Skip to main content

Ontology-Based Model for Mining User’s Emotions on the Wisdom Web

  • Chapter
  • First Online:
Wisdom Web of Things

Abstract

The task of automatically detecting emotion on a web is challenging. This is due to the fact that a traditional web cannot directly interpret the meaning of semantic concepts or assess users emotions. We describe an ontology-based mining model for representation and integration of affect-related knowledge and apply it to detect user’s emotions. This application is a typical use case of the broad-based Wisdom Web of Things (W2T) methodology. The model (named BIO-EMOTION) acts as an integrated framework for: (1) representation and interpretation of affect-related knowledge, including user profile, bio-signal data, situation and environment factors, and (2) supporting intelligent reasoning on users’ emotions. To evaluate the effectiveness of the mining model, we conduct an experiment on a public dataset DEAP and capture a semantic knowledge base expressing both known and deduced knowledge. Evaluation shows that the model not only reaches higher accuracy than other emotion detection results from the same dataset but also achieves a comprehensive affect-related knowledge base which could represent things from both social world, physical world and cyber world in semantics. The ultimate goal of present research is to provide active, transparent, safe and reliable services to web users through their inner emotion. The model implements crucial sub-processes of W2T data cycle: from Things (acquisition of things in the hyper world) to Wisdom (performing intelligent reasoning on web users’ emotion). A long-term goal is to achieve the whole W2T data cycle and to realize a holistic intelligent mining model used on the Wisdom Web.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.biosemi.com.

References

  1. Aduna. Sesame (2012). http://www.openrdf.org

  2. L. Aftanas, N. Reva, A. Varlamov, S. Pavlov, V. Makhnev, Analysis of evoked EEG synchronization and desynchronization in conditions of emotional activation in humans: temporal and topographic characteristics. Neurosci. Behav. Physiol. 34(8), 859–867 (2004)

    Article  Google Scholar 

  3. D. Ariely, G.S. Berns, Neuromarketing: the hope and hype of neuroimaging in business. Nat. Rev. Neurosci. 11(4), 284–292 (2010)

    Article  Google Scholar 

  4. G.M.M Aurup. User Preference Extraction from Bio-signals: An Experimental Study (Concordia University, 2011)

    Google Scholar 

  5. Author Anderson Business Consultation, Zukai knowledge management (Toyo Keizai, Tokyo, 1999)

    Google Scholar 

  6. K.-I. Benta, A. Raru, M. Cremene, Ontology based affective context representation, in Proceedings of the 2007 Euro American Conference on Telematics and Information Systems (ACM, 2007), p. 46

    Google Scholar 

  7. L.F. Barrett, Are emotions natural kinds? Perspect. Psychol. Sci. 1(1), 28–58 (2006)

    Article  Google Scholar 

  8. L.F. Barrett, B. Mesquita, K.N. Ochsner, J.J. Gross, The experience of emotion. Ann. Rev. Psychol. 58, 373 (2007)

    Article  Google Scholar 

  9. N. Bourdaud, R. Chavarriaga, F. Galn, J. del R. Millan, Characterizing the EEG correlates of exploratory behavior. IEEE Trans. Neural Syst. Rehabil. Eng. 16(6), 549–556 (2008)

    Google Scholar 

  10. D. Brickley, R.V. Guha, RDF Vocabulary Description Language 1.0: RDF Schema (2004). http://www.w3.org/TR/rdf-schema/

  11. A.J. Caas, G. Hill, J. Lott, Support for Constructing Knowledge Models in CmapTools. Technical Report No. IHMC CmapTools 2003-02) (Institute for Human and Machine Cognition, Pensacola, FL, 2003)

    Google Scholar 

  12. G.A. Calvert, M.J. Brammer, Predicting consumer behavior: using novel mind-reading approaches. IEEE Pulse 3(3), 38–41 (2012)

    Article  Google Scholar 

  13. Y. Cao, Z. Cai, E. Shen, W. Shen, X. Chen, G. Gu, T. Shou, Quantitative analysis of brain optical images with 2D C0 complexity measure. J. Neurosci. Methods 159(1), 181–186 (2007)

