Skip to main content

MicroRNA Implications in Neurodegenerative Disorders

  • Chapter
  • First Online:
Neuroimmune Pharmacology

Abstract

The importance of non-coding RNAs that regulate cellular processes has become evident in the recent past. The most prominent among this class of RNAs are microRNAs (miRs) that are 20-22-nucleotide long single stranded RNAs. miRs are transcribed from the genome as longer transcripts called primary miRs that are processed sequentially by RNAse III enzymes DROSHA and Dicer to generate the mature form. In the cytoplasm, miRs recruit a protein complex called the RNA-induced silencing complex (RISC) and mediates downregulation of translation from target mRNAs. miRs are expressed in a tissue, cell-type and developmental stage specific manner. Aberrant expression of miRs therefore contributes to disease pathology as a consequence of dysregulation of target protein levels. In this chapter we review the discovery, biogenesis, mechanism of action of miRs and their role in neuronal function and dysfunction with emphasis on HIV-associated neurocognitive disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aldred SF, Collins P, Trinklein N (2011) Identifying targets of human microRNAs with the LightSwitch Luciferase Assay System using 3′UTR-reporter constructs and a microRNA mimic in adherent cells. J Vis Exp (55). pii: 3343. doi:10.3791/3343

  • Asada K, Canestrari E, Fu X, Li Z, Makowski E, Wu YC, Mito JK, Kirsch DG, Baraban J, Paroo Z (2014) Rescuing dicer defects via inhibition of an anti-dicing nuclease. Cell Rep 9(4):1471–1481. doi:10.1016/j.celrep.2014.10.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf SI, McLoon AL, Sclarsic SM, Kunes S (2006) Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 124(1):191–205. doi:10.1016/j.cell.2005.12.017

    Article  CAS  PubMed  Google Scholar 

  • Baltimore D (1970) RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 226(5252):1209–1211

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Neveu P, Kosik KS (2009) A coordinated local translational control point at the synapse involving relief from silencing and MOV10 degradation. Neuron 64(6):871–884. doi:10.1016/j.neuron.2009.11.023

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi:10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baudry A, Mouillet-Richard S, Schneider B, Launay JM, Kellermann O (2010) miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants. Science 329(5998):1537–1541. doi:10.1126/science.1193692

    Article  CAS  PubMed  Google Scholar 

  • Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36(Suppl 1):D149–D153. doi:10.1093/nar/gkm995

    CAS  PubMed  Google Scholar 

  • Beveridge NJ, Tooney PA, Carroll AP, Gardiner E, Bowden N, Scott RJ, Tran N, Dedova I, Cairns MJ (2008) Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum Mol Genet 17(8):1156–1168. doi:10.1093/hmg/ddn005

    Article  CAS  PubMed  Google Scholar 

  • Bilen J, Liu N, Bonini NM (2006) A new role for microRNA pathways: modulation of degeneration induced by pathogenic human disease proteins. Cell Cycle 5(24):2835–2838

    Article  CAS  PubMed  Google Scholar 

  • Budde H, Schmitt S, Fitzner D, Opitz L, Salinas-Riester G, Simons M (2010) Control of oligodendroglial cell number by the miR-17-92 cluster. Development 137(13):2127–2132. doi:10.1242/dev.050633

    Article  CAS  PubMed  Google Scholar 

  • Bueno MJ, Perez de Castro I, Gomez de Cedron M, Santos J, Calin GA, Cigudosa JC, Croce CM, Fernandez-Piqueras J, Malumbres M (2008) Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell 13(6):496–506. doi:10.1016/j.ccr.2008.04.018

    Article  CAS  PubMed  Google Scholar 

  • Chang JR, Mukerjee R, Bagashev A, Del Valle L, Chabrashvili T, Hawkins BJ, He JJ, Sawaya BE (2011) HIV-1 Tat protein promotes neuronal dysfunction through disruption of microRNAs. J Biol Chem 286(47):41125–41134. doi:10.1074/jbc.M111.268466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436(7051):740–744. doi:10.1038/nature03868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chendrimada TP, Finn KJ, Ji X, Baillat D, Gregory RI, Liebhaber SA, Pasquinelli AE, Shiekhattar R (2007) MicroRNA silencing through RISC recruitment of eIF6. Nature 447(7146):823–828. doi:10.1038/nature05841

