Skip to main content

Design Rationale for Posterior Dynamic Stabilization Relevant for Spine Surgery

  • Reference work entry
  • First Online:
Handbook of Spine Technology

Abstract

Motion sparing posterior dynamic stabilization (PDS) devices have been introduced as an alternative to spinal fusion. A majority of these devices are based on instrumentation and techniques that surgeons are most familiar with, due to their experience with posterior fixation for spinal fusion. The goal of this new generation of devices is to allow controlled motion of the treated spinal segment that closely mimics physiologic spinal kinetics and kinematics, with the most common indication for use being spinal stenosis. The rationale for dynamic stabilization as an alternative to spinal fusion is to restore spinal stability, while avoiding (or delaying) degeneration of adjacent segments. Most commonly used PDS devices are either pedicle screw-based or interspinous process-based. The pedicle screw-based devices are commonly approved for use in spinal fusion, or as an adjunct to fusion, but not as stand-alone devices in the absence of fusion. Despite familiar surgical techniques and extensive preclinical testing, most pedicle screw-based PDS devices are still considered investigational for the treatment of disorders of the spine. One of the main reasons is that it is not yet clear whether PDS truly offer advantages over conventional spinal fusion or decompression alone, in terms of patient reported outcome scores. Other technical factors that pose a challenge for PDS devices are long-term fixation to the spine via pedicle screws or interspinous fixation, and variations in device stiffness, level of stabilization offered, and the range of motion allowed by PDS devices over time. This chapter presents an overview of in vitro testing methodologies used to evaluate PDS devices, followed by a summary of clinical performance of stand-alone dynamic stabilization devices with or without direct decompression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agarwal R et al (2009) Osteoinductive bone graft substitutes for lumbar fusion: a systematic review. J Neurosurg Spine 11(6):729–740

    Article  PubMed  Google Scholar 

  • Anderson PA, Tribus CB, Kitchel SH (2006) Treatment of neurogenic claudication by interspinous decompression: application of the X STOP device in patients with lumbar degenerative spondylolisthesis. J Neurosurg Spine 4(6):463–471. https://doi.org/10.3171/spi.2006.4.6.463

    Article  PubMed  Google Scholar 

  • Bakar D et al (2016) Decompression surgery for spinal metastases: a systematic review. Neurosurg Focus 41(2):E2

    Article  PubMed  Google Scholar 

  • Barrey CY et al (2008) Biomechanical evaluation of pedicle screw-based dynamic stabilization devices for the lumbar spine: a systematic review. SAS J 2(4):159–170

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellato RT et al (2015) Late failure of posterior fixation without bone fusion for vertebral metastases. Acta Ortopédica Brasileira 23(6):303–306

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennett CR, DiAngelo DJ, Kelly BP (2015) Biomechanical comparison of robotically applied pure moment, ideal follower load, and novel trunk weight loading protocols on L4-L5 cadaveric segments during flexion-extension. Int J Spine Surg 9:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Benzel EC (2001a) Spinal fusion. In: Biomechanics of spine stabilization. American Association of Neurological Surgeons, Rolling Meadows, pp 121–133

    Google Scholar 

  • Benzel EC (2001b) The destabilizing effects of spinal surgery. In: Biomechanics of spine stabilization. American Association of Neurological Surgeons, Rolling Meadows, pp 111–120

    Google Scholar 

  • Benzel EC (2001c) Trauma, tumor and infection. In: Biomechanics of spine stabilization. American Association of Neurological Surgeons, Rolling Meadows, pp 61–82

    Google Scholar 

  • Bhamare S et al (2013) Design of dynamic and fatiguestrength-enhanced orthopedic implants. In: Multiscale simulations and mechanics of biological materials. Wiley, Oxford, UK, pp 333–350

    Chapter  Google Scholar 

  • Buric J, Pulidori M (2011) Long-term reduction in pain and disability after surgery with the interspinous device for intervertebral assisted motion (DIAM) spinal stabilization system in patients with low back pain: 4-year follow-up from a longitudinal prospective case series. Eur Spine J 20(8):1304–1311

    Article  PubMed  PubMed Central  Google Scholar 

  • Canero G, Carbone S (2015) The results of a consecutive series of dynamic posterior stabilizations using the PercuDyn device. Eur Spine J 24(S7):865–871

