Skip to main content

Hereditary Neuromuscular Diseases and Cardiac Involvement

  • Chapter
  • First Online:
Clinical Cardiogenetics
  • 694 Accesses

Abstract

Neuromuscular disorders comprise a large group of diseases caused by dysfunction of motor neurons, peripheral nerves, and skeletal muscles. A fair proportion of neuromuscular disorders have a genetic cause. The incidence and prevalence of cardiomyopathies associated with inherited neuromuscular diseases, particularly with muscular dystrophies, have until recently been underestimated, even though cardiac involvement is either the direct or indirect cause of death in many of these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Finsterer J, Stollberger C. Cardiac involvement in primary myopathies. Cardiology. 2000;94(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  2. Mokri B, Engel AG. Duchenne dystrophy: electron microscopic findings pointing to a basic or early abnormality in the plasma membrane of the muscle fiber. Neurology. 1975;25(12):1111–20.

    Article  CAS  PubMed  Google Scholar 

  3. Head SI, Williams DA, Stephenson DG. Abnormalities in structure and function of limb skeletal muscle fibres of dystrophic mdx mice. Proc Biol Sci. 1992;248(1322):163–9.

    Article  CAS  PubMed  Google Scholar 

  4. Nigro G, Comi LI, Politano L, Bain RJI. The incidence and evolution of cardiomyopathy in Duchene muscular dystrophy. Int J Cardiol. 1990;26:271–7.

    Article  CAS  PubMed  Google Scholar 

  5. van Essen AJ, Busch HF, te Meerman GJ, ten Kate LP. Birth and population prevalence of Duchenne muscular dystrophy in The Netherlands. Hum Genet. 1992;88(3):258–66.

    Article  PubMed  Google Scholar 

  6. Ricotti V, Ridout DA, Scott E, Quinlivan R, Robb SA, Manzur AY, Muntoni F, NorthStar Clinical Network. Long-term benefits and adverse effects of intermittent versus daily glucocorticoids in boys with Duchenne muscular dystrophy. J Neurol Neurosurg Psychiatry. 2013;84(6):698–705.

    Article  PubMed  Google Scholar 

  7. Eagle M, Baudouin SV, Chandler C, Giddings DR, Bullock R, Bushby K. Survival in Duchenne muscular dystrophy: improvements in life expectancy since 1967 and the impact of home nocturnal ventilation. Neuromuscul Disord. 2002;12(10):926–9.

    Article  PubMed  Google Scholar 

  8. Villa CR, Czosek RJ, Ahmed H, Khoury PR, Anderson JB, Knilans TK, Jefferies JL, Wong B, Spar DS. Ambulatory monitoring and arrhythmic outcomes in pediatric and adolescent patients with duchenne muscular dystrophy. J Am Heart Assoc. 2015;5(1).

    Google Scholar 

  9. Bushby K, Muntoni F, Bourke JP. 107th ENMC international workshop: the management of cardiac involvement in muscular dystrophy and myotonic dystrophy. 7th–9th June 2002, Naarden, the Netherlands. Neuromuscul Disord. 2003;13(2):166–72.

    Article  CAS  PubMed  Google Scholar 

  10. McNally EM, Kaltman JR, Benson DW, et al; Working Group of the National Heart, Lung, and Blood Institute; Parent Project Muscular Dystrophy.Contemporary cardiac issues in Duchenne muscular dystrophy. Working Group of the National Heart, Lung, and Blood Institute in collaboration with Parent Project Muscular Dystrophy. Circulation 2015;131(18):1590-1598.

    Google Scholar 

  11. Duboc D, Meune C, Lerebours G, Devaux JY, Vaksmann G, Becane HM. Effect of perindopril on the onset and progression of left ventricular dysfunction in Duchenne muscular dystrophy. J Am Coll Cardiol. 2005;45(6):855–7.

    Article  CAS  PubMed  Google Scholar 

  12. Duboc D, Meune C, Pierre B, et al. Perindopril preventive treatment on mortality in Duchenne muscular dystrophy: 10 years’ follow-up. Am Heart J. 2007;154(3):596–602.

    Article  CAS  PubMed  Google Scholar 

  13. Allen HD, Flanigan KM, Thrush PT, et al. A randomized, double-blind trial of lisinopril and losartan for the treatment of cardiomyopathy in duchenne muscular dystrophy. PLoS Curr. 2013;12:5.

