Skip to main content

Regime-Switching Sunspot Equilibria in a One-Sector Growth Model with Aggregate Decreasing Returns and Small Externalities

  • Chapter
  • First Online:
Sunspots and Non-Linear Dynamics

Part of the book series: Studies in Economic Theory ((ECON.THEORY,volume 31))

  • 529 Accesses

Abstract

This paper shows that regime-switching sunspot equilibria easily arise in a one-sector growth model with aggregate decreasing returns and arbitrarily small externalities. We construct a regime-switching sunspot equilibrium under the assumption that the utility function of consumption is linear. We also construct a stochastic optimal growth model whose optimal process turns out to be a regime-switching sunspot equilibrium of the original economy under the assumption that there is no capital externality. We illustrate our results with numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See Benhabib and Farmer (1999) for a survey of earlier results. See Grandmont (1989, 1991) for a discussion of the relations between the local stability properties of a steady state and the possibility of sunspot equilibria.

  2. 2.

    See Clain-Chamosset-Yvrard and Kamihigashi (2015) for an example of a regime-switching sunspot equilibrium in a two-country model with asset bubbles.

  3. 3.

    Kamihigashi (2015) shows that multiple steady states are possible even without externalities.

  4. 4.

    In the decentralized version of the model, profits are given to consumers, who are the owners of the firms.

  5. 5.

    The condition \(\sigma \in [0,1]\) is needed here.

References

  • Benhabib, J., & Farmer, R. E. A. (1994). Indeterminacy and increasing returns. Journal of Economic Theory, 63, 19–41.

    Article  Google Scholar 

  • Benhabib, J., & Farmer, R. E. A. (1999) Chapter 6: Indeterminacy and sunspots in macroeconomics. Handbook of Macroeconomics, 1A, 387–448.

    Google Scholar 

  • Benhabib, J., Meng, Q., & Nishimura, K. (2000). Indeterminacy under constant returns to scale in multisector economies. Econometrica, 68, 1541–1548.

    Article  Google Scholar 

  • Brock, W. A. (1982). Asset prices in a production economy. In J. J. McCall (Ed.), The Economics of Information and Uncertainty (pp. 1–46). Press: University of Chicago.

    Google Scholar 

  • Brock, W. A., & Mirman, L. J. (1972). Optimal economic growth and uncertainty: The discounted case. Journal of Economic Theory, 4, 479–513.

    Article  Google Scholar 

  • Clain-Chamosset-Yvrard, L., & Kamihigashi, T. (2015). International transmission of bubble crashes: Stationary sunspot equilibria in a two-country overlapping generations model, RIEB Discussion Paper DP2015-21, Kobe University.

    Google Scholar 

  • Coury, T., & Wen, Y. (2009). Global indeterminacy in locally determinate real business cycle models. International Journal of Economic Theory, 5, 49–60.

    Article  Google Scholar 

  • Dos Santos Ferreira, R., & Lloyd-Braga, T. (2008). Business cycles with free entry ruled by animal spirits. Journal of Economic Dynamics and Control, 32, 3502–3519.

    Article  Google Scholar 

  • Drugeon, J.-P., & Wigniolle, B. (1996). Continuous-time sunspot equilibria and dynamics in a model of growth. Journal of Economic Growth, 69, 24–52.

    Google Scholar 

  • Drugeon, J.-P., & Venditti, A. (2001). Intersectoral external effects, multiplicities & indeterminacies. Journal of Economic Dynamics and Control, 25, 765–787.

    Article  Google Scholar 

  • Dufoourt, F., Nishimura, K., & Vendittie, A. (2015). Indeterminacy and sunspots in two-sector RBC models with generalized no-income-effect preferences. Journal of Economic Theory, 157, 1056–1080.

    Article  Google Scholar 

  • Ekeland, I., & Scheinkman, S. A. (1986). Transversality conditions for some infinite horizon discrete time optimization problems. Mathematics of Operations Research, 11, 216–229.