    Article  PubMed  Google Scholar 

  • Chen H et al (2011) Influence of 2 different dynamic stabilization systems on sagittal spinopelvic alignment. J Spinal Disord Tech 24(1):37–43

    Article  PubMed  Google Scholar 

  • Choi Y, Kim K, So K (2009) Adjacent segment instability after treatment with a Graf ligament at minimum 8 years’ followup. Clin Orthop Relat Res 467(7):1740–1746

    Article  PubMed  PubMed Central  Google Scholar 

  • Chun DS, Baker KC, Hsu WK (2015) Lumbar pseudarthrosis: a review of current diagnosis and treatment. Neurosurg Focus 39(4):E10

    Article  PubMed  Google Scholar 

  • Coe JD et al (2012) NFlex dynamic stabilization system: two-year clinical outcomes of multi-center study. J Korean Neurosurg Soc 51(6):343–349

    Article  PubMed  PubMed Central  Google Scholar 

  • Cook DJ, Yeager MS, Cheng BC (2012) Interpedicular travel in the evaluation of spinal implants. Spine 37(11):923–931

    Article  PubMed  Google Scholar 

  • Davis R et al (2015) Measurement performance of a computer assisted vertebral motion analysis system. Int J Spine Surg 9:1–13

    Article  Google Scholar 

  • Doria C, Muresu F, Leali PT (2014) Dynamic stabilization of the lumbar spine: current status of minimally invasive and open treatments. In: Minimally invasive surgery of the lumbar spine. Springer, London, pp 209–227

    Chapter  Google Scholar 

  • Egger EL et al (1993) Effects of axial dynamization on bone healing. J Trauma 34(2):185–192

    Article  CAS  PubMed  Google Scholar 

  • Erbulut DU et al (2013) Biomechanics of posterior dynamic stabilization systems. Adv Orthop 2013:451956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner A, Pande KC (2002) Graf ligamentoplasty: a 7 year follow-up. Eur Spine J 11(Suppl 2):S157–S163

    Article  PubMed  PubMed Central  Google Scholar 

  • Goel VK et al (2005) Effects of charité artificial disc on the implanted and adjacent spinal segments mechanics using a hybrid testing protocol. Spine 30(24):2755–2764

    Article  PubMed  Google Scholar 

  • Gomleksiz C et al (2012) A short history of posterior dynamic stabilization. Adv Orthop 2012:629698

    Article  PubMed  PubMed Central  Google Scholar 

  • Grob D et al (2005) Clinical experience with the Dynesys semirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years. Spine 30(3):324–331

    Article  PubMed  Google Scholar 

  • Gruskay JA, Webb ML, Grauer JN (2014) Methods of evaluating lumbar and cervical fusion. Spine J 14(3):531–539

    Article  PubMed  Google Scholar 

  • Hasegawa K et al (2013) Biomechanical evaluation of destabilization following minimally invasive decompression for lumbar spinal canal stenosis. J Neurosurg Spine 18(5):504–510

    Article  PubMed  Google Scholar 

  • Hipp JA et al (2015) Development of a novel radiographic measure of lumbar instability and validation using the facet fluid sign. Int J Spine Surg 9:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoff E et al (2012) Which radiographic parameters are linked to failure of a dynamic spinal implant? Clin Orthop Relat Res 470(7):1834–1846

    Article  PubMed  Google Scholar 

  • Kanayama M et al (2000) In vitro biomechanical investigation of the stability and stress-shielding effect of lumbar interbody fusion devices. J Neurosurg 93(2 Suppl):259–265

    CAS  PubMed  Google Scholar 

  • Kaner T, Sasani M et al (2010a) Clinical outcomes of degenerative lumbar spinal stenosis treated with lumbar decompression and the cosmic “semi-rigid” posterior system. SAS J 4(4):99–106

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaner T, Dalbayrak S, Oktenoglu T, Sasani M, Aydin AL, Ozer AF (2010b) Comparison of posterior dynamic and posterior rigid transpedicular stabilization with fusion to treat degenerative spondylolisthesis. Orthopedics 33(5). Published 2010 May 12. https://doi.org/10.3928/01477447-20100329-09

  • Khoueir P, Kim KA, Wang MY (2007) Classification of posterior dynamic stabilization devices. Neurosurg Focus 22(1):E3

    Article  PubMed  Google Scholar 

  • Kim Y-S et al (2007) Nitinol spring rod dynamic stabilization system and Nitinol memory loops in surgical treatment for lumbar disc disorders: short-term follow up. Neurosurg Focus 22(1):E10

    Article  PubMed  Google Scholar 

  • Kirkaldy-Willis WH, Farfan HF (1982) Instability of the lumbar spine. Clin Orthop Relat Res 165:110–123

    Article  Google Scholar 

  • Kocak T et al (2010) Screw loosening after posterior dynamic stabilization – review of the literature. Acta Chir Orthop Traumatol Cechoslov 77(2):134–139

    CAS  Google Scholar 

  • Kowalski RJ, Ferrara LA, Benzel EC (2001) Biomechanics of bone fusion. Neurosurg Focus 10(4):E2

    Article  CAS  PubMed  Google Scholar 

  • Krappel F, Brayda-Bruno M, Alessi G, Remacle JM, Lopez LA, Fernández JJ, Maestretti G, Pfirrmann CWA (2017) Herniectomy versus Herniectomy with the Diam spinal stabilization system in patients with sciatica and concomitant low back pain: results of a prospective randomized controlled multicenter trial. Eur Spine J 26(3):865–876. https://doi.org/10.1007/s00586-016-4796-6. Epub 2016 Oct 4

    Article  PubMed  Google Scholar 

  • La Barbera L, Villa T (2017) Toward the definition of a new worst-case paradigm for the preclinical evaluation of posterior spine stabilization devices. Proc Inst Mech Eng H J Eng Med 231(2):176–185

    Article  Google Scholar 

  • La Barbera L, Ottardi C, Villa T (2015) Comparative analysis of international standards for the fatigue testing of posterior spinal fixation systems: the importance of preload in ISO 12189. Spine J 15(10):2290–2296

    Article  PubMed  Google Scholar 

  • Lafage V, Gangnet N, Sénégas J et al (2007) New interspinous implant evaluation using an in vitro biomechanical study combined with a finite-element analysis. Spine (Phila Pa 1976) 32:1706–1713

    Article  Google Scholar 

  • Lee CK, Langrana NA (1984) Lumbosacral spinal fusion. A biomechanical study. Spine 9(6):574–581

    Article  CAS  PubMed  Google Scholar 

  • Li Z et al (2013) Two-year follow-up results of the isobar TTL semi-rigid rod system for the treatment of lumbar degenerative disease. J Clin Neurosci 20(3):394–399

    Article  PubMed  Google Scholar 

  • Lima LVPC et al (2017) Limiting interpedicular screw displacement increases shear forces in screws: a finite element study. Orthop Traumatol Surg Res 103(5):721–726

    Article  CAS  PubMed  Google Scholar 

  • Lindsey DP, Swanson KE, Fuchs P, Hsu KY, Zucherman JF, Yerby SA (2003) The effects of an interspinous implant on the kinematics of the instrumented and adjacent levels in the lumbar spine. Spine 28(19):2192–2197

    Article  PubMed  Google Scholar 

  • Lindsey DP et al (2015) Sacroiliac joint fusion minimally affects adjacent lumbar segment motion: a finite element study. Int J Spine Surg 9:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulholland RC, Sengupta DK (2002) Rationale, principles and experimental evaluation of the concept of soft stabilization. Eur Spine J 11(Suppl 2):S198–S205

    Article  PubMed  PubMed Central  Google Scholar 

  • Nayak NR et al (2015) Tracking patient-reported outcomes in spinal disorders. Surg Neurol Int 6(Suppl 19):S490–S499

    PubMed  PubMed Central  Google Scholar 

  • Neel Anand M, et al (2012) 24 Month functional outcomes from the US IDE Trial Evaluating The Stabilimax®, A lumbar Posterior Dynamic Stabilization (PDS) system with Interpedicular Travel (IPT). In: Meeting of the Lumbar Spine Research Society