    Article  Google Scholar 

  14. I. Cearreta, J.M. Lpez, N. Garay-Vitoria, Modelling multimodal context-aware affective interaction, in Proceedings of the Doctoral Consortium of the Second international Conference on ACII (2007), pp. 57–64

    Google Scholar 

  15. G. Chanel, J. Kronegg, D. Grandjean, T. Pun, Emotion assessment: arousal evaluation using EEGs and peripheral physiological signals, in Multimedia Content Representation, Classification and Security (Springer, 2006), pp. 530–537

    Google Scholar 

  16. H. Chaouchi, The Internet of Things: Connecting Objects (Wiley, 2013)

    Google Scholar 

  17. F. Chen, J. Xu, F. Gu, X. Yu, X. Meng, Z. Qiu, Dynamic process of information transmission complexity in human brains. Biol. Cybernet. 83(4), 355–366 (2000)

    Article  Google Scholar 

  18. Y.-L. Chi, S.-Y. Peng, C.-C. Yang, Creating Kansei engineering-based ontology for annotating and archiving photos database, in Human-Computer Interaction. Interaction Design and Usability (Springer, 2007), pp. 701–710

    Google Scholar 

  19. S. Claesen, R. Kitney, Estimation of the largest Lyapunov exponent of an RR interval and its use as an indicator of decreased autonomic heart rate control, in Computers in Cardiology 1994 (IEEE, 1994), pp. 133–136

    Google Scholar 

  20. R. Cowie, E. Douglas-Cowie, N. Tsapatsoulis, G. Votsis, S. Kollias, W. Fellenz, J.G. Taylor, Emotion recognition in human-computer interaction. IEEE Sign. Process. Mag. 18(1), 32–80 (2001)

    Article  Google Scholar 

  21. S.K. D’Mello, A. Graesser, Multimodal semi-automated affect detection from conversational cues, gross body language, and facial features. User Model User-Adap. Inter. 20(2), 147–187 (2010)

    Article  Google Scholar 

  22. H.K. Dai, B. Mobasher, Using ontologies to discover domain-level web usage profiles. Semant. Web Min. 35 (2002)

    Google Scholar 

  23. T. Dalgleish, B.D. Dunn, D. Mobbs, Affective neuroscience: past, present, and future. Emot. Rev. 1(4), 355–368 (2009)

    Article  Google Scholar 

  24. T. Dalgleish, M.J. Power, J. Wiley, Handbook of Cognition and Emotion (Wiley Online Library, 1999)

    Google Scholar 

  25. R.J. Davidson, P. Ekman, C.D. Saron, J.A. Senulis, W.V. Friesen, Approach-withdrawal and cerebral asymmetry: Emotional expression and brain physiology: I. J. Pers. Soc. Psychol. 58(2), 330 (1990)

    Article  Google Scholar 

  26. R.J. Davidson, K.R. Scherer, H. Goldsmith, Handbook of Affective Sciences (Oxford University Press, 2003)

    Google Scholar 

  27. T.S. Dillon, A. Talevski, V. Potdar, E. Chang, Web of things as a framework for ubiquitous intelligence and computing, in Ubiquitous Intelligence and Computing (Springer, 2009), pp. 2–13

    Google Scholar 

  28. D. Dou, G. Frishkoff, J. Rong, R. Frank, A. Malony, D. Tucker, Development of NeuroElectroMagnetic ontologies (NEMO): a framework for mining brainwave ontologies, in Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2007 (ACM, 2007), pp. 270–279

    Google Scholar 

  29. M. Eirinaki, M. Vazirgiannis, I. Varlamis, SEWeP: using site semantics and a taxonomy to enhance the Web personalization process, in Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003 (ACM, 2003), pp. 99–108

    Google Scholar 

  30. P. Ekman, Emotions in the Human Faces, 2nd edn. (Cambridge University, Press, 1982)

    Google Scholar 

  31. P. Ekman, Are there Basic Emotions? (1992a)

    Google Scholar 

  32. P. Ekman, An argument for basic emotions. Cogni. Emot. 6(3–4), 169–200 (1992b)

    Article  Google Scholar 

  33. C. Fisher, P. Sanderson, Exploratory sequential data analysis: exploring continuous observational data. Interactions 3(2), 25–34 (1996)

