Skip to main content

Microfluidic Technologies for Deformability-Based Cell Sorting

  • Chapter
  • First Online:
Microtechnology for Cell Manipulation and Sorting

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

There are many situations in medicine and biology where it is desirable to distinguish specific cells within a population based on their mechanical deformability, which can potentially serve as a proxy for morphology or pathology. This biophysical characteristic is particularly relevant for cells in the circulatory system because deformability determines the capacity for these cells to transit through the microvasculature. These circulating cells include the abundant hematological cells such as erythrocytes (red blood cells, RBCs) and leukocytes (white blood cells , WBCs), as well as rare cells, such as circulating tumor cells (CTCs) . Since deformability is such a fundamental characteristic of blood cells, deviations in normal cell deformability can contribute to a range of pathological conditions and potentially serve as a biomarker to evaluate them during treatment. In this chapter, we first discuss the role of deformability in circulating cells, including erythrocytes, leukocytes, and CTCs. We then briefly introduce our recent efforts in measuring cell deformability , and then compare the deformability of various circulating cells. Subsequently, we review the principles and applications of established strategies for deformability-based cell separation, including hydrodynamic chromatography and microfiltration . Finally, we will describe a recently developed method to sort cells based on deformability using the microfluidic ratchet mechanism, as well as its application in deformability-based separation of CTCs and deformability-based sorting of RBC infected with P. falciparum, the parasite that causes malaria .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alaarg A, Schiffelers RM, van Solinge WW, van Wijk R (2013) Red blood cell vesiculation in hereditary hemolytic anemia. Front Physiol 4:1–15. doi:10.3389/fphys.2013.00365

    Article  Google Scholar 

  • Allard WJ, Matera J, Miller MC et al (2004) Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 10:6897–6904. doi:10.1158/1078-0432.CCR-04-0378

    Article  Google Scholar 

  • Alvankarian J, Bahadorimehr A, Yeop Majlis B (2013) A pillar-based microfilter for isolation of white blood cells on elastomeric substrate. Biomicrofluidics 7:14102. doi:10.1063/1.4774068

    Article  Google Scholar 

  • Anderson AO, Anderson ND (1976) Lymphocyte emigration from high endothelial venules in rat lymph nodes. Immunology 31:731–748

    Google Scholar 

  • Beech JP, Holm SH, Adolfsson K, Tegenfeldt JO (2012) Sorting cells by size, shape and deformability. Lab Chip 12:1048. doi:10.1039/c2lc21083e

    Article  Google Scholar 

  • Bosch FH, Werre JM, Schipper L et al (1994) Determinants of red blood cell deformability in relation to cell age. Eur J Haematol 52:35–41. doi:10.1111/j.1600-0609.1994.tb01282.x

    Article  Google Scholar 

  • Brown MJ, Hallam JA, Colucci-Guyon E, Shaw S (2001) Rigidity of circulating lymphocytes is primarily conferred by vimentin intermediate filaments. J Immunol 166:6640–6646. doi:10.4049/jimmunol.166.11.6640

    Article  Google Scholar 

  • Callens N, Minetti C, Mader M-A et al (2008) Hydrodynamic lift of vesicles under shear flow in microgravity. Europhys Lett 83:6. doi:10.1209/0295-5075/83/24002

    Article  Google Scholar 

  • Chen LT, Weiss L (1973) The role of the sinus wall in the passage of erythrocytes through the spleen. Blood 41:529–537

    Google Scholar 

  • Chen X, Cui D, Liu C, Li H (2008) Microfluidic chip for blood cell separation and collection based on crossflow filtration. Sens Actuators B Chem 130:216–221. doi:10.1016/j.snb.2007.07.126

    Article  Google Scholar 

  • Chen J, Chen D, Yuan T et al (2013) A microfluidic chip for direct and rapid trapping of white blood cells from whole blood. Biomicrofluidics 7:34106. doi:10.1063/1.4808179

    Article  MathSciNet  Google Scholar 

  • Choi S, Song S, Choi C, Park J-K (2007) Continuous blood cell separation by hydrophoretic filtration. Lab Chip 7:1532–1538. doi:10.1039/b705203k

    Article  Google Scholar 

  • Clark MR, Mohandas N, Shohet SB (1980) Deformability of oxygenated irreversibly sickled cells. J Clin Invest 65:189–196. doi:10.1172/JCI109650

    Article  Google Scholar 

  • Comen E, Norton L, Massagué J (2011) Clinical implications of cancer self-seeding. Nat Rev Clin Oncol 8:369–377. doi:10.1038/nrclinonc.2011.64

    Google Scholar 

  • Coumans FAW, van Dalum G, Beck M, Terstappen LWMM (2013) Filtration parameters influencing circulating tumor cell enrichment from whole blood. PLoS ONE. doi:10.1371/journal.pone.0061774

