Skip to main content

Modeling of Wind Flow and Its Impact on Forest Fire Spread: Cellular Automata Approach

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9863))

Included in the following conference series:

Abstract

In this paper, we propose a model of wind flow and its impact on the forest fire spread by using Cellular Automata (CA) approach. The wind model determines the wind flow and speed according to the topography of the studied area and climate data. While in a previous work we took into consideration only uniform wind direction and speed, in this one we have improved the forest fire model which takes into account both the physical attributes (Topography, land use, nature and density of vegetation) and the climatic parameters (humidity, wind) by considering wind flow. As an application we consider a region in the North of Morocco.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernoussi, A.: Spreadability, vulnerability and protector control. Math. Model. Nat. Phenom. 5(07), 145–150 (2010)

    Article  MathSciNet  Google Scholar 

  2. Byram, G.M.: Forest fire behavior. In: Davis, K.P. (ed.) Forest Fire: Control and Use, p. 90123 (1959)

    Google Scholar 

  3. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  4. Deutsch, A., Dormann, S.: Cellular Automaton Modeling of Biological Pattern Formation: Characterization, Applications, and Analysis. Springer Science and Business Media, New York (2007)

    MATH  Google Scholar 

  5. Encinas, A.H., Encinas, L.H., White, S.H., del Rey, A.M., Sanchez, G.R.: Simulation of forest fire fronts using cellular automata. Adv. Eng. Softw. 38, 372–378 (2007)

    Article  MATH  Google Scholar 

  6. Good, R.B., McRae, R.H.D.: The challenges of modeling natural area ecosystems. In: Proceedings of 8th Biennial Conference and Bushfire Dynamics Workshop, Canberra, Australia, pp. 475–484 (1989)

    Google Scholar 

  7. Jellouli, O., Bernoussi, A., Amharref, M., El Yacoubi, S.: Vulnerability and protector control: cellular automata approach. In: Wąs, J., Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2014. LNCS, vol. 8751, pp. 218–227. Springer, Heidelberg (2014)

    Google Scholar 

  8. Jellouli, O., Bernoussi, A., Maâtouk, M., Amharref, M.: Forest fire modelling using cellular automata: application to the watershed Oued Laou (Morocco). Math. Comput. Model. Dyn. Syst. 22(5), 493–507 (2016). doi:10.1080/13873954.2016.1204321

    Article  MathSciNet  Google Scholar 

  9. Morandini, F., Simeoni, A., Santoni, P.A., Balbi, J.H.: A model for the spread of fire across a fuel bed incorporating the effects of wind and slope. Combust. Sci. Technol. 177(7), 1381–1418 (2005)

    Article  Google Scholar 

  10. Ntinas, V.G., Moutafis, B.E., Trunfio, G.A., Sirakoulis, G.C.: GPU and FPGA parallelization of fuzzy cellular automata for the simulation of wildfire spreading. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9574, pp. 560–569. Springer, Heidelberg (2016). doi:10.1007/978-3-319-32152-3_52

    Google Scholar 

  11. Progias, P., Sirakoulis, G.C.: An FPGA processor for modelling wildfire spread. Math. Comput. Model. 57(5–6), 1436–1452 (2013)

    Article  MathSciNet  Google Scholar 

  12. Slimi, R., El Yacoubi, S.: Spreadable cellular automata: modelling and simulation. Int. J. Syst. Sci. 40(5), 507–520 (2009)

    Article  MATH  Google Scholar 

  13. Sharples, J.J.: Review of formal methodologies for wind slope correction of wildfire rate of spread. Int. J. Wildland Fire 17(2), 179–193 (2008)

    Article  Google Scholar 

  14. Trunfio, G.A., D’Ambrosio, D., Rongo, R., Spataro, W., Di Gregorio, S.: A new algorithm for simulating wildfire spread through cellular automata. ACM Trans. Model. Comput. Simul. 22, 1–26 (2011). ISSN 1049-3301

    Article  Google Scholar 

  15. Viegas, D.X.: Slope and wind effects on fire propagation. Int. J. Wildland Fire 13(2), 143–156 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the project PPR2 OGI-Env and the International network TDS, Academie Hassan II of sciences and Techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Jellouli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Jellouli, O., Bernoussi, A., Amharref, M., Ouardouz, M. (2016). Modeling of Wind Flow and Its Impact on Forest Fire Spread: Cellular Automata Approach. In: El Yacoubi, S., WÄ…s, J., Bandini, S. (eds) Cellular Automata. ACRI 2016. Lecture Notes in Computer Science(), vol 9863. Springer, Cham. https://doi.org/10.1007/978-3-319-44365-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44365-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44364-5

  • Online ISBN: 978-3-319-44365-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics