Skip to main content

Sunspot Fluctuations in Two-Sector Models with Variable Income Effects

  • Chapter
  • First Online:
Sunspots and Non-Linear Dynamics

Part of the book series: Studies in Economic Theory ((ECON.THEORY,volume 31))

Abstract

We analyze a version of the Benhabib and Farmer (1996) two-sector model with sector-specific externalities in which we consider a class of utility functions inspired from the one considered in Jaimovich and Rebelo (2009) which is flexible enough to encompass varying degrees of income effect. First, we show that local indeterminacy and sunspot fluctuations occur in 2-sector models under plausible configurations regarding all structural parameters—in particular regarding the intensity of income effects. Second, we prove that there even exist some configurations for which local indeterminacy arises under any degree of income effect. More precisely, for any given size of income effect, we show that there is a non-empty range of values for the Frisch elasticity of labor and the elasticity of intertemporal substitution in consumption such that indeterminacy occurs. This contrasts with the results obtained in one-sector models in both Nishimura et al. (2009), in which it is shown that indeterminacy cannot occur under either GHH and KPR preferences, and in Jaimovich (2008) in which local indeterminacy only arises for intermediary income effects.

This work has been carried out thanks to the support of the A*MIDEX project (no. ANR-11-IDEX-0001-02) funded by the “Investissements d’Avenir” French Government program, managed by the French National Research Agency (ANR). We would like to thank an anonymous referee together with X. Raurich and T. Seegmuller for useful comments and suggestions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Nishimura and Venditti (2010) show that local indeterminacy can occur under both GHH and KPR preferences—the latter displaying positive income effect—but there is no clear picture of the impact of the income effect on the occurrence of sunspot fluctuations.

  2. 2.

    We do not consider externalities in the consumption good sector as they do not play any crucial role in the existence of multiple equilibria.

  3. 3.

    It is important to note that when \(\gamma \ne 0\), this utility function may not be concave. This characteristic is well-known for the KPR specification with \(\gamma =1\) for which additional restrictions on \(\sigma \) and \(\chi \) are required to guarantee concavity (see for instance Hintermaier 2003). However, in order to avoid technical and cumbersome assumptions, we will only focus with Lemma 1 below on the conditions for local concavity properties around the steady state. Precise general conditions for global concavity can be provided upon request.

  4. 4.

    When there is no possible confusion, the time index (t) is not mentioned.

  5. 5.

    See Appendix “Proof of Lemma 1”.

  6. 6.

    We will show in this case that there exists a Hopf bifurcation leading to the existence of periodic cycles.

  7. 7.

    For example, Basu and Fernald (1997) obtain a point estimate for the degree of IRS in the durable manufacturing sector in the US economy of 0.33, with standard deviation 0.11.

  8. 8.

    It can be shown indeed that \(\underline{\Theta }(\gamma )\) is an increasing function of \(\gamma \) while \(\underline{\chi }(\gamma )\) is a decreasing function.

  9. 9.

    See Prescott and Wallenius (2011) for a discussion of the factors that make the wage elasticity of aggregate labor supply significantly differ from the corresponding elasticity at the micro level.

  10. 10.

    See Benhabib and Farmer (1994).

  11. 11.

    Recall however that his utility formulation contains an additional state variable \(X_{t}\) which may play a significant role for these result.

  12. 12.

    See Jaimovich (2008), Nishimura et al. (2009).

  13. 13.

    See also Guo and Harrison (2010), Nishimura and Venditti (2010).

  14. 14.

    See Khan and Tsoukalas (2011), Schmitt-Grohé and Uribe (2012).

References

  • Basu, S., & Fernald, J. (1997). Returns to scale in US production: Estimates and implications. Journal of Political Economy, 105, 249–283.

    Article  Google Scholar 

  • Benhabib, J., & Farmer, R. (1994). Indeterminacy and increasing returns. Journal of Economic Theory, 63, 19–41.

    Article  Google Scholar 

  • Benhabib, J., & Farmer, R. (1996). Indeterminacy and sector specific externalities. Journal of Monetary Economics, 37, 397–419.

    Article  Google Scholar 

  • Campbell, J. (1999). Asset prices, consumption and the business cycle. In J. B. Taylor & M. Woodford (Eds.), Handbook of macroeconomics (pp. 1231–1303). Amsterdam: North-Holland.

    Google Scholar 

  • Chetty, R., Guren, A., Manoli, D., & Weber, A. (2012). Does indivisible labor explain the difference between micro and macro elasticities? A meta-analysis of extensive margin elasticities. NBER Working Paper No. 16729.

    Google Scholar 

  • Dufourt, F., Nishimura, K., & Venditti, A. (2015). Indeterminacy and sunspots in two-sector RBC models with generalized no-income-effect preferences. Journal of Economic Theory, 157, 1056–1080.

    Article  Google Scholar 

  • Grandmont, J. -M. (2008). Nonlinear difference equations, bifurcations and chaos: An introduction. Research in Economics, 62, 122–177.

    Google Scholar 

  • Greenwood, J., Hercovitz, Z., & Huffman, G. (1988). Investment, capacity utilization and the real business cycle. American Economic Review, 78, 402–417.

    Google Scholar 

  • Guo, J. T., & Harrison, S. (2010). Indeterminacy with no-income effect preferences and sector-specific externalities. Journal of Economic Theory, 145, 287–300.

    Article  Google Scholar 

  • Hintermaier, T. (2001). Lower bounds on externalities in sunspot models. Working Paper EUI.

    Google Scholar 

  • Hintermaier, T. (2003). On the minimum degree of returns to scale in sunspot models of business cycles. Journal of Economic Theory, 110, 400–409.

    Article  Google Scholar 

  • Jaimovich, N. (2008). Income effects and indeterminacy in a calibrated one-sector growth model. Journal of Economic Theory, 143, 610–623.

    Article  Google Scholar 

  • Jaimovich, N., & Rebelo, S. (2009). Can news about the future drive the business cycles? American Economic Review, 99, 1097–1118.

    Article  Google Scholar 

  • Khan, H., & Tsoukalas, J. (2011). Investment shocks and the comovement problem. Journal of Economic Dynamics and Control, 35, 115–130.

    Article  Google Scholar 

  • King, R., Plosser, C., & Rebelo, S. (1988). Production, growth and business cycles. Journal of Monetary Economics, 21, 191–232.

    Article  Google Scholar 

  • Kocherlakota, N. (1996). The equity premium: It’s still a puzzle. Journal of Economic Literature, 36, 42–71.

    Google Scholar 

  • Mulligan, C. (2002). Capital interest and aggregate intertemporal substitution. NBER Working Paper 9373.

    Google Scholar 

  • Nishimura, K., & Venditti, A. (2010). Indeterminacy and expectation-driven fluctuations with non-separable preferences. Mathematical Social Sciences, 60, 46–56.

    Article  Google Scholar 

  • Nishimura, K., Nourry, C., & Venditti, A. (2009). Indeterminacy in aggregate models with small externalities: An interplay between preferences and technology. Journal of Nonlinear and Convex Analysis, 10(2), 279–298.

    Google Scholar 

  • Prescott, E., & Wallenius, J. (2011). Aggregate labor supply (p. 457). Research Department Staff Report: Federal Reserve Bank of Minneapolis.

    Google Scholar 

  • Rogerson, R., & Wallenius, J. (2009). Micro and macro elasticities in a life cycle model with taxes. Journal of Economic Theory, 144, 2277–2292.

    Article  Google Scholar 

  • Schmitt-Grohé, S., & Uribe, M. (2012). What’s news in business cycles. Econometrica, 80, 2733–2764.

    Article  Google Scholar 

  • Vissing-Jorgensen, A., & Attanasio, O. (2003). Stock-market participation, intertemporal substitution and risk aversion. American Economic Review Papers and Proceedings, 93, 383–391.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Venditti .

Editor information

Editors and Affiliations

4.8 Appendix

4.8 Appendix

1.1 4.8.1 Proof of Proposition 1

Consider the steady state with \(Y_{I}=\delta k\) and \(r=(\delta \,+\,\rho )p\). Since \(r=p\alpha Y_{I}/K_{I}\), we get

$$\begin{aligned} \begin{array}{c} K_{I}=\dfrac{\alpha \delta }{\delta \,+\,\rho } k \end{array} \end{aligned}$$
(4.35)

Using the production function (4.19) for the investment good we derive

$$\begin{aligned} \begin{array}{l} Y_{I}=\left( \frac{k}{l}\right) ^{(\alpha \,-\,1) (1\,+\,\Theta )}\left( \frac{ \alpha \delta }{\delta \,+\,\rho } k\right) ^{1\,+\,\Theta }=\delta k \end{array} \end{aligned}$$

Solving this equation yields

$$\begin{aligned} \begin{array}{l} k^{*}=l^{\frac{(1\,-\,\alpha )(1\,+\,\Theta )}{1\,-\,\alpha (1\,+\,\Theta )}}\left( \frac{\alpha }{\delta \,+\,\rho }\right) ^{\frac{1\,+\,\Theta }{1\,-\,\alpha (1\,+\,\Theta )} }\delta ^{\frac{\Theta }{1\,-\,\alpha (1\,+\,\Theta )}}\equiv l^{\frac{ (1\,-\,\alpha )(1\,+\,\Theta )}{1\,-\,\alpha (1\,+\,\Theta )}}\kappa ^{*} \end{array} \end{aligned}$$
(4.36)

Substituting this expression into (4.22) we get

$$\begin{aligned} \begin{array}{l} c^{*}=l^{\frac{1\,-\,\alpha }{1\,-\,\alpha (1\,+\,\Theta )}}\frac{\delta (1-\alpha )+\rho }{ \delta +\rho }\kappa ^{*\alpha }\equiv l^{\frac{1\,-\,\alpha }{1\,-\,\alpha (1\,+\,\Theta )} }\psi ^{*} \end{array} \end{aligned}$$
(4.37)

Recall that the trade-off between consumption and leisure is described by

$$\begin{aligned} \begin{array}{l} \frac{(1+\chi )l^{\chi }c^{\gamma }}{1+\chi \,-\,\gamma l^{1+\chi }c^{\gamma \,-\,1}}=w \end{array} \end{aligned}$$
(4.38)

Using (4.23) with (4.36)–(4.37) we get

$$\begin{aligned} \begin{array}{l} (1\,+\,\chi )l^{\chi \,+\,\frac{\gamma (1\,-\,\alpha )}{1\,-\,\alpha (1\,+\,\Theta )} }\psi ^{*\gamma }=(1\,-\,\alpha )l^{\frac{\alpha \Theta }{1\,-\,\alpha (1\,+\,\Theta )} }\kappa ^{*\alpha }\left[ 1\,+\,\chi \,-\,\gamma l^{1\,+\,\chi \,-\,\frac{(1\,-\,\gamma )(1\,-\,\alpha )}{ 1\,-\,\alpha (1\,+\,\Theta )}}\psi ^{*\gamma \,-\,1}\right] \end{array} \end{aligned}$$

If \(\chi [1\,-\,\alpha (1\,+\,\Theta )]\,+\,\gamma (1\,-\,\alpha )\,-\,\alpha \Theta \ne 0\), solving this equation yields

$$\begin{aligned} \begin{array}{l} l^{*}=\left\{ \frac{(1\,-\,\alpha )\kappa ^{*}}{\psi ^{*\gamma }}\left[ 1\,+\,\frac{ (1\,-\,\alpha )\kappa ^{*}\gamma }{(1\,+\,\chi )\psi ^{*}}\right] ^{-1}\right\} ^{\frac{ 1\,-\,\alpha (1\,+\,\Theta )}{\chi [1\,-\,\alpha (1\,+\,\Theta )]\,+\,\gamma (1\,-\,\alpha )\,-\,\alpha \Theta }} \end{array} \end{aligned}$$

We finally derive from (4.23)

$$\begin{aligned} \begin{array}{rcl} p^{*}= & {} \alpha (k^{*}/l^{*})^{\alpha -1} \end{array} \end{aligned}$$

\(\square \)

1.2 4.8.2 Proof of Lemma 1

Using (4.24) and the first order conditions (4.9)–(4.10), we get \(\epsilon _{cl}=\epsilon _{lc}(c/wl)\). Using the expression of w given in (4.23) together with the values of \(k^{*}\) and \(l^{*}\) provided in Sect. “Proof of Proposition 1” we find \(wl/c=(1-\alpha )(\delta \,+\,\rho )/[\delta (1- \alpha )\,+\,\rho ]\). Then at the steady state we get

$$\begin{aligned} \begin{array}{c} \epsilon _{cl}=\frac{\delta (1\,-\,\alpha )\,+\,\rho }{(1\,-\,\alpha )(\delta \,+\,\rho )}\epsilon _{lc} \end{array} \end{aligned}$$
(4.39)

Using (4.24), we compute for the utility function as given by (4.14) the following elasticities:

$$\begin{aligned} \begin{array}{ll} \frac{1}{\epsilon _{cc}}=\sigma \frac{c\,-\,\gamma \frac{ l^{1\,+\,\chi }}{1\,+\,\chi } c^{\gamma }}{c\,-\,\frac{ l^{1\,+\,\chi }}{1\,+\,\chi }c^{\gamma }}\,-\,\gamma (1\,-\,\gamma )\frac{ \frac{ l^{1\,+\,\chi }}{1\,+\,\chi }c^{\gamma }}{c\,-\,\gamma \frac{ l^{1\,+\,\chi }}{1\,+\,\chi } c^{\gamma }}, &{}\quad \frac{1}{\epsilon _{lc}} =\sigma \frac{c\,-\,\gamma \frac{ l^{1\,+\,\chi } }{1\,+\,\chi }c^{\gamma }}{c\,-\,\frac{ l^{1\,+\,\chi }}{1\,+\,\chi }c^{\gamma }}\,-\,\gamma \\[10pt] \frac{1}{\epsilon _{cl}}= \frac{ l^{1\,+\,\chi }c^{\gamma }}{c\,-\,\gamma \frac{ l^{1\,+\,\chi }}{1\,+\,\chi }c^{\gamma }}\left[ \sigma \frac{c\,-\,\gamma \frac{ l^{1\,+\,\chi }}{ 1\,+\,\chi }c^{\gamma }}{c\,-\,\frac{ l^{1\,+\,\chi }}{1\,+\,\chi }c^{\gamma }}\,-\,\gamma \right] , &{} \frac{1}{\epsilon _{ll}}= \sigma \frac{ l^{1\,+\,\chi }c^{\gamma }}{c\,-\,\frac{ l^{1\,+\,\chi }}{1\,+\,\chi }c^{\gamma }}\,+\,\chi \end{array} \end{aligned}$$
(4.40)

Obviously, normality holds as we derive from these expressions that

$$\begin{aligned} \begin{array}{c} \frac{1}{\epsilon _{cc}}\,-\,\frac{1}{\epsilon _{lc}}\ge 0 \text{ and } \frac{1}{ \epsilon _{cl}}\,-\,\frac{1}{\epsilon _{ll}}\ge 0 \end{array} \end{aligned}$$
(4.41)

Consider now Eq. (4.39) together with the expressions given by (4.40). We then derive that

$$\begin{aligned} \begin{array}{c} \frac{l^{1\,+\,\chi }c^{\gamma \,-\,1}}{1\,-\,\gamma \frac{l^{1\,+\,\chi }}{1\,+\,\chi } c^{\gamma \,-\,1}}=\frac{(1\,-\,\alpha )(\delta \,+\,\rho )}{\delta (1\,-\,\alpha )\,+\,\rho } \end{array} \end{aligned}$$
(4.42)

Denoting \(\mathcal {C}=[(1\,-\,\alpha )(\delta \,+\,\rho )]/[\delta (1\,-\,\alpha )\,+\,\rho ]<1\), solving this equation yields

$$\begin{aligned} \begin{array}{c} l^{1\,+\,\chi }c^{\gamma \,-\,1}=\frac{\mathcal {C}(1\,+\,\chi )}{1\,+\,\chi \,+\,\gamma \mathcal { C}} \end{array} \end{aligned}$$
(4.43)

and thus

$$\begin{aligned} \begin{array}{rl} \frac{c\,-\,\gamma \frac{l^{1\,+\,\chi }}{1\,+\,\chi }c^{\gamma }}{c\,-\,\frac{l^{1\,+\,\chi }}{ 1\,+\,\chi }c^{\gamma }}=\frac{1\,+\,\chi }{1\,+\,\chi \,-\,\mathcal {C}(1\,-\,\gamma )},&\quad \frac{ l^{1\,+\,\chi }c^{\gamma }}{c\,-\,\frac{l^{1\,+\,\chi }}{1\,+\,\chi }c^{\gamma }}=\frac{ \mathcal {C}(1\,+\,\chi )}{1\,+\,\chi \,-\,\mathcal {C}(1\,-\,\gamma )} \end{array} \end{aligned}$$
(4.44)

Using these expressions we then derive from (4.40):

(4.45)

Concavity of the utility function requires

$$\begin{aligned} \begin{array}{rcl} \frac{1}{\epsilon _{cc}\epsilon _{ll}}\,-\,\frac{1}{\epsilon _{lc}\epsilon _{cl}} \ge 0&\quad \text{ and }&\quad \frac{1}{\epsilon _{cc}}\ge 0 \end{array} \end{aligned}$$

Straightforward computations show that these two inequalities are satisfied if and only if

$$\begin{aligned} \begin{array}{l} \sigma \ge \sigma _{c}(\gamma )\equiv \frac{\gamma \mathcal {C}(\gamma +\chi )\left[ 1+\chi \,-\,(1\,-\,\gamma )\mathcal {C}\right] }{(1+\chi )^{2}\left[ \chi +\gamma \mathcal {C}\left( 2\,-\,\frac{\mathcal {C}(1\,-\,\gamma )}{1+\chi }\right) \right] } \end{array} \end{aligned}$$

\(\square \)

1.3 4.8.3 Proof of Proposition 2

We start by the computation of \(\mathcal {D}\) and \(\mathcal {T}\) using a general formulation for \(U(c,\mathcal {L})\). Consider the consumption-labor trade-off as described by (4.9)–(4.10) together with the expressions of wage and consumption as given by (4.22) and (4.23). We get the following two equations

$$\begin{aligned} U_{2}(c,\ell -l)l^{\alpha } = (1-\alpha )k^{\alpha }U_{1}(c,\ell -l) \end{aligned}$$
(4.46)
$$\begin{aligned} cl^{\alpha \,-\,1} = k^{\alpha \,-\,1}\left[ k\,-\,\left( \frac{k}{l}\right) ^{1\,-\, \alpha }p^{-1/\Theta }\right] \end{aligned}$$
(4.47)

Total differentiation of (4.46) gives

$$\begin{aligned} \begin{array}{l} \frac{dc}{c}\left( \frac{1}{\epsilon _{cc}}\,-\,\frac{1}{\epsilon _{lc}}\right) + \frac{dl}{l}\left( \frac{1}{\epsilon _{ll}}\,-\,\frac{1}{\epsilon _{cl}} \,+\,\alpha \right) =\alpha \frac{dk}{k} \end{array} \end{aligned}$$
(4.48)

Total differentiation of (4.47) gives

$$\begin{aligned} \begin{array}{l} \frac{dc}{c}\,-\,(1-\alpha )\frac{dl}{l}=-(1\,-\,\alpha )\frac{dk}{k}\,+\,\frac{k^{*}}{ k^{*}\,-\,K_{I}^{*}}\frac{dk}{k}\,-\,\frac{K_{I}^{*}}{k^{*}\,-\,K_{I}^{*}}\left[ (1\,-\,\alpha )\left( \frac{dk}{k}\,-\,\frac{dl}{l}\right) \,-\,\frac{1}{\Theta }\frac{dp}{p} \right] \\ \end{array} \nonumber \\ \end{aligned}$$
(4.49)

At the steady state we know that \((\delta \,+\,\rho )p=r\) with \(r=p\alpha Y_{I}/K_{I}=p\alpha \delta k/K_{I}\). We then derive \(K_{I}^{*}=\alpha \delta k^{*}/(\delta +\rho )\) and thus

$$\begin{aligned} \begin{array}{rl} \frac{k^{*}}{k^{*}\,-\,K_{I}^{*}}=\frac{\delta \,+\,\rho }{\rho \,+\,\delta (1\,-\,\alpha )}, \frac{K_{I}^{*}}{k^{*}\,-\,K_{I}^{*}}=\frac{\alpha \delta }{\rho \,+\,\delta (1\,-\,\alpha )}&\end{array} \end{aligned}$$

Equation (4.48) then becomes:

$$\begin{aligned} \begin{array}{l} \left[ \rho \,+\,\delta (1\,-\,\alpha )\right] \frac{dc}{c}\,-\,(1\,-\,\alpha )(\delta \,+\,\rho )\frac{ dl}{l}=\alpha (\delta \,+\,\rho )\frac{dk}{k}\,+\,\frac{\alpha \delta }{\Theta }\frac{dp}{p } \end{array} \end{aligned}$$
(4.50)

From (4.48) we derive

$$\begin{aligned} \begin{array}{l} \frac{dl}{l}=\,-\,\frac{dc}{c}\frac{\frac{1}{\epsilon _{cc}}\,-\,\frac{1}{ \epsilon _{lc}}}{\frac{1}{\epsilon _{ll}}\,-\,\frac{1}{\epsilon _{cl}}+\alpha }+ \frac{dk}{k}\frac{\alpha }{\frac{1}{\epsilon _{ll}}\,-\,\frac{1}{\epsilon _{cl}} +\alpha } \end{array} \end{aligned}$$
(4.51)

Substituting this expression into (4.50) gives

$$\begin{aligned} \begin{array}{rcl} \frac{dc}{c} &{} = &{} \frac{\alpha (\delta \,+\,\rho )\left( \frac{1}{\epsilon _{ll}}\,-\, \frac{1}{\epsilon _{cl}}\,+\,1\right) }{\left[ \rho \,+\,\delta (1\,-\,\alpha )\right] \left( \frac{1}{\epsilon _{ll}}\,-\,\frac{1}{\epsilon _{cl}}\,+\,\alpha \right) \,+\,(1\,-\,\alpha )( \delta \,+\,\rho )\left( \frac{1}{\epsilon _{cc}}\,-\,\frac{1}{\epsilon _{lc}}\right) } \frac{dk}{k} \\[12pt] &{} + &{} \frac{\alpha \delta \left( \frac{1}{\epsilon _{ll}}\,-\,\frac{1}{\epsilon _{cl}} +\alpha \right) }{\Theta \left[ \left[ \rho \,+\,\delta (1\,-\,\alpha )\right] \left( \frac{1}{ \epsilon _{ll}}\,-\,\frac{1}{\epsilon _{cl}}\,+\,\alpha \right) \,+\,(1\,-\,\alpha )(\delta \,+\,\rho ) \left( \frac{1}{\epsilon _{cc}}\,-\,\frac{1}{\epsilon _{lc}}\right) \right] }\frac{dp }{p} \end{array} \end{aligned}$$
(4.52)

Substituting (4.52) into (4.51) finally gives

$$\begin{aligned} \begin{array}{rcl} \frac{dl}{l} &{} = &{} \,-\,\frac{\alpha \left[ (\delta \,+\,\rho )\left( \frac{1}{ \epsilon _{cc}}\,-\,\frac{1}{\epsilon _{lc}}\right) \,-\,\left[ \rho \,+\,\delta (1\,-\,\alpha ) \right] \right] }{\left[ \rho \,+\,\delta (1\,-\,\alpha )\right] \left( \frac{1}{ \epsilon _{ll}}\,-\,\frac{1}{\epsilon _{cl}}\,+\,\alpha \right) \,+\,(1\,-\,\alpha )(\delta +\rho ) \left( \frac{1}{\epsilon _{cc}}\,-\,\frac{1}{\epsilon _{lc}}\right) }\frac{dk}{k} \\[12pt] &{} - &{} \frac{\alpha \delta \left( \frac{1}{\epsilon _{cc}}\,-\,\frac{1}{\epsilon _{lc}} \right) }{\Theta \left[ \left[ \rho +\delta (1\,-\,\alpha )\right] \left( \frac{1}{ \epsilon _{ll}}\,-\,\frac{1}{\epsilon _{cl}}+\alpha \right) +(1\,-\,\alpha )(\delta +\rho ) \left( \frac{1}{\epsilon _{cc}}\,-\,\frac{1}{\epsilon _{lc}}\right) \right] }\frac{dp }{p} \end{array} \end{aligned}$$
(4.53)

We then conclude from this

$$\begin{aligned} \begin{array}{rcl} \frac{\partial c}{\partial k}\frac{k^{*}}{c^{*}} &{} = &{} \frac{\alpha (\delta +\rho )\left( \frac{1 }{\epsilon _{ll}}\,-\,\frac{1}{\epsilon _{cl}}+1\right) }{\left[ \rho +\delta (1\,-\, \alpha )\right] \left( \frac{1}{\epsilon _{ll}}\,-\,\frac{1}{\epsilon _{cl}} +\alpha \right) +(1\,-\,\alpha )(\delta +\rho )\left( \frac{1}{\epsilon _{cc}}\,-\,\frac{1}{ \epsilon _{lc}}\right) } \\[10pt] \frac{\partial c}{\partial p}\frac{p^{*}}{c^{*}} &{} = &{} \frac{\alpha \delta \left( \frac{1}{ \epsilon _{ll}}\,-\,\frac{1}{\epsilon _{cl}}+\alpha \right) }{\Theta \left[ \left[ \rho +\delta (1\,-\,\alpha )\right] \left( \frac{1}{\epsilon _{ll}}\,-\,\frac{1}{ \epsilon _{cl}}+\alpha \right) +(1\,-\,\alpha )(\delta +\rho )\left( \frac{1}{ \epsilon _{cc}}\,-\,\frac{1}{\epsilon _{lc}}\right) \right] } \\[10pt] \frac{\partial l}{\partial k}\frac{k^{*}}{l^{*}} &{} = &{} \,-\,\frac{\alpha \left[ (\delta +\rho )\left( \frac{1}{\epsilon _{cc}}\,-\,\frac{1}{\epsilon _{lc}}\right) \,-\,\left[ \rho +\delta (1\,-\,\alpha )\right] \right] }{\left[ \rho +\delta (1\,-\,\alpha )\right] \left( \frac{1}{\epsilon _{ll}}\,-\,\frac{1}{\epsilon _{cl}}+\alpha \right) +(1\,-\,\alpha )( \delta +\rho )\left( \frac{1}{\epsilon _{cc}}\,-\,\frac{1}{\epsilon _{lc}}\right) } \\[10pt] \frac{\partial l}{\partial p}\frac{p^{*}}{l^{*}} &{} = &{} \,-\,\frac{\alpha \delta \left( \frac{1}{ \epsilon _{cc}}\,-\,\frac{1}{\epsilon _{lc}}\right) }{\Theta \left[ \left[ \rho +\delta (1\,-\,\alpha )\right] \left( \frac{1}{\epsilon _{ll}}\,-\,\frac{1}{ \epsilon _{cl}}+\alpha \right) +(1\,-\,\alpha )(\delta +\rho )\left( \frac{1}{ \epsilon _{cc}}\,-\,\frac{1}{\epsilon _{lc}}\right) \right] } \end{array} \end{aligned}$$
(4.54)

Recall now that \(r=\alpha (k/l)^{\alpha \,-\,1}\) and \(Y_{I}=p^{-(1+\Theta )/\Theta }\). Using again the steady state relationships \(Y_{I}=\delta k\) and \((\delta +\rho )p=r\), we derive

$$\begin{aligned} \begin{array}{rcl} \frac{dY_{I}}{dp}\frac{p^{*}}{Y_{I}^{*}}=-\frac{1+\Theta }{\Theta },&\frac{dr }{dk}\frac{Y_{I}^{*}}{p^{*}}=-\delta (1-\alpha )(\delta +\rho )\left( 1-\frac{dl}{ dk}\frac{k^{*}}{l^{*}}\right) ,&\frac{dr}{dp}=(1-\alpha )(\delta +\rho )\frac{ dl}{dp}\frac{p^{*}}{l^{*}} \end{array} \end{aligned}$$
(4.55)

Linearizing the dynamical system (4.26) around the steady state leads to the following Jacobian matrix

$$\begin{aligned} \mathcal {J}=\left( \begin{array}{cc} -\delta &{} -\frac{1+\Theta }{\Theta }\frac{Y_{I}^{*}}{p^{*}} \\ \,-\,\frac{\frac{\partial r}{\partial k}+\delta \left[ \frac{1}{\epsilon _{cc}}\frac{\partial c}{\partial k}\frac{ p^{*}}{c^{*}}\,-\,\frac{1}{\epsilon _{lc}}\frac{\partial l}{\partial k}\frac{p^{*}}{l^{*}}\right] }{E(k^{*},p^{*})} &{}\quad \frac{\delta +\rho \,-\,\frac{\partial r}{\partial p}\,-\,\frac{1+\Theta }{\Theta } \frac{Y_{I}^{*}}{p^{*}}\left[ \frac{1}{\epsilon _{cc}}\frac{\partial c}{\partial k}\frac{p^{*} }{c^{*}}\,-\,\frac{1}{\epsilon _{lc}}\frac{\partial l}{\partial k}\frac{p^{*}}{l^{*}}\right] }{ E(k^{*},p^{*})} \end{array} \right) \end{aligned}$$

with E(kp) as given by (4.27). The associated characteristic polynomial is then given by (4.32) with the Determinant and Trace of the Jacobian matrix as defined by (4.33). Using (4.31), (4.54) and (4.55) we finally derive after straightforward simplifications

$$\begin{aligned} \begin{array}{rcl} \mathcal {D}(\gamma ) &{} = &{} \frac{ \delta (\delta +\rho )(1+\chi +\gamma \mathcal {C})[\rho +\delta (1-\alpha )]\left[ \frac{(1\,-\,\alpha )(\gamma +\chi )}{1+\chi }\,-\,\alpha \Theta \right] }{\left[ \alpha +\chi +\gamma \mathcal {C}\left( 2\,-\,\frac{\mathcal {C}(1\,-\,\gamma )}{1+\chi } \right) \right] \left[ \Theta [\rho +\delta (1\,-\,\alpha )]\,-\,\frac{\sigma (1+\chi )\alpha \delta }{1+\chi \,-\,\mathcal {C}(1\,-\,\gamma )}\right] +\frac{\gamma \mathcal {C} \alpha \delta }{1+\chi }\left[ \alpha +\chi +\gamma (1\,-\,\alpha )\right] }\\[16pt] \mathcal {T}(\gamma ) &{} = &{} \frac{\left[ \alpha +\chi +\gamma \mathcal {C}\left( 2-\frac{\mathcal {C}(1\,-\,\gamma )}{1+\chi } \right) \right] \left[ \rho \Theta [\rho +\delta (1\,-\,\alpha )]\,-\,\frac{ \sigma (1+\chi )\alpha \delta }{1+\chi \,-\,\mathcal {C}(1\,-\,\gamma )}\left[ \rho +\Theta (\delta +\rho )\right] \right] +\gamma \mathcal {C}\alpha \delta \left[ \frac{\rho \left[ \alpha +\chi +\gamma (1\,-\,\alpha )\right] }{1+\chi } +\alpha \delta \Theta \right] }{\left[ \alpha +\chi +\gamma \mathcal {C}\left( 2\,-\,\frac{ \mathcal {C}(1\,-\,\gamma )}{1+\chi }\right) \right] \left[ \Theta [\rho +\delta (1\,-\, \alpha )]\,-\,\frac{\sigma (1+\chi )\alpha \delta }{1+\chi \,-\,\mathcal {C}(1\,-\,\gamma )} \right] +\frac{\gamma \mathcal {C}\alpha \delta }{1+\chi }\left[ \alpha +\chi +\gamma (1\,-\,\alpha )\right] } \end{array} \end{aligned}$$
(4.56)

Note that if \(\Theta =0\) we conclude under the concavity condition \( \sigma \ge \sigma _{c}(\gamma )\) that \(\mathcal {D}<0\), and the steady state is always saddle-point stable, i.e. locally determinate.

Assume first that

$$\begin{aligned} \begin{array}{l} \frac{(1\,-\,\alpha )(\gamma +\chi )}{1+\chi }\,-\,\alpha \Theta>0 \text{ or } \text{ equivalently } \chi >\frac{\alpha \Theta \,-\,\gamma (1\,-\,\alpha )}{1\,-\,\alpha \,-\,\alpha \Theta }\equiv \underline{\chi }(\gamma ) \end{array} \end{aligned}$$
(4.57)

To keep reasonable values for the external effect we assume from here that \( \Theta <\bar{\Theta }\equiv (1-\alpha )/\alpha \) and thus \(\underline{\chi } (\gamma )>0\). Then \(\mathcal {D}>0\) if and only if its denominator is positive, namely if and only if

$$\begin{aligned} \begin{array}{l} \sigma <\sigma ^{sup}(\gamma )\equiv \frac{\left[ 1+\chi \,-\,\mathcal {C}(1\,-\,\gamma ) \right] \left\{ \left[ \alpha +\chi +\gamma \mathcal {C}\left( 2\,-\,\frac{\mathcal {C} (1\,-\,\gamma )}{1+\chi }\right) \right] \Theta [\rho +\delta (1\,-\,\alpha )]+\frac{\gamma \mathcal {C}\alpha \delta }{1+\chi }\left[ \alpha +\chi +\gamma (1\,-\,\alpha )\right] \right\} }{(1+\chi )\alpha \delta \left[ \alpha +\chi +\gamma \mathcal {C}\left( 2\,-\, \frac{\mathcal {C}(1\,-\,\gamma )}{1+\chi }\right) \right] } \end{array} \end{aligned}$$
(4.58)

But then local indeterminacy arises if and only if \(\mathcal {T}(\gamma )<0\), namely if and only if its numerator is negative, i.e.

$$\begin{aligned} \begin{array}{l} \sigma >\sigma ^{H}(\gamma )\equiv \frac{\left[ 1+\chi \,-\,\mathcal {C}(1\,-\,\gamma ) \right] \left\{ \left[ \alpha +\chi +\gamma \mathcal {C}\left( 2\,-\,\frac{\mathcal {C} (1\,-\,\gamma )}{1+\chi }\right) \right] \rho \Theta [\rho +\delta (1\,-\,\alpha )]+\gamma \mathcal {C}\alpha \delta \left[ \frac{\rho \left[ \alpha +\chi +\gamma (1\,-\,\alpha ) \right] }{1+\chi }+\alpha \delta \Theta \right] \right\} }{(1+\chi )\alpha \delta \left[ \rho +\Theta (\delta +\rho )\right] \left[ \alpha +\chi +\gamma \mathcal {C} \left( 2\,-\,\frac{\mathcal {C}(1\,-\,\gamma )}{1+\chi }\right) \right] } \end{array} \end{aligned}$$
(4.59)

Obvious computations show that \(\sigma ^{sup}(\gamma )>\sigma ^{H}(\gamma )\) for any \(\gamma \in [0,1]\). We need however to check that \(\sigma ^{sup}(\gamma ) >\sigma _{c}(\gamma )\) in order to be able to have a compatibility between the concavity property of the utility function at the steady state \(\sigma \ge \sigma _{c}(\gamma )\) and the condition for local indeterminacy \(\sigma <\sigma ^{sup}(\gamma )\). Tedious but straightforward computations yield \(\sigma ^{sup}(\gamma )>\sigma _{c}(\gamma )\) if and only if

$$\begin{aligned} \begin{array}{l} \Theta >\tilde{\Theta }(\gamma )\equiv \frac{\gamma ^{2}\mathcal {C} \alpha ^{2}\delta \left[ 1\,-\,\frac{(1\,-\,\gamma )\mathcal {C}}{1+\chi }\left( 2\,-\,\frac{\mathcal {C} (1\,-\,\gamma )}{1+\chi }\right) \right] }{\left[ \chi +\gamma \mathcal {C}\left( 2\,-\,\frac{ \mathcal {C}(1\,-\,\gamma )}{1+\chi }\right) \right] \left[ \alpha +\chi +\gamma \mathcal { C}\left( 2\,-\,\frac{\mathcal {C}(1\,-\,\gamma )}{1+\chi }\right) \right] [\rho +\delta (1\,-\,\alpha )]} \end{array} \end{aligned}$$
(4.60)

Under Assumption 1 we have \(\tilde{\Theta }^{\prime }(\gamma )>0\) and \(\tilde{\Theta }(\gamma )<\bar{\Theta }\) for any \( \gamma \in [0,1]\).

Denoting \(\sigma ^{inf}(\gamma )=\max \{\sigma ^{H}(\gamma ),\sigma _{c}(\gamma )\}\), we have proved that under condition (4.57), for any given \(\gamma \in [0,1]\), local indeterminacy occurs if and only if \(\Theta \in (\tilde{\Theta }(\gamma ),\bar{\Theta })\) and \(\sigma \in (\sigma ^{inf}(\gamma ),\sigma ^{sup}(\gamma ))\). Obviously, recalling that Lemma 1 shows that the JR utility function is locally concave if and only if \(\sigma \ge \sigma _{c}(\gamma )\), we derive from (4.58) and (4.60) that \(\mathcal {D}\) is negative and the steady state \((k^{*},p^{*})\) is saddle-point stable in two cases: (i) when \(\Theta \in (\tilde{\Theta }(\gamma ),\bar{\Theta })\) and \(\sigma >\sigma ^{sup}(\gamma )\), or (ii) when \(\Theta <\tilde{\Theta }(\gamma )\) which implies \(\sigma (\ge \sigma _{c}(\gamma ))>\sigma ^{sup}(\gamma )\).

Let us consider now the case in which

$$\begin{aligned} \begin{array}{l} \frac{(1-\alpha )(\gamma +\chi )}{1+\chi }\,-\,\alpha \Theta<0 \text{ or } \text{ equivalently } \chi <\frac{\alpha \Theta \,-\,\gamma (1\,-\,\alpha )}{1\,-\,\alpha \,-\,\alpha \Theta }\equiv \underline{\chi }(\gamma ) \end{array} \end{aligned}$$
(4.61)

We need to assume here that \(\Theta >\gamma (1\,-\,\alpha )/\alpha \) and thus that \( \gamma <1\) to get a compatibility with the assumption \(\Theta <\bar{\Theta }\). Following the same argument as previously, we conclude now that local indeterminacy arises if \(\sigma >\sigma ^{sup}(\gamma )\) and \( \sigma <\sigma ^{H}(\gamma )\). But such a configuration is not possible as \( \sigma ^{sup}(\gamma )>\sigma ^{H}(\gamma )\) for any \(\gamma \in [0,1]\). It follows that under condition (4.61), the steady state \( (k^{*},p^{*})\) is saddle-point stable when \(\sigma <\sigma ^{sup}(\gamma )\), totally unstable when \(\sigma >\sigma ^{sup}(\gamma )\) and is ruled out.

We conclude therefore that for any given \(\gamma \in [0,1]\), local indeterminacy arises if and only if \(\chi >\underline{\chi }(\gamma )\), \( \Theta \in (\tilde{\Theta }(\gamma ),\bar{\Theta })\) and \(\sigma \in (\sigma ^{inf}(\gamma ),\sigma ^{sup}(\gamma ))\).\(\square \)

1.4 4.8.4 Proof of Corollary 1

Taking into account the concavity condition as given in Lemma 1, the existence of a Hopf bifurcation requires the bound \(\sigma ^{H}(\gamma )\) as given in (4.34) to be larger than \(\sigma _{c}(\gamma )\). We then get \(\sigma ^{H}(\gamma )>\sigma _{c}(\gamma )\) if and only if

$$\begin{aligned} \begin{array}{l} \Theta g(\rho ,\gamma ,\chi )>\gamma ^{2}\mathcal {C}\alpha ^{2}\delta \rho \left[ 1\,-\,\frac{(1\,-\,\gamma )\mathcal {C}}{1+\chi }\left( 2\,-\,\frac{\mathcal {C}(1\,-\,\gamma )}{1+\chi }\right) \right] \end{array} \end{aligned}$$

with

$$\begin{aligned} \begin{array}{rcl} g(\rho ,\gamma ,\chi ) &{} = \left[ \alpha +\chi +\gamma \mathcal {C}\left( 2-\frac{\mathcal {C}(1\,-\,\gamma )}{1+\chi } \right) \right] \left[ \rho [\rho +\delta (1\,-\,\alpha )]\left[ \chi +\gamma \mathcal {C} \left( 2\,-\,\frac{\mathcal {C}(1\,-\,\gamma )}{1+\chi }\right) \right] \right. \\[8pt] \quad &{} - \left. \frac{\gamma \mathcal {C}\alpha \delta (\gamma +\chi )(\delta +\rho )}{1+\chi }\right] + \gamma \mathcal {C}(\alpha \delta )^{2} \left[ \chi +\gamma \mathcal {C}\left( 2-\frac{\mathcal {C}(1-\gamma )}{1+\chi } \right) \right] \end{array} \end{aligned}$$

Under Assumption 1 we have \(g(\rho ,\gamma ,\chi )>0\) for any \(\gamma \in [0,1]\). It follows that \(\sigma ^{H}(\gamma )>\sigma _{c}(\gamma )\) if and only if

$$\begin{aligned} \begin{array}{rcl} \Theta >\hat{\Theta }(\gamma )\equiv \frac{\gamma ^{2}\mathcal {C} \alpha ^{2}\delta \rho \left[ 1\,-\,\frac{(1\,-\,\gamma )\mathcal {C}}{1+\chi }\left( 2\,-\,\frac{\mathcal {C} (1\,-\,\gamma )}{1+\chi }\right) \right] }{g(\rho ,\gamma ,\chi )}&\,&\end{array} \end{aligned}$$

Assumption 1 also implies \(\hat{\Theta }^{\prime }(\gamma )>0\) and \( \hat{\Theta }(\gamma )<\bar{\Theta }\) for any \(\gamma \in [0,1]\). The result follows from Proposition 2 considering \(\underline{\Theta } (\gamma )=\max \{\hat{\Theta }(\gamma ),\tilde{\Theta }(\gamma )\}\).\(\square \)

1.5 4.8.5 Proof of Lemma 2

The maximal value of \(\underline{\chi }(\gamma )\) is \(\underline{\chi } (0)=\alpha \Theta /(1\,-\,\alpha \,-\,\alpha \Theta )\). We then assume \(\chi >\underline{ \chi }(0)\) in order to ensure \(\chi >\underline{\chi }(\gamma )\) for any \(\gamma \in [0,1]\). Let us consider the following two critical values

$$\begin{aligned} \begin{array}{rcl} \sigma ^{sup}(0) &{} \equiv &{} \frac{\Theta \left\{ \alpha \rho +\chi [ \rho +\delta (1\,-\,\alpha )]\right\} }{(1+\chi )\alpha \delta } \\[6pt] \sigma ^{H}(1) &{} \equiv &{} \frac{\left( \alpha +\chi +2\mathcal {C}\right) \rho \Theta [\rho +\delta (1\,-\,\alpha )]+\mathcal {C}\alpha \delta \left( \rho +\alpha \delta \Theta \right) }{\alpha \delta \left[ \rho +\Theta (\delta +\rho )\right] \left( \alpha +\chi +2\mathcal {C}\right) } \end{array} \end{aligned}$$
(4.62)

We easily get

$$\begin{aligned} \begin{array}{rclclcl} \displaystyle \lim _{\chi \rightarrow +\infty }\sigma ^{sup}(0)= & {} \frac{\Theta [\rho +\delta (1\,-\,\alpha )]}{\alpha \delta }>\displaystyle \lim _{\chi \rightarrow + \infty }\sigma ^{H}(1)= & {} \frac{\rho \Theta [\rho +\delta (1\,-\,\alpha )]}{ \alpha \delta \left[ \rho +\Theta (\delta +\rho )\right] }&\,&\end{array} \end{aligned}$$
(4.63)

Similarly, we have

$$\begin{aligned} \begin{array}{rcl} \sigma ^{sup}(0)\vert _{\chi =\underline{\chi }(0)} &{} = &{} \frac{\Theta [ \rho +\Theta (\delta +\rho )]}{\delta } \\[6pt] \sigma ^{H}(1)\vert _{\chi =\underline{\chi }(0)} &{} \equiv &{} \frac{\rho \Theta [ \rho +\delta (1\,-\,\alpha )]}{\alpha \delta \left[ \rho +\Theta (\delta +\rho )\right] }+ \frac{\mathcal {C}(1\,-\,\alpha \,-\,\alpha \Theta )\left( \rho +\alpha \delta \Theta \right) }{\left[ \rho +\Theta (\delta +\rho )\right] \left[ \alpha (1\,-\,\alpha )(1+\Theta )+2 \mathcal {C}(1\,-\,\alpha \,-\,\alpha \Theta )\right] } \end{array} \end{aligned}$$

It follows obviously that

$$\begin{aligned} \begin{array}{rclclc} \displaystyle \lim _{\Theta \rightarrow 0}\sigma ^{sup}(0)\vert _{\chi =\underline{ \chi }(0)}= & {} 0<\displaystyle \lim _{\Theta \rightarrow 0}\sigma ^{H}(1) \vert _{\chi =\underline{\chi }(0)}\equiv & {} \frac{\mathcal {C}}{\alpha +2 \mathcal {C}}&\end{array} \end{aligned}$$

while

$$\begin{aligned} \begin{array}{rclclc} \displaystyle \lim _{\Theta \rightarrow \bar{\Theta }}\sigma ^{sup}(0)\vert _{\chi = \underline{\chi }(0)}= & {} \frac{(1\,-\,\alpha )\left[ \rho +\delta (1\,-\,\alpha )\right] }{\alpha ^{2}\delta }>\displaystyle \lim _{\Theta \rightarrow \bar{\Theta } }\sigma ^{H}(1)\vert _{\chi =\underline{\chi }(0)}\equiv & {} \frac{ (1\,-\,\alpha )\rho }{\alpha \delta }&\end{array} \end{aligned}$$

Therefore, there exists \(\bar{\bar{\Theta }}\in (0,\bar{\Theta })\) such that if \(\Theta \in (0,\bar{\bar{\Theta }})\), then \(\sigma ^{sup}(0)\vert _{\chi = \underline{\chi }(0)}<\sigma ^{H}(1)\vert _{\chi =\underline{\chi }(0)}\). Based on this result and using (4.63), we conclude that there also exists \(\bar{\chi }\in (\underline{\chi }(0), +\infty )\) such that when \( \Theta \in (0,\bar{\bar{\Theta }})\), \(\sigma ^{sup}(0)\,-\,\sigma ^{H}(1)\lessgtr 0\) if and only if \(\chi \lessgtr \bar{\chi }\).\(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dufourt, F., Nishimura, K., Nourry, C., Venditti, A. (2017). Sunspot Fluctuations in Two-Sector Models with Variable Income Effects. In: Nishimura, K., Venditti, A., Yannelis, N. (eds) Sunspots and Non-Linear Dynamics. Studies in Economic Theory, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-44076-7_4

Download citation

Publish with us

Policies and ethics