    Google Scholar 

  14. Raman SV, Hor KN, Mazur W, et al. Eplerenone for early cardiomyopathy in Duchenne muscular dystrophy: a randomized, double-blind, placebo-controlled trial. Lancet Neurol. 2015;14(2):153–61.

    Article  CAS  PubMed  Google Scholar 

  15. Silversides CK, Webb GD, Harris VA, Biggar DW. Effects of deflazacort on left ventricular function in patients with Duchenne muscular dystrophy. Am J Cardiol. 2003;91(6):769–72.

    Article  CAS  PubMed  Google Scholar 

  16. American Academy of Pediatrics Section on Cardiology and Cardiac Surgery. Cardiovascular health supervision for individuals affected by Duchenne or Becker muscular dystrophy. Pediatrics. 2005;116(6):1569–73.

    Article  Google Scholar 

  17. Iodice F, Testa G, Averardi M, Brancaccio G, Amodeo A, Cogo P. Implantation of a left ventricular assist device as a destination therapy in Duchenne muscular dystrophy patients with end stage cardiac failure: management and lessons learned. Neuromuscul Disord. 2015;25(1):19–23.

    Article  PubMed  Google Scholar 

  18. Bushby KM, Thambyayah M, Gardner-Medwin D. Prevalence and incidence of Becker muscular dystrophy. Lancet. 1991;337(8748):1022–4.

    Article  CAS  PubMed  Google Scholar 

  19. Emery AE, Skinner R. Clinical studies in benign (Becker type) X-linked muscular dystrophy. Clin Genet. 1976;10(4):189–201.

    Article  CAS  PubMed  Google Scholar 

  20. Hoogerwaard EM, De Voogt WG, Wilde AAM, et al. Evolution of cardiac abnormalities in Becker muscular dystrophy over a 13-year period. J Neurol. 1997;244:657–63.

    Article  CAS  PubMed  Google Scholar 

  21. Casazza F, Brambilla G, Salvato A, Morandi L, Gronda E, Bonacina E. Dilated cardiomyopathy and successful cardiac transplantation in Becker’s muscular distrophy. Follow-up after two years. G Ital Cardiol. 1988;18(9):753–7.

    CAS  PubMed  Google Scholar 

  22. Connuck DM, Sleeper LA, Colan SD, et al. Characteristics and outcomes of cardiomyopathy in children with Duchenne or Becker muscular dystrophy: a comparative study from the Pediatric Cardiomyopathy Registry. Am Heart J. 2008;155(6):998–1005.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Muntoni F, Cau M, Ganau A, et al. Deletion of the dystrophin muscle-promotor region associated with X-linked dilated cardiomyopathy. N Engl J Med. 1993;329:921–5.

    Article  CAS  PubMed  Google Scholar 

  24. Palmucci L, Doriguzzi C, Mongini T, et al. Dilating cardiomyopathy as the expression of Xp21 Becker type muscular dystrophy. J Neurol Sci. 1992;111(2):218–21.

    Article  CAS  PubMed  Google Scholar 

  25. Towbin JA. Fielding Hejtmancik J, Brink P, et al. X-linked dilated cardiomyopathy Circulation 1993;87:1854-1865.

    Google Scholar 

  26. Milasin J, Muntoni F, Severini GM, et al. A point mutation in the 5′ splice site of the dystrophin gene first intron responsible for X-linked dilated cardiomyopathy. Hum Mol Genet. 1996;5(1):73–9.

    Article  CAS  PubMed  Google Scholar 

  27. Muntoni F, Di LA, Porcu M, et al. Dystrophin gene abnormalities in two patients with idiopathic dilated cardiomyopathy. Heart. 1997;78(6):608–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ferlini A, Galié N, Merlini L, Sewry C, Branzi A, Muntoni F. A novel Alu-like element rearranged in the dystrophin gene causes a splicing mutation in a family with X-linked dilated cardiomyopathy. Am J Hum Genet. 1998;63(2):436–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hoogerwaard EM, van der Wouw PA, Wilde AAM, et al. Cardiac involvement in carriers of Duchenne and Becker muscular dystrophy. Neurobiol Dis. 1999;9:347–51.