    Google Scholar 

  • Panjabi MM, Timm JP (2007) Development of stabilimax NZ from biomechanical principles. SAS J 1(1):2–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Parchi PD, Evangelisti G, Vertuccio A, Piolanti N, Andreani L, Cervi V, Giannetti C, Calvosa G, Lisanti M (2014) Biomechanics of interspinous devices. Biomed Res Int 2014:839325

    Article  PubMed  PubMed Central  Google Scholar 

  • Park Y-S et al (2013) The effect of zoledronic acid on the volume of the fusion-mass in lumbar spinal fusion. Clin Orthop Surg 5(4):292–297

    Article  PubMed  PubMed Central  Google Scholar 

  • Patwardhan AG et al (1999) A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine 24(10):1003–1009

    Article  CAS  PubMed  Google Scholar 

  • Pham MH et al (2016) Complications associated with the Dynesys dynamic stabilization system: a comprehensive review of the literature. Neurosurg Focus 40(1):1–8

    Article  Google Scholar 

  • Phillips FM, Voronov LI, Gaitanis IN, Carandang G, Havey RM, Patwardhan AG (2006) Biomechanics of posterior dynamic stabilizing device (DIAM) after facetectomy and discectomy. Spine J 6(6):714–722

    Article  PubMed  Google Scholar 

  • Puttlitz CM et al (2000) Pathomechanisms of failures of the odontoid. Spine 25(22):2868–2876

    Article  CAS  PubMed  Google Scholar 

  • Rajaee SS et al (2012) Spinal fusion in the United States. Spine 37(1):67–76

    Article  PubMed  Google Scholar 

  • Reyes-Sánchez A et al (2010) Posterior dynamic stabilization of the lumbar spine with the Accuflex rod system as a stand-alone device: experience in 20 patients with 2-year follow-up. Eur Spine J 19(12):2164–2170

    Article  PubMed  PubMed Central  Google Scholar 

  • Saavedra-Pozo FM, Deusdara RAM, Benzel EC (2014) Adjacent segment disease perspective and review of the literature. Ochsner J 14(1):78–83

    PubMed  PubMed Central  Google Scholar 

  • Saphier PS et al (2007) Stress-shielding compared with load-sharing anterior cervical plate fixation: a clinical and radiographic prospective analysis of 50 patients. J Neurosurg Spine 6(5):391–397

    Article  PubMed  Google Scholar 

  • Schlenk RP, Stewart T, Benzel EC (2003) The biomechanics of iatrogenic spinal destabilization and implant failure. Neurosurg Focus 15(3):E2

    Article  PubMed  Google Scholar 

  • Schmidt H, Heuer F, Wilke H-J (2009) Which axial and bending stiffnesses of posterior implants are required to design a flexible lumbar stabilization system? J Biomech 42(1):48–54

    Article  PubMed  Google Scholar 

  • Schmidt S, Franke J, Rauschmann M, Adelt D, Bonsanto MM, Sola S (2018) Prospective, randomized, multicenter study with 2-year follow-up to compare the performance of decompression with and without interlaminar stabilization. J Neurosurg Spine 28(4):406–415. https://doi.org/10.3171/2017.11.SPINE17643. Epub 2018 Jan 26

    Article  PubMed  Google Scholar 

  • Schwarzenbach O et al (2005) Posterior dynamic stabilization systems: DYNESYS. Orthop Clin N Am 36(3 Spec Iss):363–372

    Article  Google Scholar 

  • Senegas J (2002) Mechanical supplementation by nonrigid fixation in degenerative intervertebral lumbar segments: the Wallis system. Eur Spine J 11(Suppl 2):S164–S169

    Article  PubMed  PubMed Central  Google Scholar 

  • Sengupta DK, Herkowitz HN (2012) Pedicle screw-based posterior dynamic stabilization: literature review. Adv Orthop 2012(424268):1–7

    Article  Google Scholar 

  • Serhan H, Mhatre D, Defossez H, Bono CM (2011) Motion-preserving technologies for degenerative lumbar spine: the past, present, and future horizons. SAS J 5(3):75–89. https://doi.org/10.1016/j.esas.2011.05.001. Published 2011 Sep 1

    Article  PubMed  PubMed Central  Google Scholar 

  • Shono Y et al (1998) Stability of posterior spinal instrumentation and its effects on adjacent motion segments in the lumbosacral spine. Spine 23(14):1550–1558

    Article  CAS  PubMed  Google Scholar 

  • Slosar PJ et al (2000) Patient satisfaction after circumferential lumbar fusion. Spine 25(6):722–726

    Article  CAS  PubMed  Google Scholar 

  • Smith ZA et al (2011) A minimally invasive technique for percutaneous lumbar facet augmentation: technical description of a novel device. Surg Neurol Int 2:165

    Article  PubMed  PubMed Central  Google Scholar 

  • Song KP, Zhang B, Ma JL, Wang B, Chen B (2019) Midterm follow-up efficacy of interspinous dynamic stabilization system for lumbar degenerative diseases. Zhongguo Gu Shang 32(11):991–996. https://doi.org/10.3969/j.issn.1003-0034.2019.11.004

    Article  PubMed  Google Scholar 

  • Stoffel M et al (2010) Pedicle screw-based dynamic stabilization of the thoracolumbar spine with the cosmic®-system: a prospective observation. Acta Neurochir 152(5):835–843

    Article  PubMed  Google Scholar 

  • Tsai K, Murakami H, Lowery GL, Hutton WC (2006) A biomechanical evaluation of an interspinous device (Coflex) used to stabilize the lumbar spine. J Surg Orthop Adv 15(3):167–172

    PubMed  Google Scholar 

  • Turner JA et al (1992) Surgery for lumbar spinal stenosis. Attempted meta-analysis of the literature. Spine 17(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Vadapalli S, Sairyo K, Goel VK et al (2006) Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-a finite element study. Spine (Phila Pa 1976) 31(26):E992–E998. https://doi.org/10.1097/01.brs.0000250177.84168.ba. [published correction appears in Spine. 2007 Mar 15;32(6):710]

    Article  Google Scholar 

  • Vaz K et al (2010) Bone grafting options for lumbar spine surgery: a review examining clinical efficacy and complications. SAS J 4(3):75–86

    Article  PubMed  PubMed Central  Google Scholar 

  • Vermesan D et al (2014) A new device used in the restoration of kinematics after total facet arthroplasty. Med Devices (Auckland, NZ) 7:157–163

    CAS  Google Scholar 

  • Virk SS et al (2014) Adjacent segment disease. Orthopedics 37(8):547–555

    Article  PubMed  Google Scholar 

  • Weiss LE et al (1997) Pseudarthrosis after postoperative wound infection in the lumbar spine. J Spinal Disord 10(6):482–487

    Article  CAS  PubMed  Google Scholar 

  • Yeager MS, Cook DJ, Cheng BC (2015) In vitro comparison of Dynesys, PEEK, and titanium constructs in the lumbar spine. Adv Orthop 2015:1–8

    Article  Google Scholar 

  • Yoshihara H (2013) Rods in spinal surgery: a review of the literature. Spine J 13(10):1350–1358

    Article  PubMed  Google Scholar 

  • Zhang HY, Park JY, Cho BY (2009) The BioFlex system as a dynamic stabilization device: does it preserve lumbar motion? J Korean Neurosurg Soc 46(5):431–436

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y et al (2016) Comparison of the Dynesys dynamic stabilization system and posterior lumbar interbody fusion for lumbar degenerative disease. PLoS One 11(1):e0148071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng S, Yao Q, Cheng L et al (2010) The effects of a new shape- memory alloy interspinous process device on the distribution of intervertebral disc pressures in vitro. J Biomed Res 24(2):115–123

    Article  PubMed  PubMed Central  Google Scholar 

  • Zucherman JF, Hsu KY, Hartjen CA et al (2005) A multicenter, prospective, randomized trial evaluating the X STOP interspinous process decompression system for the treatment of neurogenic intermittent claudication: two-year follow-up results. Spine (Phila Pa 1976) 30(12):1351–1358

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Khandha .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Khandha, A., Serhan, J., Goel, V.K. (2021). Design Rationale for Posterior Dynamic Stabilization Relevant for Spine Surgery. In: Cheng, B.C. (eds) Handbook of Spine Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-44424-6_24

Download citation

Publish with us

Policies and ethics