    Article  CAS  PubMed  Google Scholar 

  • Conaco C, Otto S, Han JJ, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci U S A 103(7):2422–2427. doi:10.1073/pnas.0511041103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cougot N, Bhattacharyya SN, Tapia-Arancibia L, Bordonne R, Filipowicz W, Bertrand E, Rage F (2008) Dendrites of mammalian neurons contain specialized P-body-like structures that respond to neuronal activation. J Neurosci 28(51):13793–13804. doi:10.1523/JNEUROSCI.4155-08.2008

    Article  CAS  PubMed  Google Scholar 

  • Davis BN, Hilyard AC, Lagna G, Hata A (2008a) SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454(7200):56–61. doi:10.1038/nature07086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis TH, Cuellar TL, Koch SM, Barker AJ, Harfe BD, McManus MT, Ullian EM (2008b) Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci 28(17):4322–4330. doi:10.1523/JNEUROSCI.4815-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doxakis E (2010) Post-transcriptional regulation of alpha-synuclein expression by mir-7 and mir-153. J Biol Chem 285(17):12726–12734. doi:10.1074/jbc.M109.086827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edbauer D, Neilson JR, Foster KA, Wang CF, Seeburg DP, Batterton MN, Tada T, Dolan BM, Sharp PA, Sheng M (2010) Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65(3):373–384. doi:10.1016/j.neuron.2010.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eddy SR (2001) Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2(12):919–929. doi:10.1038/35103511

    Article  CAS  PubMed  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114. doi:10.1038/nrg2290

    Article  CAS  PubMed  Google Scholar 

  • Forman JJ, Coller HA (2010) The code within the code: microRNAs target coding regions. Cell Cycle 9(8):1533–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105. doi:10.1101/gr.082701.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, Hammond SM, Bartel DP, Schier AF (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308(5723):833–838. doi:10.1126/science.1109020

    Article  CAS  PubMed  Google Scholar 

  • Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S, Zhang H, Estes A, Brune CW, Bradfield JP, Imielinski M, Frackelton EC, Reichert J, Crawford EL, Munson J, Sleiman PM, Chiavacci R, Annaiah K, Thomas K, Hou C, Glaberson W, Flory J, Otieno F, Garris M, Soorya L, Klei L, Piven J, Meyer KJ, Anagnostou E, Sakurai T, Game RM, Rudd DS, Zurawiecki D, McDougle CJ, Davis LK, Miller J, Posey DJ, Michaels S, Kolevzon A, Silverman JM, Bernier R, Levy SE, Schultz RT, Dawson G, Owley T, McMahon WM, Wassink TH, Sweeney JA, Nurnberger JI, Coon H, Sutcliffe JS, Minshew NJ, Grant SF, Bucan M, Cook EH, Buxbaum JD, Devlin B, Schellenberg GD, Hakonarson H (2009) Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 459(7246):569–573. doi:10.1038/nature07953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grey F, Tirabassi R, Meyers H, Wu G, McWeeney S, Hook L, Nelson JA (2010) A viral microRNA down-regulates multiple cell cycle genes through mRNA 5′UTRs. PLoS Pathog 6(6):e1000967. doi:10.1371/journal.ppat.1000967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grimson A, Farh KK-H, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27(1):91–105. doi:10.1016/j.molcel.2007.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125(5):887–901. doi:10.1016/j.cell.2006.03.043

    Article  CAS  PubMed  Google Scholar 

  • Hansen T, Olsen L, Lindow M, Jakobsen KD, Ullum H, Jonsson E, Andreassen OA, Djurovic S, Melle I, Agartz I, Hall H, Timm S, Wang AG, Werge T (2007) Brain expressed microRNAs implicated in schizophrenia etiology. PLoS One 2(9):e873. doi:10.1371/journal.pone.0000873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hebert SS, Horre K, Nicolai L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S, Delacourte A, De Strooper B (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A 105(17):6415–6420. doi:10.1073/pnas.0710263105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hengst U, Cox LJ, Macosko EZ, Jaffrey SR (2006) Functional and selective RNA interference in developing axons and growth cones. J Neurosci 26(21):5727–5732. doi:10.1523/JNEUROSCI.5229-05.2006