    CAS  Google Scholar 

  30. Politano L, Nigro V, Nigro G, et al. Development of cardiomyopathy in female carriers of Duchenne and Becker muscular dystrophy. JAMA. 1996;275:1335–8.

    Article  CAS  PubMed  Google Scholar 

  31. Grain L, Cortina-Borja M, Forfar C, Hilton-Jones D, Hopkin J, Burch M. Cardiac abnormalities and skeletal muscle weakness in carriers of Duchenne and Becker muscular dystrophies and controls. Neuromuscul Disord. 2001;11(2):186–91.

    Article  CAS  PubMed  Google Scholar 

  32. Schade van Westrum SM, Hoogerwaard EM, Dekker L, et al. Cardiac abnormalities in a follow-up study on carriers of Duchenne and Becker muscular dystrophy. Neurology. 2011;77(1):62–6.

    Article  CAS  PubMed  Google Scholar 

  33. Rees W, Schuler S, Hummel M, Hetzer R. Heart transplantation in patients with muscular dystrophy associated with end-stage cardiomyopathy. J Heart Lung Transplant. 1993;12(5):804–7.

    CAS  PubMed  Google Scholar 

  34. Schade van Westrum SM, Dekker LR, de Voogt WG, Wilde AA, Ginjaar IB, de Visser M, van der Kooi AJ. Cardiac involvement in Dutch patients with sarcoglycanopathy: a cross-sectional cohort and follow-up study. Muscle Nerve. 2014;50(6):909–13.

    Article  PubMed  Google Scholar 

  35. Williams TM, Lisanti MP. The Caveolin genes: from cell biology to medicine. Ann Med. 2004;36(8):584–95.

    Article  CAS  PubMed  Google Scholar 

  36. Hayashi T, Arimura T, Ueda K, et al. Identification and functional analysis of a caveolin-3 mutation associated with familial hypertrophic cardiomyopathy. Biochem Biophys Res Commun. 2004;313(1):178–84.

    Article  CAS  PubMed  Google Scholar 

  37. Cronk LB, Ye B, Kaku T, et al. Novel mechanism for sudden infant death syndrome: persistent late sodium current secondary to mutations in caveolin-3. Heart Rhythm. 2007;4(2):161–6.

    Article  PubMed  Google Scholar 

  38. Vatta M, Ackerman MJ, Ye B, et al. Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation. 2006;114(20):2104–12.

    Article  CAS  PubMed  Google Scholar 

  39. Goodwin FC, Muntoni F. Cardiac involvement in muscular dystrophies: molecular mechanisms. Muscle Nerve. 2005;32(5):577–88.

    Article  CAS  PubMed  Google Scholar 

  40. Brockington M, Yuva Y, Prandini P, et al. Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum Mol Genet. 2001;10(25):2851–9.

    Article  CAS  PubMed  Google Scholar 

  41. Poppe M, Cree L, Bourke J, et al. The phenotype of limb-girdle muscular dystrophy type 2I. Neurology. 2003;60(8):1246–51.

    Article  CAS  PubMed  Google Scholar 

  42. van der Kooi AJ, Frankhuizen WS, Barth PG, et al. Limb-girdle muscular dystrophy in the Netherlands: gene defect identified in half the families. Neurology. 2007;68(24):2125–8.

    Article  PubMed  Google Scholar 

  43. Sveen ML, Schwartz M, Vissing J. High prevalence and phenotype-genotype correlations of limb girdle muscular dystrophy type 2I in Denmark. Ann Neurol. 2006;59(5):808–15.

    Article  CAS  PubMed  Google Scholar 

  44. Wahbi K, Meune C, Hamouda e H, et al. Cardiac assessment of limb-girdle muscular dystrophy 2I patients: an echography, Holter ECG and magnetic resonance imaging study. Neuromuscul Disord. 2008;18(8):650–5.

    Article  PubMed  Google Scholar 

  45. Petri H, Sveen ML, Thune JJ, Vissing C, Dahlqvist JR, Witting N, Bundgaard H, Køber L, Vissing J. Progression of cardiac involvement in patients with limb-girdle type 2 and Becker muscular dystrophies: a 9-year follow-up study. Int J Cardiol. 2015;182:403–11.

    Article  PubMed  Google Scholar 

  46. Kobayashi K, Nakahori Y, Miyake M, et al. An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature. 1998;394(6691):388–92.