    Article  Google Scholar 

  34. V. Francisco, P. Gervs, F. Peinado, Ontological reasoning to configure emotional voice synthesis, in Web Reasoning and Rule Systems (Springer, 2007), pp. 88–102

    Google Scholar 

  35. P. Fraternali, M. Matera, A. Maurino, Conceptual-level log analysis for the evaluation of web application quality, in Web Congress, 2003. Proceedings. First Latin American, 2003 (IEEE, 2003), pp. 46–57

    Google Scholar 

  36. V. Galunov, B. Lobanov, N. Zagoruiko, Ontology of the subject domain, in Speech Signals Recognition and Synthesis SPECOM (2004)

    Google Scholar 

  37. N. Gibbins, S. Harris, N. Shadbolt, Agent-based semantic web services. Web Semant. Sci. Serv. Agents World Wide Web 1(2), 141–154 (2004)

    Article  Google Scholar 

  38. P. Grassberger, I. Procaccia, Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 28(4), 2591–2593 (1983)

    Article  Google Scholar 

  39. F. Hnig, A. Batliner, E. Nth, Real-time recognition of the affective user state with physiological signals, in Proceedings of the Doctoral Consortium, Affective Computing and Intelligent Interaction (2007)

    Google Scholar 

  40. B. Hjorth, EEG analysis based on time domain properties. Electroencephalogr. Clin. Neurophysiol. 29(3), 306–310 (1970)

    Article  Google Scholar 

  41. B. Hjorth, The physical significance of time domain descriptors in EEG analysis. Electroencephalogr. Clin. Neurophysiol. 34(3), 321–325 (1973)

    Article  Google Scholar 

  42. T. Inouye, K. Shinosaki, H. Sakamoto, S. Toi, S. Ukai, A. Iyama, Y. Katsuda, M. Hirano, Quantification of EEG irregularity by use of the entropy of the power spectrum. Electroencephalogr. Clin. Neurophysiol. 79(3), 204–210 (1991)

    Article  Google Scholar 

  43. Jena. Apache Jena. HP Labs Semantic Web Toolkit (2011). http://jena.sourceforge.net/

  44. Y. Jing, D. Jeong, D.-K. Baik, SPARQL graph pattern rewriting for OWL-DL inference queries. Knowl. Inf. Syst. 20(2), 243–262 (2009)

    Article  Google Scholar 

  45. C.M. Jones, T. Troen, Biometric valence and arousal recognition, in Proceedings of the 19th Australasian Conference on Computer-Human Interaction: Entertaining User Interfaces, 2007 (ACM, 2007), pp. 191–194

    Google Scholar 

  46. M. Kawasaki, Y. Yamaguchi, Effects of subjective preference of colors on attention-related occipital theta oscillations. Neuroimage 59(1), 808–814 (2012)

    Article  Google Scholar 

  47. G. Klyne, J.J. Carroll, Resource Description Framework (RDF): Concepts and Abstract Syntax (2004). http://www.w3.org/TR/rdf-concepts/

  48. K.-E. Ko, H.-C. Yang, K.-B. Sim, Emotion recognition using EEG signals with relative power values and Bayesian network. Int. J. Control Autom. Syst. 7(5), 865–870 (2009)

    Article  Google Scholar 

  49. S. Koelstra, C. Muhl, M. Soleymani, J.-S. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A. Nijholt, I. Patras, Deap: a database for emotion analysis using physiological signals. IEEE Trans Affect. Comput. 3(1), 18–31 (2012)

    Article  Google Scholar 

  50. Kolmogorov. An entropy per unit time as a metric invariant of automorphisms, in Dokl. Akad. Nauk SSSR (1959), pp. 754–755

    Google Scholar 

  51. M. Kostyunina, M. Kulikov, Frequency characteristics of EEG spectra in the emotions. Neurosci. Behav. Physiol. 26(4), 340–343 (1996)

    Article  Google Scholar 

  52. T. Kunii, J. Ma, R. Huang, Hyperworld modeling, in Proceedings of International Conference Visual Information Systems (VIS 96) (1996), pp. 1–8

    Google Scholar 

  53. J.M. Lpez, R. Gil, R. Garca, I. Cearreta, N. Garay, Towards an ontology for describing emotions, in Emerging Technologies and Information Systems for the Knowledge Society (Springer, 2008), pp. 96–104

    Google Scholar 

  54. M.D. Lewis, J.M. Haviland-Jones, L.F. Barrett, Handbook of Emotions (Guilford Press, 2010)

    Google Scholar 

  55. P. Lewis, H. Critchley, P. Rotshtein, R. Dolan, Neural correlates of processing valence and arousal in affective words. Cerebral Cortex 17(3), 742–748 (2007)

    Article  Google Scholar 

  56. J. Ma, R. Huang. Improving human interaction with a hyperworld, in Proceedings of the Pacific Workshop on Distributed Multimedia Systems (DMS’96) (1996), pp. 46–50

    Google Scholar 

  57. A. Maedche, S. Staab, Discovering conceptual relations from text, in Ecai, vol. 325 (2000), p. 27

    Google Scholar 

  58. A. Maedche, S. Staab, Ontology Learning (Springer, 2004)

    Google Scholar 

  59. Y.Y. Mathieu, Annotation of emotions and feelings in texts, in Affective Computing and Intelligent Interaction (Springer, 2005), pp. 350–357

    Google Scholar 

  60. D.L. McGuinness, F. Van Harmelen, OWL Web Ontology Language Overview (W3C Recommendation, 2004)

    Google Scholar 

  61. A. Mehrabian, J.A. Russell, An Approach to Environmental Psychology (The MIT Press, 1974)

    Google Scholar 

  62. R. Meo, P.L. Lanzi, M. Matera, R. Esposito, Integrating web conceptual modeling and web usage mining, in Advances in Web Mining and Web Usage Analysis (Springer, 2006), pp. 135–148

    Google Scholar 

  63. M. Murugappan, M. Rizon, R. Nagarajan, S. Yaacob, D. Hazry, I. Zunaidi, Time-frequency analysis of EEG signals for human emotion detection, in 4th Kuala Lumpur International Conference on Biomedical Engineering 2008 (Springer, 2008), pp. 262–265

    Google Scholar 

  64. M.A. Nicolaou, H. Gunes, M. Pantic, Continuous prediction of spontaneous affect from multiple cues and modalities in valence-arousal space. IEEE Trans Affect. Comput. 2(2), 92–105 (2011)

    Article  Google Scholar 

  65. E. Niedermeyer, The normal EEG of the waking adult, in Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, vol. 167 (2005)

    Google Scholar 

  66. D. Oberle, B. Berendt, A. Hotho, J. Gonzalez, Conceptual user tracking, in Advances in Web Intelligence (Springer, 2003), pp. 155–164

    Google Scholar 

  67. R. Ohme, D. Reykowska, D. Wiener, A. Choromanska, Analysis of neurophysiological reactions to advertising stimuli by means of EEG and galvanic skin response measures. J. Neurosci. Psychol. Econ. 2(1), 21 (2009)

    Article  Google Scholar 

  68. R. Ohme, D. Reykowska, D. Wiener, A. Choromanska, Application of frontal EEG asymmetry to advertising research. J. Econ. Psychol. 31(5), 785–793 (2010)

    Article  Google Scholar 

  69. A.M. Oliveira, M.P. Teixeira, I.B. Fonseca, M. Oliveira, Joint model-parameter validation of self-estimates of valence and arousal: Probing a differential-weighting model of affective intensity, in Proceedings of the 22nd Annual Meeting of the International Society for Psychophysics (2006), pp. 245–250

    Google Scholar 

  70. M. Pantic, L.J. Rothkrantz, Toward an affect-sensitive multimodal human-computer interaction. Proc. IEEE 91(9), 1370–1390 (2003)