    Article  CAS  PubMed  Google Scholar 

  • Heo I, Joo C, Cho J, Ha M, Han J, Kim VN (2008) Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell 32(2):276–284. doi:10.1016/j.molcel.2008.09.014

    Article  CAS  PubMed  Google Scholar 

  • Huang T, Liu Y, Huang M, Zhao X, Cheng L (2010) Wnt1-cre-mediated conditional loss of Dicer results in malformation of the midbrain and cerebellum and failure of neural crest and dopaminergic differentiation in mice. J Mol Cell Biol 2(3):152–163. doi:10.1093/jmcb/mjq008

    Article  CAS  PubMed  Google Scholar 

  • Humphreys DT, Westman BJ, Martin DI, Preiss T (2005) MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci U S A 102(47):16961–16966. doi:10.1073/pnas.0506482102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293(5531):834–838. doi:10.1126/science.1062961

    Article  CAS  PubMed  Google Scholar 

  • Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM (2009) Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci U S A 106(31):13052–13057. doi:10.1073/pnas.0906277106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kataoka Y, Takeichi M, Uemura T (2001) Developmental roles and molecular characterization of a Drosophila homologue of Arabidopsis Argonaute1, the founder of a novel gene superfamily. Genes Cells 6(4):313–325

    Article  CAS  PubMed  Google Scholar 

  • Kawahara Y, Mieda-Sato A (2012) TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc Natl Acad Sci U S A 109(9):3347–3352. doi:10.1073/pnas.1112427109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115(2):209–216

    Article  CAS  PubMed  Google Scholar 

  • Kim YK, Kim VN (2007) Processing of intronic microRNAs. EMBO J 26(3):775–783. doi:10.1038/sj.emboj.7601512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A (2007) A microRNA feedback circuit in midbrain dopamine neurons. Science 317(5842):1220–1224. doi:10.1126/science.1140481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiriakidou M, Tan GS, Lamprinaki S, De Planell-Saguer M, Nelson PT, Mourelatos Z (2007) An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 129(6):1141–1151. doi:10.1016/j.cell.2007.05.016

    Article  CAS  PubMed  Google Scholar 

  • Klein ME, Lioy DT, Ma L, Impey S, Mandel G, Goodman RH (2007) Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat Neurosci 10(12):1513–1514. doi:10.1038/nn2010

    Article  CAS  PubMed  Google Scholar 

  • Koval ED, Shaner C, Zhang P, du Maine X, Fischer K, Tay J, Chau BN, Wu GF, Miller TM (2013) Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Hum Mol Genet 22(20):4127–4135. doi:10.1093/hmg/ddt261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500. doi:10.1038/ng1536

    Article  CAS  PubMed  Google Scholar 

  • Kuhn DE, Nuovo GJ, Martin MM, Malana GE, Pleister AP, Jiang J, Schmittgen TD, Terry AV Jr, Gardiner K, Head E, Feldman DS, Elton TS (2008) Human chromosome 21-derived miRNAs are overexpressed in Down syndrome brains and hearts. Biochem Biophys Res Commun 370(3):473–477. doi:10.1016/j.bbrc.2008.03.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–858. doi:10.1126/science.1064921

    Article  CAS  PubMed  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12(9):735–739

    Article  CAS  PubMed  Google Scholar 

  • Lang MF, Shi Y (2012) Dynamic roles of microRNAs in neurogenesis. Front Neurosci 6:71. doi:10.3389/fnins.2012.00071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294(5543):858–862. doi:10.1126/science.1065062

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294(5543):862–864. doi:10.1126/science.1065329

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  • Lee R, Feinbaum R, Ambros V (2004a) A short history of a short RNA. Cell 116(2 Suppl):S89–S92, 81 p following S96

    Google Scholar 

  • Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004b) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060. doi:10.1038/sj.emboj.7600385

    Google Scholar 

  • Lee Y, Hur I, Park SY, Kim YK, Suh MR, Kim VN (2006) The role of PACT in the RNA silencing pathway. EMBO J 25(3):522–532. doi:10.1038/sj.emboj.7600942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerner MR, Boyle JA, Mount SM, Wolin SL, Steitz JA (1980) Are snRNPs involved in splicing? Nature 283(5743):220–224

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20. doi:10.1016/j.cell.2004.12.035

    Article  CAS  PubMed  Google Scholar 

  • Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773. doi:10.1038/nature03315

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305(5689):1437–1441. doi:10.1126/science.1102513

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Teng ZQ, Santistevan NJ, Szulwach KE, Guo W, Jin P, Zhao X (2010) Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell 6(5):433–444. doi:10.1016/j.stem.2010.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louafi F, Martinez-Nunez RT, Sanchez-Elsner T (2010) MicroRNA-155 targets SMAD2 and modulates the response of macrophages to transforming growth factor-{beta}. J Biol Chem 285(53):41328–41336. doi:10.1074/jbc.M110.146852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303(5654):95–98. doi:10.1126/science.1090599

    Article  CAS  PubMed  Google Scholar 

  • MacRae IJ, Ma E, Zhou M, Robinson CV, Doudna JA (2008) In vitro reconstitution of the human RISC-loading complex. Proc Natl Acad Sci U S A 105(2):512–517. doi:10.1073/pnas.0710869105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magill ST, Cambronne XA, Luikart BW, Lioy DT, Leighton BH, Westbrook GL, Mandel G, Goodman RH (2010) microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci U S A 107(47):20382–20387. doi:10.1073/pnas.1015691107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maragkakis M, Alexiou P, Papadopoulos GL, Reczko M, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K, Simossis VA, Sethupathy P, Vergoulis T, Koziris N, Sellis T, Tsanakas P, Hatzigeorgiou AG (2009a) Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinformatics 10:295. doi:10.1186/1471-2105-10-295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K, Vergoulis T, Koziris N, Sellis T, Tsanakas P, Hatzigeorgiou AG (2009b) DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res 37 (Web Server issue):W273–W276. doi:10.1093/nar/gkp292

  • Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, Shago M, Moessner R, Pinto D, Ren Y, Thiruvahindrapduram B, Fiebig A, Schreiber S, Friedman J, Ketelaars CE, Vos YJ, Ficicioglu C, Kirkpatrick S, Nicolson R, Sloman L, Summers A, Gibbons CA, Teebi A, Chitayat D, Weksberg R, Thompson A, Vardy C, Crosbie V, Luscombe S, Baatjes R, Zwaigenbaum L, Roberts W, Fernandez B, Szatmari P, Scherer SW (2008) Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 82(2):477–488. doi:10.1016/j.ajhg.2007.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123(4):607–620. doi:10.1016/j.cell.2005.08.044

    Article  CAS  PubMed  Google Scholar 

  • McNeill E, Van Vactor D (2012) MicroRNAs shape the neuronal landscape. Neuron 75(3):363–379. doi:10.1016/j.neuron.2012.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellios N, Huang HS, Baker SP, Galdzicka M, Ginns E, Akbarian S (2009) Molecular determinants of dysregulated GABAergic gene expression in the prefrontal cortex of subjects with schizophrenia. Biol Psychiatry 65(12):1006–1014. doi:10.1016/j.biopsych.2008.11.019

    Article  CAS  PubMed  Google Scholar 

  • Miller DT, Shen Y, Weiss LA, Korn J, Anselm I, Bridgemohan C, Cox GF, Dickinson H, Gentile J, Harris DJ, Hegde V, Hundley R, Khwaja O, Kothare S, Luedke C, Nasir R, Poduri A, Prasad K, Raffalli P, Reinhard A, Smith SE, Sobeih MM, Soul JS, Stoler J, Takeoka M, Tan WH, Thakuria J, Wolff R, Yusupov R, Gusella JF, Daly MJ, Wu BL (2009) Microdeletion/duplication at 15q13.2q13.3 among individuals with features of autism and other neuropsychiatric disorders. J Med Genet 46(4):242–248. doi:10.1136/jmg.2008.059907

  • Minones-Moyano E, Porta S, Escaramis G, Rabionet R, Iraola S, Kagerbauer B, Espinosa-Parrilla Y, Ferrer I, Estivill X, Marti E (2011) MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 20(15):3067–3078. doi:10.1093/hmg/ddr210

    Article  CAS  PubMed  Google Scholar 

  • Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, Constantine-Paton M, Horvitz HR (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5(9):R68. doi:10.1186/gb-2004-5-9-r68

    Article  PubMed  PubMed Central  Google Scholar 

  • Morlando M, Dini Modigliani S, Torrelli G, Rosa A, Di Carlo V, Caffarelli E, Bozzoni I (2012) FUS stimulates microRNA biogenesis by facilitating co-transcriptional Drosha recruitment. EMBO J 31(24):4502–4510. doi:10.1038/emboj.2012.319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muddashetty RS, Nalavadi VC, Gross C, Yao X, Xing L, Laur O, Warren ST, Bassell GJ (2011) Reversible inhibition of PSD-95 mRNA translation by miR-125a, FMRP phosphorylation, and mGluR signaling. Mol Cell 42(5):673–688. doi:10.1016/j.molcel.2011.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukerjee R, Chang JR, Del Valle L, Bagashev A, Gayed MM, Lyde RB, Hawkins BJ, Brailoiu E, Cohen E, Power C, Azizi SA, Gelman BB, Sawaya BE (2011) Deregulation of microRNAs by HIV-1 Vpr protein leads to the development of neurocognitive disorders. J Biol Chem 286(40):34976–34985. doi:10.1074/jbc.M111.241547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murchison EP, Partridge JF, Tam OH, Cheloufi S, Hannon GJ (2005) Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci U S A 102(34):12135–12140. doi:10.1073/pnas.0505479102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson PT, Wang WX (2010) MiR-107 is reduced in Alzheimer’s disease brain neocortex: validation study. J Alzheimers Dis 21(1):75–79. doi:10.3233/JAD-2010-091603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noorbakhsh F, Ramachandran R, Barsby N, Ellestad KK, LeBlanc A, Dickie P, Baker G, Hollenberg MD, Cohen EA, Power C (2010) MicroRNA profiling reveals new aspects of HIV neurodegeneration: caspase-6 regulates astrocyte survival. FASEB J 24(6):1799–1812. doi:10.1096/fj.09-147819

    Article  CAS  PubMed  Google Scholar 

  • Pacifici M, Delbue S, Ferrante P, Jeansonne D, Kadri F, Nelson S, Velasco-Gonzalez C, Zabaleta J, Peruzzi F (2013) Cerebrospinal fluid miRNA profile in HIV-encephalitis. J Cell Physiol 228(5):1070–1075. doi:10.1002/jcp.24254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL (2008) The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J Neurosci 28(53):14341–14346. doi:10.1523/JNEUROSCI.2390-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408(6808):86–89. doi:10.1038/35040556

    Article  CAS  PubMed  Google Scholar 

  • Perkins DO, Jeffries CD, Jarskog LF, Thomson JM, Woods K, Newman MA, Parker JS, Jin J, Hammond SM (2007) microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol 8(2):R27. doi:10.1186/gb-2007-8-2-r27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petersen CP, Bordeleau ME, Pelletier J, Sharp PA (2006) Short RNAs repress translation after initiation in mammalian cells. Mol Cell 21(4):533–542. doi:10.1016/j.molcel.2006.01.031

    Article  CAS  PubMed  Google Scholar 

  • Rademakers R, Eriksen JL, Baker M, Robinson T, Ahmed Z, Lincoln SJ, Finch N, Rutherford NJ, Crook RJ, Josephs KA, Boeve BF, Knopman DS, Petersen RC, Parisi JE, Caselli RJ, Wszolek ZK, Uitti RJ, Feldman H, Hutton ML, Mackenzie IR, Graff-Radford NR, Dickson DW (2008) Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. Hum Mol Genet 17(23):3631–3642. doi:10.1093/hmg/ddn257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai D, Kim SW, McKeller MR, Dahia PL, Aguiar RC (2010) Targeting of SMAD5 links microRNA-155 to the TGF-beta pathway and lymphomagenesis. Proc Natl Acad Sci U S A 107(7):3111–3116. doi:10.1073/pnas.0910667107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajasethupathy P, Fiumara F, Sheridan R, Betel D, Puthanveettil SV, Russo JJ, Sander C, Tuschl T, Kandel E (2009) Characterization of small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron 63(6):803–817. doi:10.1016/j.neuron.2009.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rand TA, Petersen S, Du F, Wang X (2005) Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123(4):621–629. doi:10.1016/j.cell.2005.10.020

    Article  CAS  PubMed  Google Scholar 

  • Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF (2006) Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci U S A 103(23):8721–8726. doi:10.1073/pnas.0602831103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reczko M, Maragkakis M, Alexiou P, Grosse I, Hatzigeorgiou AG (2012) Functional microRNA targets in protein coding sequences. Bioinformatics 28(6):771–776. doi:10.1093/bioinformatics/bts043

    Article  CAS  PubMed  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906. doi:10.1038/35002607

    Article  CAS  PubMed  Google Scholar 

  • Rogers J, Wall R (1980) A mechanism for RNA splicing. Proc Natl Acad Sci U S A 77(4):1877–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rom S, Rom I, Passiatore G, Pacifici M, Radhakrishnan S, Del Valle L, Pina-Oviedo S, Khalili K, Eletto D, Peruzzi F (2010) CCL8/MCP-2 is a target for mir-146a in HIV-1-infected human microglial cells. FASEB J 24(7):2292–2300. doi:10.1096/fj.09-143503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruegger S, Grosshans H (2012) MicroRNA turnover: when, how, and why. Trends Biochem Sci 37(10):436–446. doi:10.1016/j.tibs.2012.07.002

    Article  CAS  PubMed  Google Scholar 

  • Saus E, Soria V, Escaramis G, Vivarelli F, Crespo JM, Kagerbauer B, Menchon JM, Urretavizcaya M, Gratacos M, Estivill X (2010) Genetic variants and abnormal processing of pre-miR-182, a circadian clock modulator, in major depression patients with late insomnia. Hum Mol Genet 19(20):4017–4025. doi:10.1093/hmg/ddq316

    Article  CAS  PubMed  Google Scholar 

  • Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium (2011) Genome-wide association study identifies five new schizophrenia loci. Nat Genet 43(10):969–976. doi:10.1038/ng.940

    Article  CAS  Google Scholar 

  • Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439(7074):283–289. doi:10.1038/nature04367

    Article  CAS  PubMed  Google Scholar 

  • Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115(2):199–208

    Article  CAS  PubMed  Google Scholar 

  • Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5(3):R13. doi:10.1186/gb-2004-5-3-r13

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Zhao X, Hsieh J, Wichterle H, Impey S, Banerjee S, Neveu P, Kosik KS (2010) MicroRNA regulation of neural stem cells and neurogenesis. J Neurosci 30(45):14931–14936. doi:10.1523/JNEUROSCI.4280-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, Vandenberg SR, Ginzinger DG, James CD, Costello JF, Bergers G, Weiss WA, Alvarez-Buylla A, Hodgson JG (2008) miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6:14. doi:10.1186/1741-7015-6-14

  • Stark BC, Kole R, Bowman EJ, Altman S (1978) Ribonuclease P: an enzyme with an essential RNA component. Proc Natl Acad Sci U S A 75(8):3717–3721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark KL, Xu B, Bagchi A, Lai W-S, Liu H, Hsu R, Wan X, Pavlidis P, Mills AA, Karayiorgou M, Gogos JA (2008) Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet 40(6):751–760. doi:10.1038/ng.138. http://www.nature.com/ng/journal/v40/n6/suppinfo/ng.138_S1.html

  • Szulwach KE, Li X, Smrt RD, Li Y, Luo Y, Lin L, Santistevan NJ, Li W, Zhao X, Jin P (2010) Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J Cell Biol 189(1):127–141. doi:10.1083/jcb.200908151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao J, Wu H, Lin Q, Wei W, Lu XH, Cantle JP, Ao Y, Olsen RW, Yang XW, Mody I, Sofroniew MV, Sun YE (2011) Deletion of astroglial Dicer causes non-cell-autonomous neuronal dysfunction and degeneration. J Neurosci 31(22):8306–8319. doi:10.1523/JNEUROSCI.0567-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatro ET, Scott ER, Nguyen TB, Salaria S, Banerjee S, Moore DJ, Masliah E, Achim CL, Everall IP (2010) Evidence for alteration of gene regulatory networks through microRNAs of the HIV-infected brain: novel analysis of retrospective cases. PLoS One 5(4):e10337. doi:10.1371/journal.pone.0010337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Temin HM, Mizutani S (1970) RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226(5252):1211–1213

    Article  CAS  PubMed  Google Scholar 

  • Tomari Y, Matranga C, Haley B, Martinez N, Zamore PD (2004) A protein sensor for siRNA asymmetry. Science 306(5700):1377–1380. doi:10.1126/science.1102755

    Article  CAS  PubMed  Google Scholar 

  • Vasudevan S, Steitz JA (2007) AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell 128(6):1105–1118. doi:10.1016/j.cell.2007.01.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visvanathan J, Lee S, Lee B, Lee JW, Lee SK (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21(7):744–749. doi:10.1101/gad.1519107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, van der Walt JM, Mayhew G, Li YJ, Zuchner S, Scott WK, Martin ER, Vance JM (2008) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 82(2):283–289. doi:10.1016/j.ajhg.2007.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Hou J, Lin L, Wang C, Liu X, Li D, Ma F, Wang Z, Cao X (2010) Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol 185(10):6226–6233. doi:10.4049/jimmunol.1000491

    Article  CAS  PubMed  Google Scholar 

  • Wang WX, Huang Q, Hu Y, Stromberg AJ, Nelson PT (2011) Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter. Acta Neuropathol 121(2):193–205. doi:10.1007/s00401-010-0756-0

    Article  PubMed  Google Scholar 

  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5):855–862

    Article  CAS  PubMed  Google Scholar 

  • Williams AH, Valdez G, Moresi V, Qi X, McAnally J, Elliott JL, Bassel-Duby R, Sanes JR, Olson EN (2009) MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 326(5959):1549–1554. doi:10.1126/science.1181046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Fan J, Belasco JG (2006) MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A 103(11):4034–4039. doi:10.1073/pnas.0510928103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Ye C, Ramirez D, Manjunath N (2009) Alternative processing of primary microRNA transcripts by Drosha generates 5′ end variation of mature microRNA. PLoS One 4(10):e7566. doi:10.1371/journal.pone.0007566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu B, Roos JL, Levy S, van Rensburg EJ, Gogos JA, Karayiorgou M (2008a) Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet 40(7):880–885. doi:10.1038/ng.162

    Article  CAS  PubMed  Google Scholar 

  • Xu XL, Li Y, Wang F, Gao FB (2008b) The steady-state level of the nervous-system-specific microRNA-124a is regulated by dFMR1 in Drosophila. J Neurosci 28(46):11883–11889. doi:10.1523/JNEUROSCI.4114-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Liu H, Li F, Sun N, Ren Y, Liu Z, Cao X, Wang Y, Liu P, Zhang K (2010) A polymorphism in the microRNA-30e precursor associated with major depressive disorder risk and P300 waveform. J Affect Disord 127(1–3):332–336. doi:10.1016/j.jad.2010.05.019

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Chendrimada TP, Wang Q, Higuchi M, Seeburg PH, Shiekhattar R, Nishikura K (2006) Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13(1):13–21. doi:10.1038/nsmb1041

    Article  CAS  PubMed  Google Scholar 

  • Yelamanchili SV, Chaudhuri AD, Chen LN, Xiong H, Fox HS (2010) MicroRNA-21 dysregulates the expression of MEF2C in neurons in monkey and human SIV/HIV neurological disease. Cell Death and Dis 1:e77. http://www.nature.com/cddis/journal/v1/n9/suppinfo/cddis201056s1.html

  • Yu JY, Chung KH, Deo M, Thompson RC, Turner DL (2008) MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp Cell Res 314(14):2618–2633. doi:10.1016/j.yexcr.2008.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Y, Cullen BR (2005) Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. J Biol Chem 280(30):27595–27603. doi:10.1074/jbc.M504714200

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Sun G, Li S, Shi Y (2009) A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 16(4):365–371. doi:10.1038/nsmb.1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, He X, Han X, Yu Y, Ye F, Chen Y, Hoang T, Xu X, Mi Q-S, Xin M, Wang F, Appel B, Lu QR (2010) MicroRNA-mediated control of oligodendrocyte differentiation. Neuron 65(5):612–626. doi:10.1016/j.neuron.2010.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sowmya V. Yelamanchili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chaudhuri, A.D., Yelamanchili, S.V. (2017). MicroRNA Implications in Neurodegenerative Disorders. In: Ikezu, T., Gendelman, H. (eds) Neuroimmune Pharmacology. Springer, Cham. https://doi.org/10.1007/978-3-319-44022-4_21

Download citation

Publish with us

Policies and ethics