    Article  Google Scholar 

  • Farmer, R. E. A., & Guo, J.-T. (1994). Real business cycles and the animal spirits hypothesis. Journal of Economic Theory, 63, 42–72.

    Article  Google Scholar 

  • Grandmont, J.-M. (1989). Local bifurcation and stationary sunspots. Economic Complexity: Chaos, Sunspots, Bubbles, and Nonlinearity (pp. 45–60).

    Google Scholar 

  • Grandmont, J.-M. (1991). Expectations driven business cycles. European Economic Review, 35, 293–299.

    Article  Google Scholar 

  • Kamihigashi, T. (1996). Real business cycles and sunspot fluctuations are observationally equivalent. Journal of Monetary Economics, 37, 105–117.

    Article  Google Scholar 

  • Kamihigashi, T. (1999). Chaotic dynamics in quasi-static systems: Theory and applications. Journal of Mathematical Economics, 31, 183–214.

    Article  Google Scholar 

  • Kamihigashi, T. (2002). Externalities and nonlinear discounting: Indeterminacy. Journal of Economic Dynamics and Control, 26, 141–169.

    Article  Google Scholar 

  • Kamihigashi, T. (2003). Necessity of transversality conditions for stochastic problems. Journal of Economic Theory, 109, 140–149.

    Article  Google Scholar 

  • Kamihigashi, T. (2005). Necessity of the transversality condition for stochastic models with bounded or CRRA utility. Journal of Economic Dynamics and Control, 29, 1313–1329.

    Article  Google Scholar 

  • Kamihigashi, T. (2008). Stochastic optimal growth with bounded or unbounded utility and with bounded or unbounded shocks. Journal of Mathematical Economics, 43, 477–500.

    Article  Google Scholar 

  • Kamihigashi, T. (2015). Multiple interior steady states in the Ramsey model with elastic labor supply. International Journal of Economic Theory, 11, 25–37.

    Article  Google Scholar 

  • Mino, K. (2001). Indeterminacy and endogenous growth social constant returns. Journal of Economic Theory, 97, 203–222.

    Article  Google Scholar 

  • Pelloni, A., & Waldmann, R. (1998). Stability properties of a growth model. Economics Letters, 61, 55–60.

    Article  Google Scholar 

  • Pintus, P. A. (2006). Indeterminacy with almost constant returns to scale: Capital-labor substitution matters. Economic Theory, 28, 633–649.

    Article  Google Scholar 

  • Puterman, M. L. (2005). Markov Decision Processes: Discrete Stationary Dynamic Programming. Hoboken, NJ: John Wiley & Sons.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kamihigashi .

Editor information

Editors and Affiliations

Appendices

Appendix A Proof of Lemma 6.3.1

Let \(\{c^{*}_{t}, n^{*}_{t}, k^{*}_{t}\}_{t=0}^{\infty }\) be a feasible process satisfying (6.3.4)–(6.3.6) (with \(c^{*}_{t}, n^{*}_{t}, k^{*}_{t}\) replacing \(c_{t}, n_{t}, k_{t}\)). To simplify notation, for \(t \in \mathbb {Z}_{+}\) and \(i = 1,2\) we define

$$\begin{aligned} f(t)&= f(k^{*}_{t}, n^{*}_{t}, k^{*}_{t}, n^{*}_{t}),\end{aligned}$$
(6.5.1)
$$\begin{aligned} f_{i}(t)&= f_{i}(k^{*}_{t}, n^{*}_{t}, k^{*}_{t}, n^{*}_{t}). \end{aligned}$$
(6.5.2)

We are to show that for any feasible process \(\{c_{t}, n_{t}, k_{t}\}_{t=0}^{\infty }\), we have

$$\begin{aligned} E \sum _{t = 0}^{\infty } \beta ^{t} [u(c_{t}) - w(n_{t})] - E \sum _{t = 0}^{\infty } \beta ^{t} [u(c^{*}_{t}) - w(n^{*}_{t})] \leqslant 0. \end{aligned}$$
(6.5.3)

To this end, let \(\{c_{t}, n_{t}, k_{t}\}_{t=0}^{\infty }\) be a feasible process. Fix \(T \in \mathbb {N}_{+}\) for the moment. Let

$$\begin{aligned} \Delta _{T}&= E \sum _{t = 0}^{T} \beta ^{t} [u(c_{t}) - w(n_{t})] - E \sum _{t = 0}^{T} \beta ^{t}[ u(c^{*}_{t}) - w(n^{*}_{t})] \end{aligned}$$
(6.5.4)
$$\begin{aligned}&\leqslant E \sum _{t = 0}^{T} \beta ^{t} \{ u'(c^{*}_{t})(c_{t} - c^{*}_{t}) - w'(n^{*}_{t})(n_{t} - n^{*}_{t}) \}, \end{aligned}$$
(6.5.5)

where \(u'(c^{*}_{t})\) is the right derivative of u at 0 if \(c^{*}_{t} = 0\), and similarly for \(w'(n^{*}_{t})\). We have

$$\begin{aligned} \nonumber \Delta _{T}&\leqslant E \sum _{t = 0}^{T} \beta ^{t} \{ u'(c^{*}_{t})[f(k_{t}, n_{t}, k^{*}_{t}, n^{*}_{t}) - f(t) \\&\qquad + \zeta (k_{t} - k^{*}_{t}) - (k_{t+1} - k^{*}_{t+1})] - w'(n^{*}_{t})(n_{t} - n^{*}_{t}) \}\end{aligned}$$
(6.5.6)
$$\begin{aligned} \nonumber&\leqslant E \sum _{t = 0}^{T} \beta ^{t} [u'(c^{*}_{t}) (f_{1}(t) + \zeta )(k_{t} - k^{*}_{t}) \\&\qquad + \{u'(c^{*}_{t}) f_{2}(t) - w'(n^{*}_{t})\} (n_{t} - n^{*}_{t}) - u'(c^{*}_{t}) (k_{t+1} - k^{*}_{t+1})]. \end{aligned}$$
(6.5.7)

Recalling the first-order condition (6.3.4) for \(n_{t}\), we see that for all \(t \in \mathbb {Z}_{+}\),

$$\begin{aligned} \{u'(c^{*}_{t}) f_{2}(t) - w'(n^{*}_{t})\} (n_{t} - n^{*}_{t}) \leqslant 0. \end{aligned}$$
(6.5.8)

Substituting into (6.5.7) we obtain

$$\begin{aligned} \Delta _{T}&\leqslant E \sum _{t = 0}^{T} \beta ^{t} [u'(c^{*}_{t}) (f_{1}(t) + \zeta )(k_{t} - k^{*}_{t}) - u'(c^{*}_{t}) (k_{t+1} - k^{*}_{t+1})]\end{aligned}$$
(6.5.9)
$$\begin{aligned}&= E \sum _{t = 0}^{T-1} \beta ^{t} [- u'(c^{*}_{t}) + \beta u'(c^{*}_{t+1}) (f_{1}(t+1) + \zeta )](k_{t+1} - k^{*}_{t+1}) \end{aligned}$$
(6.5.10)
$$\begin{aligned}&\qquad - \beta ^{T} E u'(c^{*}_{T})(k_{T+1} - k^{*}_{T+1}) \end{aligned}$$
(6.5.11)
$$\begin{aligned}&= E \sum _{t = 0}^{T-1} \beta ^{t} [- u'(c^{*}_{t}) + \beta E_{t} u'(c^{*}_{t+1}) (f_{1}(t+1) + \zeta )](k_{t+1} - k^{*}_{t+1}) \end{aligned}$$
(6.5.12)
$$\begin{aligned}&\qquad - \beta ^{T} E u'(c^{*}_{T})(k_{T+1} - k^{*}_{T+1}), \end{aligned}$$
(6.5.13)

where the last equality holds by the law of iterated expectations. Recalling the Euler condition (6.3.5) for \(k_{t+1}\), we see that for all \(t \in \mathbb {Z}_{+}\),

$$\begin{aligned}{}[- u'(c^{*}_{t}) + \beta E_{t} u'(c^{*}_{t+1}) (f_{1}(t+1) + \zeta )](k_{t+1} - k^{*}_{t+1}) \leqslant 0. \end{aligned}$$
(6.5.14)

Substituting into (6.5.13) we obtain

$$\begin{aligned} \Delta _{T}&\leqslant - \beta ^{T} E u'(c^{*}_{T})(k_{T+1} - k^{*}_{T+1}) \end{aligned}$$
(6.5.15)
$$\begin{aligned}&\leqslant \beta ^{T} E u'(c^{*}_{T}) k^{*}_{T+1} \rightarrow 0, \end{aligned}$$
(6.5.16)

where the second inequality holds since \(k_{T+1} \geqslant 0\), and the convergence holds by the transversality condition (6.3.6). This completes the proof of Lemma 6.3.1.

Appendix B Proof of Proposition 6.4.1

Suppose that \(\sigma = 0\). Then conditions (6.4.5) and (6.4.6) can be written as

$$\begin{aligned} s_{t} = 1 \quad&\Rightarrow \quad \rho \theta (k_{t})^{\alpha + \overline{\alpha }} (n_{t})^{\rho + \overline{\rho } -1} - \eta (n_{t})^{\gamma } {\left\{ \begin{array}{ll} = 0 &{} \text {if }n_{t} \in (0,1),\\ \geqslant 0 &{} \text {if }n_{t} = 1, \end{array}\right. } \end{aligned}$$
(6.5.17)
$$\begin{aligned} s_{t} = 0 \quad&\Rightarrow \quad n_{t} = 0. \end{aligned}$$
(6.5.18)

The Euler condition for \(k_{t+1}\), (6.3.5), can be written as

$$\begin{aligned} \beta E_{t} [\alpha \theta (k_{t+1})^{\alpha + \overline{\alpha }-1}(n_{t+1})^{\rho + \overline{\rho }} + \zeta ] {\left\{ \begin{array}{ll} =1 &{} \text {if }k_{t+1} \in (0, g(k_{t}, n_{t})),\\ \geqslant 1 &{} \text {if }k_{t+1} = g(k_{t}, n_{t}),\\ \leqslant 1 &{} \text {if }k_{t+1} = 0.\end{array}\right. } \end{aligned}$$
(6.5.19)

The transversality condition (6.3.6) reduces to

$$\begin{aligned} \lim _{T \rightarrow \infty } \beta ^{T} E k_{T+1} = 0. \end{aligned}$$
(6.5.20)

Note that (6.5.17) and (6.5.18) can be combined into

$$\begin{aligned} n_{t} = m(k_{t}, s_{t}) \equiv s_{t} \min \left\{ \left[ \frac{\rho \theta }{\eta } (k_{t})^{\alpha + \overline{\alpha }} \right] ^{\frac{1}{\gamma + 1 - \rho - \overline{\rho }}} , 1 \right\} . \end{aligned}$$
(6.5.21)

Substituting into the left-hand side of (6.5.19) we obtain

$$\begin{aligned}&E_{t} [\alpha \theta (k_{t+1})^{\alpha + \overline{\alpha }-1}(n_{t+1})^{\rho + \overline{\rho }} + \zeta ]\end{aligned}$$
(6.5.22)
$$\begin{aligned}&= E_{t} [\alpha \theta (k_{t+1})^{\alpha + \overline{\alpha }-1} m(k_{t+1}, s_{t+1})^{\rho + \overline{\rho }} + \zeta ]\end{aligned}$$
(6.5.23)
$$\begin{aligned}&= {\left\{ \begin{array}{ll} p_{01} h(k_{t+1}) + \zeta &{} \text {if }s_{t} = 0,\\ p_{11} h(k_{t+1}) + \zeta &{} \text {if }s_{t} = 1, \end{array}\right. } \end{aligned}$$
(6.5.24)

where

$$\begin{aligned} h(k)&= \alpha \theta k^{\alpha + \overline{\alpha } - 1} m(k,1)^{\rho + \overline{\rho }} \end{aligned}$$
(6.5.25)
$$\begin{aligned}&= \min \left\{ \alpha \theta \left[ \frac{\rho \theta }{\eta } \right] ^{\frac{\rho + \overline{\rho }}{\gamma +1-\rho -\overline{\rho }}} k^{\frac{(\alpha + \overline{\alpha } - 1)(\gamma + 1) + \rho + \overline{\rho }}{\gamma +1-\rho - \overline{\rho }}}, \alpha \theta k^{\alpha + \overline{\alpha } - 1} \right\} . \end{aligned}$$
(6.5.26)

Both expressions in the curly brackets are strictly decreasing in k by (6.2.10) and (6.2.12) (note that \((\alpha +\overline{\alpha }-1)(\gamma +1) + \rho + \overline{\rho } < \alpha + \overline{\alpha } -1 + \rho + \overline{\rho } \leqslant 1\) by (6.2.12)). Thus \(h(\cdot )\) is strictly decreasing, which implies that the inverse \(h^{-1}(\cdot )\) exists. Indeed, for \(z > 0\) we have

$$\begin{aligned} h^{-1}(z) = \min \left\{ \left[ \frac{z}{\alpha \theta } \left[ \frac{\eta }{\rho \theta } \right] ^{\frac{\rho + \overline{\rho }}{\gamma +1-\rho -\overline{\rho }}} \right] ^{\frac{\gamma +1-\rho - \overline{\rho }}{(\alpha + \overline{\alpha } - 1)(\gamma + 1) + \rho + \overline{\rho }}}, \left[ \frac{z}{\alpha \theta } \right] ^{\frac{1}{\alpha + \overline{\alpha } -1}} \right\} . \end{aligned}$$
(6.5.27)

Note that

$$\begin{aligned} \lim _{k \downarrow 0} h(k) = \infty . \end{aligned}$$
(6.5.28)

Substituting (6.5.22)–(6.5.24) into (6.5.19) we obtain

$$\begin{aligned} \beta [p_{s_{t}1} h(k_{t+1}) + \zeta ] {\left\{ \begin{array}{ll} =1 &{} \text {if }k_{t+1} \in (0, g(k_{t}, n_{t})), \\ \geqslant 1 &{} \text {if }k_{t+1} = g(k_{t}, n_{t}),\\ \leqslant 1 &{} \text {if }k_{t+1} = 0, \end{array}\right. } \end{aligned}$$
(6.5.29)

where \(p_{s_{t}1} = p_{01}\) or \(p_{11}\) depending on \(s_{t} = 0\) or 1. For \(p > 0\) define

$$\begin{aligned} q(p) = h^{-1} \left( \frac{1-\beta \zeta }{\beta p} \right) . \end{aligned}$$
(6.5.30)

Note from (6.5.28) that we can rule out the case \(k_{t+1} = 0\) in (6.5.29). Hence we can write (6.5.29) as

$$\begin{aligned} k_{t+1} = \min \{q(p_{s_{t}1}), g(k_{t}, n_{t}) \}. \end{aligned}$$
(6.5.31)

We construct a process \(\{c_{t}, n_{t}, k_{t}\}_{t=0}^{\infty }\) recursively as follows: given \(k_{t} > 0\) and \(s_{t} \in \{0,1\}\), let

$$\begin{aligned} n_{t} = m(k_{t}, s_{t}). \end{aligned}$$
(6.5.32)

Determine \(k_{t+1}\) by (6.5.31). Let

$$\begin{aligned} c_{t} = g(k_{t}, n_{t}) - k_{t+1}. \end{aligned}$$
(6.5.33)

Draw \(s_{t+1}\) according to (6.4.1). Determine \(n_{t+1}\) by (6.5.32), and so on. By construction, this process is feasible and satisfies (6.5.17)–(6.5.19). It also satisfies (6.5.20) by (6.2.13). Thus it is a sunspot equilibrium. The conclusion of the proposition now follows.

C Proof of Proposition 6.4.2

Suppose that \(\overline{\alpha } = 0\). Consider the stochastic optimal growth model (6.4.17)–(6.4.19). The Euler condition for \(k_{t+1}\) is written as

$$\begin{aligned} \nonumber&-u'(c_{t}) + \beta E_{t} u'(c_{t+1}) [s_{t+1} \alpha \theta (k_{t+1})^{\alpha - 1}(n_{t+1})^{\rho + \overline{\rho }} + \zeta ] \\&\quad {\left\{ \begin{array}{ll} = 0 &{} \text {if }k_{t+1} \in (0, g(k_{t}, n_{t})),\\ \geqslant &{} \text {if }k_{t+1} = g(k_{t}, n_{t}),\\ \leqslant &{} \text {if }k_{t+1} = 0. \end{array}\right. } \end{aligned}$$
(6.5.34)

This is equivalent to the equilibrium Euler condition (6.3.5) for \(k_{t+1}\) for the original economy (6.2.1)–(6.2.3) with \(\overline{\alpha } = 0\) and (6.4.3). The first-order condition for \(n_{t}\) for the above stochastic optimal growth model is given by

$$\begin{aligned} u'(c_{t}) s_{t} (\rho + \overline{\rho }) \theta (k_{t})^{\alpha } (n_{t})^{\rho + \overline{\rho } - 1} - \frac{\rho + \overline{\rho }}{\rho } w'(n_{t}) {\left\{ \begin{array}{ll} = 0 &{} \text {if }n_{t} \in (0,1),\\ \geqslant 0 &{} \text {if }n_{t} = 1, \\ \leqslant 0 &{} \text {if }n_{t} = 0, \end{array}\right. } \end{aligned}$$
(6.5.35)

which simplifies to

$$\begin{aligned} u'(c_{t}) s_{t} \rho \theta (k_{t})^{\alpha } (n_{t})^{\rho + \overline{\rho } - 1} - w'(n_{t}) {\left\{ \begin{array}{ll} = 0 &{} \text {if }n_{t} \in (0,1),\\ \geqslant 0 &{} \text {if }n_{t} = 1,\\ \leqslant 0 &{} \text {if }n_{t} = 0. \end{array}\right. } \end{aligned}$$
(6.5.36)

This is equivalent to (6.3.4) with \(\overline{\alpha } = 0\) and (6.4.3). The transversality condition for the above problem is identical to (6.3.6).

Conditions (6.5.34) and (6.5.36) are necessary for optimality by standard arguments. The transversality condition (6.3.6) is also necessary by the argument of Kamihigashi (2005, Sect. 6).Footnote 5 Given that the sunspot variable \(s_{t}\) is discrete, we can easily establish the existence of an optimal process for the optimal stochastic growth model (6.4.17)–(6.4.19) by a standard argument (e.g., Ekeland and Scheinkman 1986). Let \(\{c_{t}, n_{t}, k_{t}\}_{t=0}^{\infty }\) be an optimal process for (6.4.17)–(6.4.19). Then by the above argument, the process satisfies (6.3.4)–(6.3.6). Thus by Lemma 6.3.1, the process is an equilibrium of the original economy (6.2.1)–(6.2.3). Since it depends on \(s_{t}\) in a nontrivial way, it is a sunspot equilibrium.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kamihigashi, T. (2017). Regime-Switching Sunspot Equilibria in a One-Sector Growth Model with Aggregate Decreasing Returns and Small Externalities. In: Nishimura, K., Venditti, A., Yannelis, N. (eds) Sunspots and Non-Linear Dynamics. Studies in Economic Theory, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-44076-7_6

Download citation

Publish with us

Policies and ethics