    Article  Google Scholar 

  71. H. Peng, B. Hu, Q. Liu, Q. Dong, Q. Zhao, P. Moore, User-centered depression prevention: an EEG approach to pervasive healthcare, in 2011 IEEE 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) (2011a), pp. 325–330

    Google Scholar 

  72. H. Peng, B. Hu, Y. Qi, Q. Zhao, M. Ratcliffe, An improved EEG de-noising approach in electroencephalogram (EEG) for home care, in 2011 IEEE 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) (2011b), pp. 469–474

    Google Scholar 

  73. P.C. Petrantonakis, L.J. Hadjileontiadis, Adaptive extraction of emotion-related EEG segments using multidimensional directed information in time-frequency domain, in Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE (IEEE, 2010), pp. 1–4

    Google Scholar 

  74. R.W. Picard, Affective computing: challenges. Int. J. Hum.-Comput. Stud. 59(1), 55–64 (2003)

    Article  Google Scholar 

  75. R.W. Picard, E. Vyzas, J. Healey, Toward machine emotional intelligence: analysis of affective physiological state. IEEE Trans Pattern Anal. Mach. Intell. 23(10), 1175–1191 (2001)

    Article  Google Scholar 

  76. R. Pivik, R. Broughton, R. Coppola, R. Davidson, N. Fox, M. Nuwer, Guidelines for the recording and quantitative analysis of electroencephalographic activity in research contexts. Psychophysiology 30(6), 547–558 (1993)

    Article  Google Scholar 

  77. J.R. Quinlan, C4. 5: Programs for Machine Learning, vol. 1 (Morgan kaufmann, 1993)

    Google Scholar 

  78. M.T. Rosenstein, J.J. Collins, C.J. De Luca, A practical method for calculating largest Lyapunov exponents from small data sets. Physica D: Nonlin. Phenomena 65(1), 117–134 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  79. J.A. Russell, Core affect and the psychological construction of emotion. Psychol. Rev. 110(1), 145 (2003)

    Article  Google Scholar 

  80. J.A. Russell, M. Lewicka, T. Niit, A cross-cultural study of a circumplex model of affect. J. Pers. Soc. Psychol. 57(5), 848 (1989)

    Article  Google Scholar 

  81. S.J. Russell, P. Norvig, J.F. Canny, J.M. Malik, D.D. Edwards, Artificial Intelligence: A Modern Approach, vol. 74 (Prentice hall Englewood Cliffs, 1995)

    Google Scholar 

  82. M. Sabeti, R. Boostani, S. Katebi, G. Price, Selection of relevant features for EEG signal classification of schizophrenic patients. Biomed. Sign. Process. Control 2(2), 122–134 (2007)

    Article  Google Scholar 

  83. P. Salovey, J.D. Mayer, Emotional intelligence. Imagination Cogn. Pers. 9(3), 185–211 (1989)

    Article  Google Scholar 

  84. N. Sebe, I. Cohen, T.S. Huang, Multimodal emotion recognition. Handb. Pattern Recogn. Comput. Vis. 4, 387–419 (2005)

    Article  Google Scholar 

  85. M. Shamsfard, A.A. Barforoush, Learning ontologies from natural language texts. Int. J. Hum.-Comput. Stud. 60(1), 17–63 (2004)

    Article  Google Scholar 

  86. C.E. Shannon, A mathematical theory of communication. ACM SIGMOBILE Mobile Comput. Commun. Rev. 5(1), 3–55 (2001)

    Article  MathSciNet  Google Scholar 

  87. C. Stickel, M. Ebner, S. Steinbach-Nordmann, G. Searle, A. Holzinger, Emotion detection: application of the valence arousal space for rapid biological usability testing to enhance universal access, in Universal Access in Human-Computer Interaction. Addressing Diversity (Springer, 2009), pp. 615–624

    Google Scholar 

  88. V. Stirbu, Towards a restful plug and play experience in the web of things, in 2008 IEEE International Conference on Semantic Computing (IEEE, 2008), pp. 512–517