    Article  CAS  PubMed  Google Scholar 

  47. Toda T, Kobayashi K, Kondo-Iida E, Sasaki J, Nakamura Y. The Fukuyama congenital muscular dystrophy story. Neuromuscul Disord. 2000;10(3):153–9.

    Article  CAS  PubMed  Google Scholar 

  48. Murakami T, Hayashi YK, Noguchi S, et al. Fukutin gene mutations cause dilated cardiomyopathy with minimal muscle weakness. Ann Neurol. 2006;60(5):597–602.

    Article  CAS  PubMed  Google Scholar 

  49. Bione S, Maestrini E, Rivella S, et al. Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat Genet. 1994;8:323–7.

    Article  CAS  PubMed  Google Scholar 

  50. Manilal S, Nguyen TM, Sewry CA, Morris GE. The Emery-Dreifuss muscular dystrophy protein, emerin, is a nuclear membrane protein. Hum Mol Genet. 1996;5(6):801–8.

    Article  CAS  PubMed  Google Scholar 

  51. Yates JRW. Workshop report: European workshop on Emery-Dreifuss muscular dystrophy. Neuromuscul Disord. 1991;1:393–6.

    Article  CAS  PubMed  Google Scholar 

  52. Emery AE. Emery-Dreifuss muscular dystrophy – a 40 year retrospective. Neuromuscul Disord. 2000;10(4–5):228–32.

    Article  CAS  PubMed  Google Scholar 

  53. Wehnert M, Muntoni F. 60th ENMC International Workshop: non X-linked Emery-Dreifuss Muscular Dystrophy 5–7 June 1998, Naarden, The Netherlands. Neuromuscul Disord. 1999;9(2):115–21.

    Article  CAS  PubMed  Google Scholar 

  54. Talkop UA, Talvik I, Sonajalg M, et al. Early onset of cardiomyopathy in two brothers with X-linked Emery-Dreifuss muscular dystrophy. Neuromuscul Disord. 2002;12(9):878–81.

    Article  PubMed  Google Scholar 

  55. Buckley AE, Dean J, Mahy IR. Cardiac involvement in Emery Dreifuss muscular dystrophy: a case series. Heart. 1999;82(1):105–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sakata K, Shimizu M, Ino H, et al. High incidence of sudden cardiac death with conduction disturbances and atrial cardiomyopathy caused by a nonsense mutation in the STA gene. Circulation. 2005;111(25):3352–8.

    Article  PubMed  Google Scholar 

  57. Fishbein MC, Siegel RJ, Thompson CE, Hopkins LC. Sudden death of a carrier of X-linked Emery-Dreifuss muscular dystrophy. Ann Intern Med. 1993;119(9):900–5.

    Article  CAS  PubMed  Google Scholar 

  58. Anderson LVB. Multiplex Western blot analysis of the muscular dystrophy proteins. In: Bushby KMD, Anderson LVB, editors. Muscular dystrophy: Methods and protocols. Totowa: Humana Press; 2001. p. 369–86.

    Chapter  Google Scholar 

  59. Bonne G, Di Barletta MR, Varnous S, et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery- Dreifuss muscular dystrophy. Nat Genet. 1999;21(3):285–8.

    Article  CAS  PubMed  Google Scholar 

  60. Goodwin FC, Muntoni F. Cardiac involvement in muscular dystrophies: molecular mechanisms. Muscle Nerve. 2005;32(5):577–88.

    Article  CAS  PubMed  Google Scholar 

  61. van Berlo JH, de Voogt WG, van der Kooi AJ, et al. Meta-analysis of clinical characteristics of 299 carriers of LMNA gene mutations: do lamin A/C mutations portend a high risk of sudden death? J Mol Med. 2005;83(1):79–83.

    Article  CAS  PubMed  Google Scholar 

  62. Curtis JP, Luebbert JJ, Wang Y, et al. Association of physician certification and outcomes among patients receiving an implantable cardioverter-defibrillator. JAMA. 2009;301(16):1661–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Van Rijsingen IA, Arbustini E, Elliott PM, et al. Risk factors for malignant ventricular arrhythmias in lamin a/c mutation carriers: a European cohort study. J Am Coll Cardiol. 2012;59(5):493–500.

    Article  CAS  PubMed  Google Scholar 

  64. Sovari AA, Bodine CK, Farokhi F. Cardiovascular manifestations of myotonic dystrophy-1. Cardiol Rev. 2007;15(4):191–4.

    Article  PubMed  Google Scholar 

  65. Groh WJ, Groh MR, Saha C, et al. Electrocardiographic abnormalities and sudden death in myotonic dystrophy type 1. N Engl J Med. 2008;358(25):2688–97.

    Article  CAS  PubMed  Google Scholar 

  66. Hermans MC, Faber CG, Pinto YM. Sudden death in myotonic dystrophy. N Engl J Med. 2008;359(15):1626–8.

    CAS  PubMed  Google Scholar 

  67. Wahbi K, Meune C, Porcher R, et al. Electrophysiological study with prophylactic pacing and survival in adults with myotonic dystrophy and conduction system disease. JAMA. 2012;307(12):1292–301.

    Article  CAS  PubMed  Google Scholar 

  68. Hagemans ML, Hop WJ, Van Doorn PA, Reuser AJ, Van der Ploeg AT. Course of disability and respiratory function in untreated late-onset Pompe disease. Neurology. 2006;66(4):581–3.

    Google Scholar 

  69. Selcen D. Myofibrillar myopathies. Curr Opin Neurol. 2008;21(5):585–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. van Spaendonck-Zwarts K, van Hessem L, van der Kooi AJ, et al. Desmin-related myopathy: a review and meta-analysis. Clin Genet. 2011;80(4):354–66.

    Article  PubMed  Google Scholar 

  71. Wahbi K, Béhin A, Charron P, Dunand M, Richard P, Meune C, Vicart P, Laforêt P, Stojkovic T, Bécane HM, Kuntzer T, Duboc D. High cardiovascular morbidity and mortality in myofibrillar myopathies due to DES gene mutations: a 10-year longitudinal study. Neuromuscul Disord. 2012;22(3):211–8.

    Article  PubMed  Google Scholar 

  72. Sewry CA, Jimenez-Mallebrera C, Muntoni F. Congenital myopathies. Curr Opin Neurol. 2008;21(5):569–75.

    Article  PubMed  Google Scholar 

  73. Jungbluth H, Sewry CA, Muntoni F. Core myopathies. Semin Pediatr Neurol. 2011;18(4):239–49.

    Google Scholar 

  74. Feng JJ, Marston S. Genotype-phenotype correlations in ACTA1 mutations that cause congenital myopathies. Neuromuscul Disord. 2009;19(1):6–16.

    Article  PubMed  Google Scholar 

  75. D’Amico A, Graziano C, Pacileo G, et al. Fatal hypertrophic cardiomyopathy and nemaline myopathy associated with ACTA1 K336E mutation. Neuromuscul Disord. 2006;16(9–10):548–52.

    Article  PubMed  Google Scholar 

  76. Tajsharghi H, Oldfors A, Macleod DP, Swash M. Homozygous mutation in MYH7 in myosin storage myopathy and cardiomyopathy. Neurology. 2007;68(12):962.

    Article  PubMed  Google Scholar 

  77. Uro-Coste E, Arne-Bes MC, Pellissier JF, et al. Striking phenotypic variability in two familial cases of myosin storage myopathy with a MYH7 Leu1793pro mutation. Neuromuscul Disord. 2009;19(2):163–6.

    Article  PubMed  Google Scholar 

  78. Agrawal PB, Pierson CR, Joshi M, Liu X, Ravenscroft G, Moghadaszadeh B, Talabere T, Viola M, Swanson LC, Haliloğlu G, Talim B, Yau KS, Allcock RJ, Laing NG, Perrella MA, Beggs AH. SPEG interacts with myotubularin, and its deficiency causes centronuclear myopathy with dilated cardiomyopathy. Am J Hum Genet. 2014;95(2):218–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sacconi S, Wahbi K, Theodore G, Garcia J, Salviati L, Bouhour F, Vial C, Duboc D, Laforêt P, Desnuelle C. Atrio-ventricular block requiring pacemaker in patients with late onset Pompe disease. Neuromuscul Disord. 2014;24(7):648–50.