    Google Scholar 

  • Cranston HA, Boylan CW, Carroll GL et al (1984) Plasmodium falciparum maturation abolishes physiologic red cell deformability. Science 223(80):400–403. doi:10.1126/science.6362007

    Article  Google Scholar 

  • Crosby W (1959) Normal functions of the spleen relative to red blood cells—a review. Blood 14:399–408

    Google Scholar 

  • Davis JA, Inglis DW, Morton KJ et al (2006) Deterministic hydrodynamics: taking blood apart. Proc Natl Acad Sci USA 103:14779–14784. doi:10.1073/pnas.0605967103

    Article  Google Scholar 

  • Desitter I, Guerrouahen BS, Benali-Furet N et al (2011) A new device for rapid isolation by size and characterization of rare circulating tumor cells. Anticancer Res 31:427–441

    Google Scholar 

  • Diez-Silva M, Park Y, Huang S et al (2012) Pf155/RESA protein influences the dynamic microcirculatory behavior of ring-stage Plasmodium falciparum infected red blood cells. Sci Rep 2:614. doi:10.1038/srep00614

    Article  Google Scholar 

  • Evans EA, La Celle PL (1975) Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation. Blood 45:29–43

    Google Scholar 

  • FÃ¥hræus R, Lindqvist T (1931) The viscosity of the blood in narrow capillary tubes. Am J Physiol Hear Circ Physiol 96:562–568

    Google Scholar 

  • Geislinger T, Eggart B (2012) Separation of blood cells using hydrodynamic lift. Appl Phys Lett 100:183701. doi:10.1063/1.4709614

    Article  Google Scholar 

  • Geislinger TM, Chan S, Moll K et al (2014) Label-free microfluidic enrichment of ring-stage Plasmodium falciparum-infected red blood cells using non-inertial hydrodynamic lift. Malar J 13:375. doi:10.1186/1475-2875-13-375

    Article  Google Scholar 

  • Goldsmith H, Mason S (1962) The flow of suspensions through tubes. I. Single spheres, rods, and discs. J Colloid Sci 17:448–476. doi:10.1016/0095-8522(62)90056-9

    Article  Google Scholar 

  • Guo Q, McFaul S, Ma H (2011) Deterministic microfluidic ratchet based on the deformation of individual cells. Phys Rev E 83:051910. doi:10.1103/PhysRevE.83.051910

    Article  Google Scholar 

  • Guo Q, Reiling SJ, Rohrbach P, Ma H (2012a) Microfluidic biomechanical assay for red blood cells parasitized by Plasmodium falciparum. Lab Chip 12:1143–1150. doi:10.1039/c2lc20857a

    Article  Google Scholar 

  • Guo Q, Park S, Ma H (2012b) Microfluidic micropipette aspiration for measuring the deformability of single cells. Lab Chip 12:2687–2695. doi:10.1039/c2lc40205j

    Article  Google Scholar 

  • Guo Q, Duffy SP, Matthews K et al (2014) Microfluidic analysis of red blood cell deformability. J Biomech 47:1767–1776. doi:10.1016/j.jbiomech.2014.03.038

    Article  Google Scholar 

  • Guo Q, Duffy SP, Matthews K et al (2016) Deformability based sorting of red blood cells improves diagnostic sensitivity for malaria caused by Plasmodium falciparum. Lab Chip. doi:10.1039/C5LC01248A

    Google Scholar 

  • Haines WB (2009) Studies in the physical properties of soil. V. The hysteresis effect in capillary properties, and the modes of moisture distribution associated therewith. J Agric Sci 20:97. doi:10.1017/S002185960008864X

    Article  Google Scholar 

  • Hochmuth RM (2000) Micropipette aspiration of living cells. J Biomech 33:15–22

    Article  Google Scholar 

  • Holmes D, Whyte G, Bailey J et al (2014) Separation of blood cells with differing deformability using deterministic lateral displacement. Interface Focus 4:20140011. doi:10.1098/rsfs.2014.0011

    Article  Google Scholar 

  • Hosokawa M, Hayata T, Fukuda Y et al (2010) Size-selective microcavity array for rapid and efficient detection of circulating tumor cells. Anal Chem 82:6629–6635. doi:10.1021/ac101222x

    Article  Google Scholar 

  • Hosokawa M, Asami M, Nakamura S et al (2012) Leukocyte counting from a small amount of whole blood using a size-controlled microcavity array. Biotechnol Bioeng 109:2017–2024. doi:10.1002/bit.24471

    Article  Google Scholar 

  • Hosseini SM, Feng JJ (2012) How malaria parasites reduce the deformability of infected red blood cells. Biophys J 103:1–10. doi:10.1016/j.bpj.2012.05.026

    Article  Google Scholar 

  • Hou HW, Bhagat AAS, Chong AGL et al (2010) Deformability based cell margination–a simple microfluidic design for malaria-infected erythrocyte separation. Lab Chip 10:2605–2613. doi:10.1039/c003873c

    Article  Google Scholar 

  • Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304:987–990. doi:10.1126/science.1094567

    Article  Google Scholar 

  • Inglis DW (2009) Efficient microfluidic particle separation arrays. Appl Phys Lett 94:2007–2010. doi:10.1063/1.3068750

    Article  Google Scholar 

  • Ji HM, Samper V, Chen Y et al (2008) Silicon-based microfilters for whole blood cell separation. Biomed Microdevices 10:251–257. doi:10.1007/s10544-007-9131-x

    Article  Google Scholar 

  • Jin C, McFaul SM, Duffy SP et al (2014) Technologies for label-free separation of circulating tumor cells: from historical foundations to recent developments. Lab Chip 14:32–44. doi:10.1039/C3LC50625H

    Article  Google Scholar 

  • Jin C, Park ES, Guo Q et al (2016) Continuous flow deformability-based separation of circulating tumor cells using microfluidic ratchets. Small 12:1909–1919

    Article  Google Scholar 

  • Krueger T, Holmes D, Coveney P (2014) Deformability-based red blood cell separation in deterministic lateral displacement devices—a simulation study. Biomicrofluidics 8:1–10. doi:10.1039/b000000x

    Google Scholar 

  • Kwan JM, Guo Q, Kyluik-Price DL et al (2013) Microfluidic analysis of cellular deformability of normal and oxidatively damaged red blood cells. Am J Hematol 88:682–689. doi:10.1002/ajh.23476

    Article  Google Scholar 

  • Li X, Chen W, Liu G et al (2014) Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes. Lab Chip 14:2565–2575. doi:10.1039/c4lc00350k

    Article  Google Scholar 

  • Ligthart ST, Coumans FAW, Bidard FC et al (2013) Circulating tumor cells count and morphological features in breast, colorectal and prostate cancer. PLoS ONE 8:e67148. doi:10.1371/journal.pone.0067148

    Article  Google Scholar 

  • Lin HK, Zheng S, Williams AJ et al (2010) Portable filter-based microdevice for detection and characterization of circulating tumor cells. Clin Cancer Res 16:5011–5018

    Article  Google Scholar 

  • Lu B, Xu T, Zheng S et al (2010) Parylene membrane slot filter for the capture, analysis and culture of viable circulating tumor cells. In: IEEE international conference on micro electro mechanical systems, pp 935–938. doi:10.1109/MEMSYS.2010.5442361

  • Miller MC, Doyle GV, Terstappen LWMM (2010) Significance of circulating tumor cells detected by the cell search system in patients with metastatic breast colorectal and prostate cancer. J Oncol 2010:617421. doi:10.1155/2010/617421

    Article  Google Scholar 

  • Mills JP, Diez-Silva M, Quinn DJ et al (2007) Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum. Proc Natl Acad Sci USA 104:9213–9217. doi:10.1073/pnas.0703433104

    Article  Google Scholar 

  • Miyasaka M, Tanaka T (2004) Lymphocyte trafficking across high endothelial venules: dogmas and enigmas. Nat Rev Immunol 4:360–370. doi:10.1038/nri1354

    Article  Google Scholar 

  • Mohanty JG, Nagababu E, Rifkind JM (2014) Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front Physiol 5:1–6. doi:10.3389/fphys.2014.00084

    Article  Google Scholar 

  • Moxon CA, Grau GE, Craig AG (2011) Malaria: modification of the red blood cell and consequences in the human host. Br J Haematol. doi:10.1111/j.1365-2141.2011.08755.x

    Google Scholar 

  • Myrand-Lapierre M-E, Deng X, Ang RR et al (2014) Multiplexed fluidic plunger mechanism for the measurement of red blood cell deformability. Lab Chip. doi:10.1039/c4lc01100g

    Google Scholar 

  • Nash GB, Johnson CS, Meiselman HJ (1984) Mechanical properties of oxygenated red blood cells in sickle cell (HbSS) disease. Blood 63:73–82

    Google Scholar 

  • Nash GB, O’Brien E, Gordon-Smith EC, Dormandy JA (1989) Abnormalities in the mechanical properties of red blood cells caused by Plasmodium falciparum. Blood 74:855–861

    Google Scholar 

  • Olla P (1997) The lift on a tank-treading ellipsoidal cell in a bounded shear flow. J Phys II 7:1533–1540. doi:10.1051/jp2:1997201

    Google Scholar 

  • Omodeo-Salè F, Motti A, Dondorp A et al (2005) Destabilisation and subsequent lysis of human erythrocytes induced by Plasmodium falciparum haem products. Eur J Haematol 74:324–332. doi:10.1111/j.1600-0609.2004.00352.x

    Article  Google Scholar 

  • Park S, Ang RR, Duffy SP et al (2014) Morphological differences between circulating tumor cells from prostate cancer patients and cultured prostate cancer cells. PLoS ONE. doi:10.1371/journal.pone.0085264

    Google Scholar 

  • Paulitschke M, Nash GB (1993) Membrane rigidity of red blood cells parasitized by different strains of Plasmodium falciparum. J Lab Clin Med 122:581–589

    Google Scholar 

  • Perrotta S, Gallagher PG, Mohandas N (2008) Hereditary spherocytosis. Lancet 372:1411–1426. doi:10.1016/S0140-6736(08)61588-3

    Article  Google Scholar 

  • Punnoose EA, Atwal SK, Spoerke JM et al (2010) Molecular biomarker analyses using circulating tumor cells. PLoS ONE 5:1–12. doi:10.1371/journal.pone.0012517

    Article  Google Scholar 

  • Santoso AT, Deng X, Lee J-H et al (2015) Microfluidic cell-phoresis enabling high-throughput analysis of red blood cell deformability and biophysical screening of antimalarial drugs. Lab Chip. doi:10.1039/C5LC00945F

    Google Scholar 

  • Schmid-Schönbein GW, Shih YY, Chien S (1980) Morphometry of human leukocytes. Blood, 56(5):866–875, Nov. 1980

    Google Scholar 

  • Schrier SL (1994) Thalassemia: pathophysiology of red cell changes. Annu Rev Med 45:211–218. doi:10.1146/annurev.med.45.1.211

    Article  Google Scholar 

  • Seal SH (1964) A sieve for the isolation of cancer cells and other large cells from the blood. Cancer 17:637–642. doi:10.1002/1097-0142(196405)17:5<637:AID-CNCR2820170512>3.0.CO;2-I

    Article  Google Scholar 

  • Sethu P, Sin A, Toner M (2006) Microfluidic diffusive filter for apheresis (leukapheresis). Lab Chip 6:83–89. doi:10.1039/b512049g

    Article  Google Scholar 

  • Shevkoplyas SS, Yoshida T, Munn LL, Bitensky MW (2005) Biomimetic autoseparation of leukocytes from whole blood in a microfluidic device. Anal Chem 77:933–937. doi:10.1021/ac049037i

    Article  Google Scholar 

  • Sutera SP, Gardner RA, Boylan CW et al (1985) Age-related changes in deformability of human erythrocytes. Blood 65:275–282

    Google Scholar 

  • Tan SJ, Yobas L, Lee GYH et al (2009) Microdevice for the isolation and enumeration of cancer cells from blood. Biomed Microdevices 11:883–892. doi:10.1007/s10544-009-9305-9

    Article  Google Scholar 

  • VanDelinder V, Groisman A (2007) Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow. Anal Chem 79:2023–2030. doi:10.1021/ac061659b

    Article  Google Scholar 

  • Vona G, Sabile A, Louha M et al (2000) Isolation by size of epithelial tumor cells. Am J Pathol 156:57–63. doi:10.1016/S0002-9440(10)64706-2

    Article  Google Scholar 

  • Worthen GS, Schwab B, Elson EL, Downey GP (1989) Mechanics of stimulated neutrophils: cell stiffening induces retention in capillaries. Science 245:183–186. doi:10.1126/science.2749255

    Article  Google Scholar 

  • Yap B, Kamm RD (2005) Mechanical deformation of neutrophils into narrow channels induces pseudopod projection and changes in biomechanical properties. J Appl Physiol 98:1930–1939. doi:10.1152/japplphysiol.01226.2004

    Article  Google Scholar 

  • Zheng S, Lin H, Liu J-Q et al (2007) Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J Chromatogr A 1162:154–161. doi:10.1016/j.chroma.2007.05.064

    Article  Google Scholar 

  • Zheng S, Lin HK, Lu B et al (2011) 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood. Biomed Microdevices 13:203–213

    Article  Google Scholar 

  • Zhou R, Gordon J, Palmer AF, Chang H-C (2006) Role of erythrocyte deformability during capillary wetting. Biotechnol Bioeng 93:201–211. doi:10.1002/bit.20672

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongshen Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guo, Q., Duffy, S.P., Ma, H. (2017). Microfluidic Technologies for Deformability-Based Cell Sorting. In: Lee, W., Tseng, P., Di Carlo, D. (eds) Microtechnology for Cell Manipulation and Sorting. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-44139-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44139-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44137-5

  • Online ISBN: 978-3-319-44139-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics