Skip to main content

Regulation of Nervous System Function by Circumventricular Organs

  • Chapter
  • First Online:
Neuroimmune Pharmacology

Abstract

In this chapter, we highlight the specialized features of the sensory circumventricular organs (CVO) as central nervous system (CNS) structures located at the blood-brain interface. These structures appear to play critical roles in sensing and integrating information regarding autonomic status derived from circulating signals that do not readily cross the BBB. Intriguingly, while the majority of the original literature highlighting such roles attributed primarily fluid balance and cardiovascular functions to the subfornical organ (SFO) and metabolic function to the area postrema (AP), more recent work as highlighted in this chapter has clearly demonstrated, not only overlap in these physiological roles in SFO and AP, but also additional roles for these CVOs in reproductive and of primary importance to this chapter immune signaling from the circulation to the CNS. Within not only SFO and AP, but also the organum vasculosum of the lamina terminalis, the emerging literature supports the conclusion that single neurons in these CVOs sense, and presumably integrate, signals related to all of these separately classified autonomic functions. In recognizing the potential for such integration in the sensory CVOs, it becomes important to also understand that optimal health is associated with the ability of our physiological systems to regulate these functions in an integrated rather than separate manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53

    Article  CAS  PubMed  Google Scholar 

  • Bains JS, Ferguson AV (1995) Paraventricular nucleus neurons projecting to the spinal cord receive excitatory input from the subfornical organ. Am J Physiol 268:R625–R633

    CAS  PubMed  Google Scholar 

  • Baraboi ED, Michel C, Smith P, Thibaudeau K, Ferguson AV, Richard D (2010a) Effects of albumin-conjugated PYY on food intake: the respective roles of the circumventricular organs and vagus nerve. Eur J Neurosci 32:826–839

    Article  PubMed  Google Scholar 

  • Baraboi ED, Smith P, Ferguson AV, Richard D (2010b) Lesions of area postrema and subfornical organ alter exendin-4-induced brain activation without preventing the hypophagic effect of the GLP-1 receptor agonist. Am J Physiol 298:R1098–R1110

    CAS  Google Scholar 

  • Bird E, Cardone CC, Contreras RJ (1983) Area postrema lesions disrupt food intake induced by cerebroventricular infusions of 5-thioglucose in the rat. Brain Res 270:193–196

    Article  CAS  PubMed  Google Scholar 

  • Bishop VS, Hay M (1993) Involvement of the area postrema in the regulation of sympathetic outflow to the cardiovascular system. Front Neuroendocrinol 14:57–75

    Article  CAS  PubMed  Google Scholar 

  • Bishop VS, Sanderford MG (2000) Angiotensin II modulation of the arterial baroreflex: role of the area postrema. Clin Exp Pharmacol Physiol 27:428–431

    Article  CAS  PubMed  Google Scholar 

  • Black E, Grattan D, Ferguson A (2014) Prolactin influences the excitability of subfornical organ neurons (1129.3). FASEB J 28(1):1129.3

    Google Scholar 

  • Blatteis CM, Bealer SL, Hunter WS, Llanos-Q J, Ahokas RA, Mashburn TA Jr (1983) Suppression of fever after lesions of the anteroventral third ventricle in guinea pigs. Brain Res Bull 11:519–526

    Article  CAS  PubMed  Google Scholar 

  • Blatteis CM, Hales JR, McKinley MJ, Fawcett AA (1987) Role of the anteroventral third ventricle region in fever in sheep. Can J Physiol Pharmacol 65:1255–1260

    Article  CAS  PubMed  Google Scholar 

  • Borison HL, Brizzee KR (1951) Morphology of emetic chemoreceptor trigger zone in cat medulla oblongata. Proc Soc Exp Biol Med 77:38–42

    Article  CAS  PubMed  Google Scholar 

  • Brady LS, Lynn AB, Herkenham M, Gottesfeld Z (1994) Systemic interleukin-1 induces early and late patterns of c-fos mRNA expression in brain. J Neurosci 14:4951–4964

    CAS  PubMed  Google Scholar 

  • Brown J, Czarnecki A (1990) Distribution of atrial natriuretic peptide receptor subtypes in rat brain. Am J Physiol 258:R1078–R1083

    CAS  PubMed  Google Scholar 

  • Camacho A, Phillips MI (1981) Horseradish peroxidase study in rat of the neural connections of the organum vasculosum of the lamina terminalis. Neurosci Lett 25:201–204

    Article  CAS  PubMed  Google Scholar 

  • Cartmell T, Luheshi GN, Rothwell NJ (1999) Brain sites of action of endogenous interleukin-1 in the febrile response to localized inflammation in the rat. J Physiol 518(Pt 2):585–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassone VM, Warren WS, Brooks DS, Lu J (1993) Melatonin, the pineal gland, and circadian rhythms. J Biol Rhythms 8(Suppl):S73–S81

    PubMed  Google Scholar 

  • Contreras RJ, Fox E, Drubovich ML (1982) Area postrema lesions produce feeding deficits in the rat: effects of preoperative dieting and 2-deoxy-D-glucose. Physiol Behav 29:875–884

    Article  CAS  PubMed  Google Scholar 

  • Cottrell GT, Zhou QY, Ferguson AV (2004) Prokineticin 2 modulates the excitability of subfornical organ neurons. J Neurosci 24:2375–2379

    Article  CAS  PubMed  Google Scholar 

  • Day HE, Akil H (1996) Differential pattern of c-fos mRNA in rat brain following central and systemic administration of interleukin-1-beta: implications for mechanism of action. Neuroendocrinology 63:207–218

    Article  CAS  PubMed  Google Scholar 

  • Dellmann HD, Simpson JB (1979) The subfornical organ. Int Rev Cytol 58:333–421

    Article  CAS  PubMed  Google Scholar 

  • Desson SE, Ferguson AV (2003) Interleukin 1beta modulates rat subfornical organ neurons as a result of activation of a non-selective cationic conductance. J Physiol 550:113–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duvernoy H, Koritke JG, Monnier G (1969) [On the vascularisation of the lamina terminalis in the human]. Z Zellforsch Mikrosk Anat 102:49–77

    Article  CAS  PubMed  Google Scholar 

  • Ericsson A, Liu C, Hart RP, Sawchenko PE (1995) Type 1 interleukin-1 receptor in the rat brain: distribution, regulation, and relationship to sites of IL-1-induced cellular activation. J Comp Neurol 361:681–698

    Article  CAS  PubMed  Google Scholar 

  • Ferguson AV, Bains JS (1996) Electrophysiology of the circumventricular organs. Front Neuroendocrinol 17:440–475

    Article  CAS  PubMed  Google Scholar 

  • Ferguson AV, Bains JS (1997) Actions of angiotensin in the subfornical organ and area postrema: implications for long term control of autonomic output. Clin Exp Pharmacol Physiol 24:96–101

    Article  CAS  PubMed  Google Scholar 

  • Ferguson AV, Renaud LP (1984) Hypothalamic paraventricular nucleus lesions decrease pressor responses to subfornical organ stimulation. Brain Res 305:361–364

    Article  CAS  PubMed  Google Scholar 

  • Ferguson AV, Smith P (1991) Circulating endothelin influences area postrema neurons. Regul Pept 32:11–21

    Article  CAS  PubMed  Google Scholar 

  • Ferguson AV, Papas S, Marcus P (1988) Area postrema stimulation induces cardiovascular changes in the rat. Can J Physiol Pharmacol 66:Axiii

    Google Scholar 

  • Gehlert DR, Gackenheimer SL, Reel JK, Lin H-S, Steinberg MI (1990) Non-peptide angiotensin II receptor antagonists discriminate subtypes of 125I-angiotensin II binding sites in the rat brain. Eur J Pharmacol 187:123–126

    Article  CAS  PubMed  Google Scholar 

  • Gross PM (1991) Morphology and physiology of capillary systems in subregions of the subfornical organ and area postrema. Can J Physiol Pharmacol 69:1010–1025

    Article  CAS  PubMed  Google Scholar 

  • Harden LM, Rummel C, Luheshi GN, Poole S, Gerstberger R, Roth J (2013) Interleukin-10 modulates the synthesis of inflammatory mediators in the sensory circumventricular organs: implications for the regulation of fever and sickness behaviors. J Neuroinflammation 10:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasser EM, Bishop VS (1990) Reflex effect of vasopressin after blockade of V1 receptors in the area postrema. Circ Res 67:265–271

    Article  CAS  PubMed  Google Scholar 

  • Hernesniemi J, Kawana E, Bruppacher H, Sandri C (1972) Afferent connections of the subfornical organ and of the supraoptic crest. Acta Anat 81:321–336

    Article  CAS  PubMed  Google Scholar 

  • Hindmarch C, Fry M, Yao ST, Smith PM, Murphy D, Ferguson AV (2008) Microarray analysis of the transcriptome of the subfornical organ in the rat: regulation by fluid and food deprivation. Am J Physiol 295:R1914–R1920

    CAS  Google Scholar 

  • Hiyama TY, Watanabe E, Okado H, Noda M (2004) The subfornical organ is the primary locus of sodium-level sensing by Na(x) sodium channels for the control of salt-intake behavior. J Neurosci 24:9276–9281

    Article  CAS  PubMed  Google Scholar 

  • Hoyda TD, Smith PM, Ferguson AV (2009) Gastrointestinal hormone actions in the central regulation of energy metabolism: potential sensory roles for the circumventricular organs. Int J Obes 33(Suppl 1):S16–S21

    Article  CAS  Google Scholar 

  • Hyde TM, Miselis RR (1983) Effects of area postrema/caudal medial nucleus of solitary tract lesions on food intake and body weight. Am J Physiol 244:R577–R587

    CAS  PubMed  Google Scholar 

  • Ishizuka Y, Ishida Y, Kunitake T, Kato K, Hanamori T, Matsuyama Y, Kannan H (1997) Effects of area postrema lesion and abdominal vagotomy on interleukin-1 beta-induced norepinephrine release in the hypothalamic paraventricular nucleus region in the rat. Neurosci Lett 223:57–60

    Article  CAS  PubMed  Google Scholar 

  • Jordi J, Herzog B, Camargo SM, Boyle CN, Lutz TA, Verrey F (2013) Specific amino acids inhibit food intake via the area postrema or vagal afferents. J Physiol 591:5611–5621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laflamme N, Rivest S (2001) Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J 15:155–163

    Article  CAS  PubMed  Google Scholar 

  • Lazarus M, Yoshida K, Coppari R, Bass CE, Mochizuki T, Lowell BB, Saper CB (2007) EP3 prostaglandin receptors in the median preoptic nucleus are critical for fever responses. Nat Neurosci 10:1131–1133

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Whiteside MB, Herkenham M (1998) Area postrema removal abolishes stimulatory effects of intravenous interleukin-1beta on hypothalamic-pituitary-adrenal axis activity and c-fos mRNA in the hypothalamic paraventricular nucleus. Brain Res Bull 46:495–503

    Article  CAS  PubMed  Google Scholar 

  • Limonta P, Maggi R, Giudici D, Martini L, Piva F (1981) Role of the subfornical organ (SFO) in the control of gonadotropin secretion. Brain Res 229:75–84

    Article  CAS  PubMed  Google Scholar 

  • Lind RW, Van Hoesen GW, Johnson AK (1982) An HRP study of the connections of the subfornical organ of the rat. J Comp Neurol 210:265–277

    Article  CAS  PubMed  Google Scholar 

  • Liu JL, Murakami H, Sanderford M, Bishop VS, Zucker IH (1999) ANG II and baroreflex function in rabbits with CHF and lesions of the area postrema. Am J Physiol 277:H342–H350

    CAS  PubMed  Google Scholar 

  • McKinley MJ, McAllen RM, Davern P, Giles ME, Penschow J, Sunn N, Uschakov A, Oldfield BJ (2003) The sensory circumventricular organs of the mammalian brain. Adv Anat Embryol Cell Biol 172:III–XII, 1–122

    Google Scholar 

  • Miller AD, Leslie RA (1994) The area postrema and vomiting. Front Neuroendocrinol 15:301–320

    Article  CAS  PubMed  Google Scholar 

  • Miselis RR (1981) The efferent projections of the subfornical organ of the rat: a circumventricular organ within a neural network subserving water balance. Brain Res 230:1–23

    Article  CAS  PubMed  Google Scholar 

  • Miselis RR (1982) The subfornical organ’s neural connections and their role in water balance. Peptides 3:501–502

    Article  CAS  PubMed  Google Scholar 

  • Nadeau S, Rivest S (1999) Effects of circulating tumor necrosis factor on the neuronal activity and expression of the genes encoding the tumor necrosis factor receptors (p55 and p75) in the rat brain: a view from the blood-brain barrier. Neuroscience 93:1449–1464

    Article  CAS  PubMed  Google Scholar 

  • Nadjar A, Combe C, Busquet P, Dantzer R, Parnet P (2005) Signaling pathways of interleukin-1 actions in the brain: anatomical distribution of phospho-ERK1/2 in the brain of rat treated systemically with interleukin-1beta. Neuroscience 134:921–932

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Morrison SF (2008) A thermosensory pathway that controls body temperature. Nat Neurosci 11:62–71

    Article  CAS  PubMed  Google Scholar 

  • Oldfield BJ, Hards DK, McKinley MJ (1991) Projections from the subfornical organ to the supraoptic nucleus in the rat: ultrastructural identification of an interposed synapse in the median preoptic nucleus using a combination of neuronal tracers. Brain Res 558:13–19

    Article  CAS  PubMed  Google Scholar 

  • Ott D, Murgott J, Rafalzik S, Wuchert F, Schmalenbeck B, Roth J, Gerstberger R (2010) Neurons and glial cells of the rat organum vasculosum laminae terminalis directly respond to lipopolysaccharide and pyrogenic cytokines. Brain Res 1363:93–106

    Article  CAS  PubMed  Google Scholar 

  • Pamidimukkala J, Hay M (2003) 17 beta-Estradiol inhibits angiotensin II activation of area postrema neurons. Am J Physiol Heart Circ Physiol 285:H1515–H1520

    Article  CAS  PubMed  Google Scholar 

  • Panicker AK, Mangels RA, Powers JB, Wade GN, Schneider JE (1998) AP lesions block suppression of estrous behavior, but not estrous cyclicity, in food-deprived Syrian hamsters. Am J Physiol 275:R158–R164

    CAS  PubMed  Google Scholar 

  • Phillips MI, Camacho A (1987) Neural connections of the organum vasculosum of the lamina terminalis. In: Gross P (ed) Circumventricular organs and body fluids. CRC Press, Boca Raton, pp 157–169

    Google Scholar 

  • Piva F, Limonta P, Martini L (1982) Role of the organum vasculosum laminae terminalis in the control of gonadotrophin secretion in rats. J Endocrinol 93:355–364

    Article  CAS  PubMed  Google Scholar 

  • Plata-Salaman CR (1991) Immunoregulators in the nervous system. Neurosci Biobehav Rev 15:185–215

    Article  CAS  PubMed  Google Scholar 

  • Potes CS, Turek VF, Cole RL, Vu C, Roland BL, Roth JD, Riediger T, Lutz TA (2010) Noradrenergic neurons of the area postrema mediate amylin’s hypophagic action. Am J Physiol Regul Integr Comp Physiol 299:R623–R631

    Article  CAS  PubMed  Google Scholar 

  • Price CJ, Hoyda TD, Ferguson AV (2008) The area postrema: a brain monitor and integrator of systemic autonomic state. Neuroscientist 14:182–194

    Article  PubMed  Google Scholar 

  • Romanovsky AA, Sugimoto N, Simons CT, Hunter WS (2003) The organum vasculosum laminae terminalis (OVLT) in immune-to-brain febrigenic signaling: a reappraisal of lesion experiments. Am J Physiol Regul Integr Comp Physiol 285(2):R420–R428

    Article  CAS  PubMed  Google Scholar 

  • Saavedra JM, Israel A, Kurihara M (1987) Increased atrial natriuretic peptide binding sites in the rat subfornical organ after water deprivation. Endocrinology 120:426–427

    Article  CAS  PubMed  Google Scholar 

  • Samson WK, White MM, Price C, Ferguson AV (2007) Obestatin acts in brain to inhibit thirst. Am J Physiol Regul Integr Comp Physiol 292:R637–R643

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Levisohn D (1983) Afferent connections of the median preoptic nucleus in the rat: anatomical evidence for a cardiovascular integrative mechanism in the anteroventral third ventricular (AV3V) region. Brain Res 288:21–31

    Article  CAS  PubMed  Google Scholar 

  • Shapiro RE, Miselis RR (1985) The central neural connections of the area postrema of the rat. J Comp Neurol 234:344–364

    Article  CAS  PubMed  Google Scholar 

  • Shibata M, Blatteis CM (1991) Human recombinant tumor necrosis factor and interferon affect the activity of neurons in the organum vasculosum laminae terminalis. Brain Res 562:323–326

    Article  CAS  PubMed  Google Scholar 

  • Smith PM, Beninger RJ, Ferguson AV (1995) Subfornical organ stimulation elicits drinking. Brain Res Bull 38:209–213

    Article  CAS  PubMed  Google Scholar 

  • Smith PM, Rozanski G, Ferguson AV (2010) Acute electrical stimulation of the subfornical organ induces feeding in satiated rats. Physiol Behav 99:534–537

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew MV (1983) Morphology of vasopressin and oxytocin neurones and their central and vascular projections. In: Cross BA, Leng G (eds) The neurohypophysis: structure, function and control. Elsevier, Amsterdam, Netherlands, pp 101–114

    Chapter  Google Scholar 

  • Sofroniew MV, Weindl A, Schrell U, Wetzstein R (1981) Immunohistochemistry of vasopressin, oxytocin and neurophysin in the hypothalamus and extrahypothalamic regions of the human and primate brain. Acta Histochem Suppl 24:79–95

    CAS  PubMed  Google Scholar 

  • Stitt JT (1985) Evidence for the involvement of the organum vasculosum laminae terminalis in the febrile response of rabbits and rats. J Physiol 368:501–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Summerlee AJS, Wilson BC (1994) Role of the subfornical organ in the relaxin induced prolongation of gestation in the rat. Endocrinology 134:2115–2120

    CAS  PubMed  Google Scholar 

  • Sunn N, Egli M, Burazin TC, Burns P, Colvill L, Davern P, Denton DA, Oldfield BJ, Weisinger RS, Rauch M, Schmid HA, McKinley MJ (2002) Circulating relaxin acts on subfornical organ neurons to stimulate water drinking in the rat. Proc Natl Acad Sci U S A 99:1701–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi Y, Smith P, Ferguson A, Pittman QJ (1997) Circumventricular organs and fever. Am J Physiol 273:R1690–R1695

    CAS  PubMed  Google Scholar 

  • ter Horst GJ, Luiten PG (1986) The projections of the dorsomedial hypothalamic nucleus in the rat. Brain Res Bull 16:231–248

    Article  PubMed  Google Scholar 

  • Vallieres L, Rivest S (1997) Regulation of the genes encoding interleukin-6, its receptor, and gp130 in the rat brain in response to the immune activator lipopolysaccharide and the proinflammatory cytokine interleukin-1beta. J Neurochem 69:1668–1683

    Article  CAS  PubMed  Google Scholar 

  • van der Kooy D, Koda LY (1983) Organization of the projections of a circumventricular organ: the area postrema in the rat. J Comp Neurol 219:328–338

    Article  PubMed  Google Scholar 

  • Walker RF, Codd EE (1985) Neuroimmunomodulatory interactions of norepinephrine and serotonin. J Neuroimmunol 10:41–58

    Article  CAS  PubMed  Google Scholar 

  • Wall KM, Nasr M, Ferguson AV (1992) Actions of endothelin at the subfornical organ. Brain Res 570:180–187

    Article  CAS  PubMed  Google Scholar 

  • Washburn DL, Smith PM, Ferguson AV (1999a) Control of neuronal excitability by an ion-sensing receptor (correction of anion-sensing). Eur J Neurosci 11:1947–1954

    Article  CAS  PubMed  Google Scholar 

  • Washburn DLS, Beedle AM, Ferguson AV (1999b) Inhibition of subfornical organ neuronal potassium channels by vasopressin. Neuroscience 93:349–359

    Article  CAS  PubMed  Google Scholar 

  • Weigent DA, Blalock JE (1987) Interactions between the neuroendocrine and immune systems: common hormones and receptors. Immunol Rev 100:79–108

    Article  CAS  PubMed  Google Scholar 

  • Wislocki GB, Putnam TJ (1920) Note on the anatomy of the areae postremae. Anat Rec 19:281–287

    Article  Google Scholar 

  • Wuchert F, Ott D, Murgott J, Rafalzik S, Hitzel N, Roth J, Gerstberger R (2008) Rat area postrema microglial cells act as sensors for the toll-like receptor-4 agonist lipopolysaccharide. J Neuroimmunol 204:66–74

    Article  CAS  PubMed  Google Scholar 

  • Wuchert F, Ott D, Rafalzik S, Roth J, Gerstberger R (2009) Tumor necrosis factor-alpha, interleukin-1beta and nitric oxide induce calcium transients in distinct populations of cells cultured from the rat area postrema. J Neuroimmunol 206:44–51

    Article  CAS  PubMed  Google Scholar 

  • Wuerfel E, Infante-Duarte C, Glumm R, Wuerfel JT (2010) Gadofluorine M-enhanced MRI shows involvement of circumventricular organs in neuroinflammation. J Neuroinflammation 7:70

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alastair V. Ferguson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Black, E.A.E., Cancelliere, N.M., Ferguson, A.V. (2017). Regulation of Nervous System Function by Circumventricular Organs. In: Ikezu, T., Gendelman, H. (eds) Neuroimmune Pharmacology. Springer, Cham. https://doi.org/10.1007/978-3-319-44022-4_3

Download citation

Publish with us

Policies and ethics