    Article  PubMed  Google Scholar 

  80. Van der Beek NA, Hagemans ML, Van der Ploeg AT, Reuser AJ, Van Doorn PA. Pompe disease (glycogen storage disease type II): clinical features and enzyme replacement therapy. Acta Neurol Belg. 2006;106(2):82–6.

    CAS  PubMed  Google Scholar 

  81. Van der Beek NA, Soliman OI, van Capelle CI, et al. Cardiac evaluation in children and adults with Pompe disease sharing the common c.-32–13T>G genotype rarely reveals abnormalities. J Neurol Sci. 2008;275(1–2):46–50.

    Article  CAS  PubMed  Google Scholar 

  82. Danon MJ, Oh SJ, DiMauro S, et al. Lysosomal glycogen storage disease with normal acid maltase. Neurology. 1981;31(1):51–7.

    Article  CAS  PubMed  Google Scholar 

  83. van der Kooi AJ, van Langen IM, Aronica E, et al. Extension of the clinical spectrum of Danon disease. Neurology. 2008;70(16):1358–9.

    Article  PubMed  Google Scholar 

  84. Cetin H, Wöhrer A, Rittelmeyer I, Gencik M, Zulehner G, Zimprich F, Ströbel T, Zimprich A. The c.65-2A>G splice site mutation is associated with a mild phenotype in Danon disease due to the transcription of normal LAMP2 mRNA. Clin Genet. 2016.

    Google Scholar 

  85. Ozawa T, Tanaka M, Sugiyama S, Hattori K, Ito T, Ohno K, Takahashi A, Sato W, Takada G, Mayumi B, et al. Multiple mitochondrial DNA deletions exist in cardiomyocytes of patients with hypertrophic or dilated cardiomyopathy. Biochem Biophys Res Commun. 1990;170(2):830–6.

    Article  CAS  PubMed  Google Scholar 

  86. Wahbi K, Bougouin W, Béhin A, et al. Long-term cardiac prognosis and risk stratification in 260 adults presenting with mitochondrial diseases. Eur Heart J. 2015;36(42):2886–93.

    Article  PubMed  Google Scholar 

  87. Tranchant C, Mousson B, Mohr M, et al. Cardiac transplantation in an incomplete Kearns-Sayre syndrome with mitochondrial DNA deletion. Neuromuscul Disord. 1993;3(5–6):561–6.

    Article  CAS  PubMed  Google Scholar 

  88. Bit-Avragim N, Perrot A, Schols L, et al. The GAA repeat expansion in intron 1 of the frataxin gene is related to the severity of cardiac manifestation in patients with Friedreich’s ataxia. J Mol Med. 2001;78(11):626–32.

    Article  CAS  PubMed  Google Scholar 

  89. Barth PG, Valianpour F, Bowen VM, et al. X-linked cardioskeletal myopathy and neutropenia (Barth syndrome): an update. Am J Med Genet A. 2004;126A(4):349–54.

    Article  PubMed  Google Scholar 

  90. Barth PG, Wanders RJ, Vreken P. X-linked cardioskeletal myopathy and neutropenia (Barth syndrome)-MIM 302060. J Pediatr. 1999;135(3):273–6.

    Article  CAS  PubMed  Google Scholar 

  91. Stangou AJ, Hawkins PN, Heaton ND, et al. Progressive cardiac amyloidosis following liver transplantation for familial amyloid polyneuropathy: implications for amyloid fibrillogenesis. Transplantation. 1998;66(2):229–33.

    Article  CAS  PubMed  Google Scholar 

  92. Ruberg FL, Berk JL. Transthyretin (TTR) cardiac amyloidosis. Circulation. 2012;126(10):1286–300.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Algalarrondo V, Dinanian S, Juin C, Chemla D, Bennani SL, Sebag C, Planté V, Le Guludec D, Samuel D, Adams D, Slama MS. Prophylactic pacemaker implantation in familial amyloid polyneuropathy. Heart Rhythm. 2012;9(7):1069–75.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. van der Kooi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van der Kooi, A.J., Wahbi, K., Bonne, G., de Visser, M. (2016). Hereditary Neuromuscular Diseases and Cardiac Involvement. In: Baars, H., Doevendans, P., Houweling, A., van Tintelen, J. (eds) Clinical Cardiogenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-44203-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44203-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44202-0

  • Online ISBN: 978-3-319-44203-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics