Focus 36(3):E6

    Article  PubMed  Google Scholar 

  • Kambin P, Zhou L (1996) History and current status of percutaneous arthroscopic disc surgery. Spine (Phila Pa 1976) 21(Suppl 24):S57–S61

    Article  Google Scholar 

  • Khan NR, Thompson CJ, Decuypere M et al (2014) A meta-analysis of spinal surgical site infection and vancomycin powder. J Neurosurg Spine 21(6):974–983

    Article  PubMed  Google Scholar 

  • Khan NR, Clark AJ, Lee SL, Venable GT, Rossi NB, Foley KT (2015) Surgical outcomes for minimally invasive vs open Transforaminal lumbar interbody fusion: an updated systematic review and meta-analysis. Neurosurgery 77(6):847–874

    Article  PubMed  Google Scholar 

  • Kim YJ, Lenke LG, Bridwell KH, Cho YS, Riew KD (2004) Free hand pedicle screw placement in the thoracic spine: is it safe? Spine 29(3):333–342

    Article  PubMed  Google Scholar 

  • Kim DY, Lee SH, Chung SK, Lee HY (2005) Comparison of multifidus muscle atrophy and trunk extension muscle strength: percutaneous versus open pedicle screw fixation. Spine 30(1):123–129

    Article  PubMed  Google Scholar 

  • Klatt JW, Mickelson J, Hung M, Durcan S, Miller C, Smith JT (2013) A randomized prospective evaluation of 3 techniques of postoperative pain management after posterior spinal instrumentation and fusion. Spine 38(19):1626–1631

    Article  PubMed  Google Scholar 

  • Knoeller SM, Seifried C (2000) Historical perspective: history of spinal surgery. Spine 25(21):2838–2843

    Article  CAS  PubMed  Google Scholar 

  • Kochanski RB, Lombardi JM, Laratta JL, Lehman RA, O’toole JE (2019) Image-guided navigation and robotics in spine surgery. Neurosurgery 84(6):1179–1189

    Article  PubMed  Google Scholar 

  • Kolcun JPG, Brusko GD, Basil GW, Epstein R, Wang MY (2019) Endoscopic transforaminal lumbar interbody fusion without general anesthesia: operative and clinical outcomes in 100 consecutive patients with a minimum 1-year follow-up. Neurosurg Focus 46(4):E14

    Article  PubMed  Google Scholar 

  • Kosmopoulos V, Schizas C (2007) Pedicle screw placement accuracy: a meta-analysis. Spine 32(3):E111–E120

    Article  PubMed  Google Scholar 

  • Lewandrowski KU, Soriano-Sanchez JA, Zhang X et al (2020) Regional variations in acceptance, and utilization of minimally invasive spinal surgery techniques among spine surgeons: results of a global survey. J Spine Surg 6(Suppl 1):S260–S274

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu XY, Qiu GX, Weng XS, Yu B, Wang YP (2014) What is the optimum fusion technique for adult spondylolisthesis-PLIF or PLF or PLIF plus PLF? A meta-analysis from 17 comparative studies. Spine 39(22):1887–1898

    Article  PubMed  Google Scholar 

  • Machado GC, Maher CG, Ferreira PH et al (2017) Trends, complications, and costs for hospital admission and surgery for lumbar spinal stenosis. Spine 42(22):1737–1743

    Article  PubMed  Google Scholar 

  • Macnab I, Dall D (1971) The blood supply of the lumbar spine and its application to the technique of intertransverse lumbar fusion. J Bone Joint Surg Br 53(4):628–638

    Article  CAS  PubMed  Google Scholar 

  • Magerl F (1982) External skeletal fixation of the lower thoracic and the lumbar spine. In: Uhthoff HK, Stahl E (eds) Current concepts of external fixation of fractures. Springer, New York, pp 353–366

    Chapter  Google Scholar 

  • Makanji H, Schoenfeld AJ, Bhalla A, Bono CM (2018) Critical analysis of trends in lumbar fusion for degenerative disorders revisited: influence of technique on fusion rate and clinical outcomes. Eur Spine J 27:1868–1876

    Article  PubMed  Google Scholar 

  • Martin BI, Mirza SK, Spina N, Spiker WR, Lawrence B, Brodke DS (2019) Trends in lumbar fusion procedure rates and associated hospital costs for degenerative spinal diseases in the United States, 2004 to 2015. Spine 44(5):369–376

    Article  PubMed  Google Scholar 

  • Mccoy S, Tundo F, Chidambaram S, Baaj AA (2019) Clinical considerations for spinal surgery in the osteoporotic patient: a comprehensive review. Clin Neurol Neurosurg 180:40–47

    Article  CAS  PubMed  Google Scholar 

  • Mobbs RJ, Sivabalan P, Li J (2012) Minimally invasive surgery compared to open spinal fusion for the treatment of degenerative lumbar spine pathologies. J Clin Neurosci 19(6):829–835

    Article  PubMed  Google Scholar 

  • Mobbs RJ, Li J, Sivabalan P, Raley D, Rao PJ (2014) Outcomes after decompressive laminectomy for lumbar spinal stenosis: comparison between minimally invasive unilateral laminectomy for bilateral decompression and open laminectomy: clinical article. J Neurosurg Spine 21(2):179–186

    Article  PubMed  Google Scholar 

  • Mummaneni PV, Park P, Shaffrey CI et al (2019) The MISDEF2 algorithm: an updated algorithm for patient selection in minimally invasive deformity surgery. J Neurosurg Spine 32(2):221–228

    Article  PubMed  Google Scholar 

  • Murase S, Oshima Y, Takeshita Y et al (2017) Anterior cage dislodgement in posterior lumbar interbody fusion: a review of 12 patients. J Neurosurg Spine 27(1):48–55

    Article  PubMed  Google Scholar 

  • Narain AS, Hijji FY, Duhancioglu G et al (2018) Patient perceptions of minimally invasive versus open spine surgery. Clin Spine Surg 31(3):E184–E192

    Article  PubMed  Google Scholar 

  • Pearson A, Blood E, Lurie J et al (2011) Predominant leg pain is associated with better surgical outcomes in degenerative spondylolisthesis and spinal stenosis: results from the spine patient outcomes research trial (SPORT). Spine 36(3):219–229

    Article  PubMed  PubMed Central  Google Scholar 

  • Phan K, Rao PJ, Kam AC, Mobbs RJ (2015a) Minimally invasive versus open transforaminal lumbar interbody fusion for treatment of degenerative lumbar disease: systematic review and meta-analysis. Eur Spine J 24(5):1017–1030

    Article  PubMed  Google Scholar 

  • Phan K, Hogan J, Maharaj M, Mobbs RJ (2015b) Cortical bone trajectory for lumbar pedicle screw placement: a review of published reports. Orthop Surg 7(3):213–221

    Article  PubMed  PubMed Central  Google Scholar 

  • Prevalence and most common causes of disability among adults – United States, 2005 (2009) MMWR Morb Mortal Wkly Rep 58(16):421–426

    Google Scholar 

  • Puvanesarajah V, Liauw JA, Lo SF, Lina IA, Witham TF (2014) Techniques and accuracy of thoracolumbar pedicle screw placement. World J Orthop 5(2):112–123

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao PJ, Pelletier MH, Walsh WR, Mobbs RJ (2014) Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration. Orthop Surg 6(2):81–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Roy-Camille R, Saillant G, Berteaux D et al (1976) Osteosynthesis of thoracolumbar spine fractures with metal plates screwed through the vertebral pedicles. Reconstr Surg Traumatol 15:2

    CAS  PubMed  Google Scholar 

  • Sakaura H, Ikegami D, Fujimori T et al (2019) Early cephalad adjacent segment degeneration after posterior lumbar interbody fusion: a comparative study between cortical bone trajectory screw fixation and traditional trajectory screw fixation. J Neurosurg Spine 32(2):155–159

    Article  PubMed  Google Scholar 

  • Santoni BG, Hynes RA, Mcgilvray KC et al (2009) Cortical bone trajectory for lumbar pedicle screws. Spine J 9(5):366–373

    Article  CAS  PubMed  Google Scholar 

  • Schwab FJ, Blondel B, Bess S et al (2013) Radiographical spinopelvic parameters and disability in the setting of adult spinal deformity: a prospective multicenter analysis. Spine 38(13):E803–E812

    Article  PubMed  Google Scholar 

  • Schwab F, Blondel B, Chay E et al (2014) The comprehensive anatomical spinal osteotomy classification. Neurosurgery 74(1):112–120

    Article  PubMed  Google Scholar 

  • Seaman S, Kerezoudis P, Bydon M, Torner JC, Hitchon PW (2017) Titanium vs. polyetheretherketone (PEEK) interbody fusion: meta-analysis and review of the literature. J Clin Neurosci 44:23–29

    Article  CAS  PubMed  Google Scholar 

  • Sears W (2005) Posterior lumbar interbody fusion for lytic spondylolisthesis: restoration of sagittal balance using insert-and-rotate interbody spacers. Spine J 5(2):161–169

    Article  PubMed  Google Scholar 

  • Sim HB, Murovic JA, Cho BY, Lim TJ, Park J (2010) Biomechanical comparison of single-level posterior versus transforaminal lumbar interbody fusions with bilateral pedicle screw fixation: segmental stability and the effects on adjacent motion segments. J Neurosurg Spine 12(6):700–708

    Article  PubMed  Google Scholar 

  • Wang MY, Lerner J, Lesko J, Mcgirt MJ (2012) Acute hospital costs after minimally invasive versus open lumbar interbody fusion: data from a US national database with 6106 patients. J Spinal Disord Tech 25(6):324–328

    Article  CAS  PubMed  Google Scholar 

  • Wiltse LL, Bateman JG, Hutchinson RH, Nelson WE (1968) The paraspinal sacrospinalis-splitting approach to the lumbar spine. J Bone Joint Surg Am 50:919–926

    Article  CAS  PubMed  Google Scholar 

  • Yoon JW, Wang MY (2019) The evolution of minimally invasive spine surgery. J Neurosurg Spine 30:149–158

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Li, Y., Kam, A. (2021). Posterior Approaches to the Thoracolumbar Spine: Open Versus MISS. In: Cheng, B.C. (eds) Handbook of Spine Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-44424-6_89

Download citation

Publish with us

Policies and ethics