    Google Scholar 

  89. A.J. Tomarken, R.J. Davidson, R.E. Wheeler, L. Kinney, Psychometric properties of resting anterior EEG asymmetry: temporal stability and internal consistency. Psychophysiology 29(5), 576–592 (1992)

    Article  Google Scholar 

  90. J. Wackermann, Towards a quantitative characterisation of functional states of the brain: from the non-linear methodology to the global linear description. Int. J. Psychophysiol. 34(1), 65–80 (1999)

    Article  Google Scholar 

  91. J. Wackermann, C. Allefeld, On the meaning and interpretation of global descriptors of brain electrical activity. Including a reply to X. Pei, et al. Int. J. Psychophysiol. 64(2), 199–210 (2007)

    Article  Google Scholar 

  92. T. Wehrle, K.R. Scherer, Towards computational modeling of appraisal theories, in Appraisal Processes in Emotion: Theory, Methods, Research (Oxford University Press, New York, 2001)

    Google Scholar 

  93. E. Welbourne, L. Battle, G. Cole, K. Gould, K. Rector, S. Raymer, M. Balazinska, G. Borriello, Building the internet of things using RFID: the RFID ecosystem experience. IEEE Internet Comput. 13(3), 48–55 (2009)

    Article  Google Scholar 

  94. Y-H. Yang, Y-C. Lin, Y-F, Su, H.H. Chen, Music emotion classification: a regression approach, in 2007 IEEE International Conference on Multimedia and Expo (IEEE, 2007), pp. 208–211

    Google Scholar 

  95. E.Yokomatsu, S-i. Ito, Y. Mitsukura, J. Cao, M.A. Fukumi, Design of the preference acquisition detection system, in SICE, 2007 Annual Conference (IEEE, 2007), pp. 2804–2807

    Google Scholar 

  96. C. Yu, P.M. Aoki, A. Woodruff, Detecting User Engagement in Everyday Conversations. arXiv preprint cs/0410027 (2004)

    Google Scholar 

  97. Z. Zeng, M. Pantic, G.I. Roisman, T.S. Huang, A survey of affect recognition methods: audio, visual, and spontaneous expressions. IEEE Trans. Pattern Anal. Mach. Intell. 31(1), 39–58 (2009)

    Article  Google Scholar 

  98. X.-S. Zhang, R.J. Roy, Derived fuzzy knowledge model for estimating the depth of anesthesia. IEEE Trans. Biomed. Eng. 48(3), 312–323 (2001)

    Article  Google Scholar 

  99. N. Zhong, J. Liu, Y. Yao, In search of the wisdom web. IEEE Comput. 35(11), 27–31 (2002)

    Article  Google Scholar 

  100. N. Zhong, J. Liu, Y. Yao. Web intelligence (WI): a new paradigm for developing the Wisdom Web and social network intelligence, in Web Intelligence (Springer, 2003), pp. 1–16

    Google Scholar 

  101. N. Zhong, J.H. Ma, R.H. Huang, J.M. Liu, Y.Y. Yao, Y.X. Zhang, J.H. Chen, Research challenges and perspectives on Wisdom Web of Things (W2T). J. Supercomput. 1–21 (2013)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program) (No.2014CB744600), the National Natural Science Foundation of China (No.60973138 and No.61003240), the International Cooperation Project of Ministry of Science and Technology (No.2013DFA11140), the National Basic Research Program of China (973 Program) (No.2011CB711000), and Gansu Provincial Science & Technology Department (No. 1208RJYA015). The authors would like to acknowledge European Community’s Seventh Framework Program (FP7/2007–2011) for their public DEAP database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, J., Hu, B., Moore, P., Zhang, X. (2016). Ontology-Based Model for Mining User’s Emotions on the Wisdom Web. In: Zhong, N., Ma, J., Liu, J., Huang, R., Tao, X. (eds) Wisdom Web of Things. Web Information Systems Engineering and Internet Technologies Book Series. Springer, Cham. https://doi.org/10.1007/978-3-319-44198-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44198-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44196-2

  • Online ISBN: 978-3-319-44198-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics