Skip to main content

Overview of Mononuclear Phagocytes

  • Chapter
  • First Online:
Neuroimmune Pharmacology

Abstract

The mononuclear phagocyte (MP; monocyte, macrophages, dendritic cells and microglia) is part of innate immunity that functions by nonspecific surveillance and clearing response through phagocytic and intracellular killing activities. MPs included are present within the reticular connective tissues and accumulate in lymph nodes, spleen, liver and as histiocytes, tissue macrophages, Kupffer cells and microglia. It is estimated that there are at any time six billion MP/L of blood. MPs are divided into non-professional and professional categories based on function. Phagocytosis is a key function that phagocytes possess to survey their environment, ingest and process material. This chapter expands on the mechanisms, benefits, and uses of the mononuclear phagocyte.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamczewski M, Numerof RP, Koretzky GA, Kinet JP (1995) Regulation by CD45 of the tyrosine phosphorylation of high affinity IgE receptor beta- and gamma-chains. J Immunol 154(7):3047–3055

    CAS  PubMed  Google Scholar 

  • Adams DO, Kao KJ, Farb R, Pizzo SV (1980) Effector mechanisms of cytolytically activated macrophages. II. Secretion of a cytolytic factor by activated macrophages and its relationship to secreted neutral proteases. J Immunol 124(1):293–300

    CAS  PubMed  Google Scholar 

  • Allen LA, Aderem A (1996) Molecular definition of distinct cytoskeletal structures involved in complement- and Fc receptor-mediated phagocytosis in macrophages. J Exp Med 184(2):627–637

    Article  CAS  PubMed  Google Scholar 

  • Amills M, Ramiya V, Norimine J, Lewin HA (1998) The major histocompatibility complex of ruminants. Rev Sci Tech 17(1):108–120

    CAS  PubMed  Google Scholar 

  • Aratani Y, Koyama H, Nyui S, Suzuki K, Kura F, Maeda N (1999) Severe impairment in early host defense against Candida albicans in mice deficient in myeloperoxidase. Infect Immun 67(4):1828–1836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Badwey JA, Karnovsky ML (1980) Active oxygen species and the functions of phagocytic leukocytes. Annu Rev Biochem 49:695–726

    Article  CAS  PubMed  Google Scholar 

  • Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329(6139):506–512

    Article  CAS  PubMed  Google Scholar 

  • Bogdan C, Röllinghoff M, Diefenbach A (2000) Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol 12(1):64–76

    Article  CAS  PubMed  Google Scholar 

  • Boring L et al (1997) Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J Clin Invest 100(10):2552–2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boskovic J et al (2006) Structural model for the mannose receptor family uncovered by electron microscopy of Endo180 and the mannose receptor. J Biol Chem 281(13):8780–8787

    Article  CAS  PubMed  Google Scholar 

  • Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364(6432):33–39

    Article  CAS  PubMed  Google Scholar 

  • Brück W, Friede RL (1990) Anti-macrophage CR3 antibody blocks myelin phagocytosis by macrophages in vitro. Acta Neuropathol 80(4):415–418

    Article  PubMed  Google Scholar 

  • Chakraborty P, Ghosh D, Basu MK (2001) Modulation of macrophage mannose receptor affects the uptake of virulent and avirulent Leishmania donovani promastigotes. J Parasitol 87(5):1023–1027

    Article  CAS  PubMed  Google Scholar 

  • Choi HS et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25(10):1165–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper GM (2000) Lysosomes. Sinauer Associates, Sunderland

    Google Scholar 

  • Dayer JM, de Rochemonteix B, Burrus B, Demczuk S, Dinarello CA (1986) Human recombinant interleukin 1 stimulates collagenase and prostaglandin E2 production by human synovial cells. J Clin Invest 77(2):645–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng T, Feng X, Liu P, Yan K, Chen Y, Han D (2013) Toll-like receptor 3 activation differentially regulates phagocytosis of bacteria and apoptotic neutrophils by mouse peritoneal macrophages. Immunol Cell Biol 91(1):52–59

    Article  CAS  PubMed  Google Scholar 

  • Devitt A, Moffatt OD, Raykundalia C, Capra JD, Simmons DL, Gregory CD (1998) Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature 392(6675):505–509

    Article  CAS  PubMed  Google Scholar 

  • Diebold J (1986) Mononuclear phagocyte system. Morphology and function of the principal constituting cells. Ann Pathol 6(1):3–12

    CAS  PubMed  Google Scholar 

  • Doyle AG, Herbein G, Montaner LJ, Minty AJ, Caput D, Ferrara P, Gordon S (1994) Interleukin-13 alters the activation state of murine macrophages in vitro: comparison with interleukin-4 and interferon-gamma. Eur J Immunol 24(6):1441–1445

    Article  CAS  PubMed  Google Scholar 

  • Doyle SE, O’Connell RM, Miranda GA, Vaidya SA, Chow EK, Liu PT, Suzuki S, Suzuki N, Modlin RL, Yeh W-C, Lane TF, Cheng G (2004) Toll-like receptors induce a phagocytic gene program through p38. J Exp Med 199(1):81–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drickamer K, Fadden AJ (2002) Genomic analysis of C-type lectins. Biochem Soc Symp (69): 59–72

    Google Scholar 

  • Dukkipati VSR, Blair HT, Garrick DJ, Murray A (2006) ‘Ovar-Mhc’—ovine major histocompatibility complex: structure and gene polymorphisms. Genet Mol Res 5(4):581–608

    CAS  PubMed  Google Scholar 

  • Erpel T, Courtneidge SA (1995) Src family protein tyrosine kinases and cellular signal transduction pathways. Curr Opin Cell Biol 7(2):176–182

    Article  CAS  PubMed  Google Scholar 

  • Ezekowitz RA, Sastry K, Bailly P, Warner A (1990) Molecular characterization of the humanmacrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells. J Exp Med 172(6):1785–1794

    Google Scholar 

  • Fang FC (2004) Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2(10):820–832

    Article  CAS  PubMed  Google Scholar 

  • Gery I, Gershon RK, Waksman BH (1972) Potentiation of the T-lymphocyte response to mitogens. I. The responding cell. J Exp Med 136(1):128–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gieseler RK, Marquitan G, Hahn MJ, Perdon LA, Driessen WHP, Sullivan SM, Scolaro MJ (2004) DC-SIGN-specific liposomal targeting and selective intracellular compound delivery to human myeloid dendritic cells: implications for HIV disease. Scand J Immunol 59(5):415–424

    Article  CAS  PubMed  Google Scholar 

  • Grage-Griebenow E, Flad H-D, Ernst M (2001) Heterogeneity of human peripheral blood monocyte subsets. J Leukoc Biol 69(1):11–20

    CAS  PubMed  Google Scholar 

  • Greenberg S, Chang P, Silverstein SC (1993) Tyrosine phosphorylation is required for Fc receptor-mediated phagocytosis in mouse macrophages. J Exp Med 177:529–534

    Article  CAS  PubMed  Google Scholar 

  • Guo D, Zhang G, Wysocki TA, Wysocki BJ, Gelbard HA, Liu X-M, McMillan JM, Gendelman HE (2014) Endosomal trafficking of nanoformulated antiretroviral therapy facilitates drug particle carriage and HIV clearance. J Virol 88(17):9504–9513

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris N, Super M, Rits M, Chang G, Ezekowitz RA (1992) Characterization of the murine macrophage mannose receptor: demonstration that the downregulation of receptor expression mediated by interferon-gamma occurs at the level of transcription. Blood 80(9):2363–2373

    CAS  PubMed  Google Scholar 

  • Heifets L (1982) Centennial of Metchnikoff’s discovery. J Reticuloendothel Soc 31(5):381–391

    CAS  PubMed  Google Scholar 

  • Heinrich V (2015) Controlled one-on-one encounters between immune cells and microbes reveal mechanisms of phagocytosis. Biophys J 109(3):469–476. doi:10.1016/j.bpj.2015.06.042

  • Hickey WF, Vass K, Lassmann H (1992) Bone marrow-derived elements in the central nervous system: an immunohistochemical and ultrastructural survey of rat chimeras. J Neuropathol Exp Neurol 51(3):246–256

    Article  CAS  PubMed  Google Scholar 

  • Hori K, Ehrke MJ, Mace K, Maccubbin D, Doyle MJ, Otsuka Y, Mihich E (1987) Effect of recombinant human tumor necrosis factor on the induction of murine macrophage tumoricidal activity. Cancer Res 47(11):2793–2798

    CAS  PubMed  Google Scholar 

  • Huitinga I, van Rooijen N, de Groot CJ, Uitdehaag BM, Dijkstra CD (1990) Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. J Exp Med 172(4):1025–1033

    Article  CAS  PubMed  Google Scholar 

  • Imhof BA, Aurrand-Lions M (2004) Adhesion mechanisms regulating the migration of monocytes. Nat Rev Immunol 4(6):432–444

    Article  CAS  PubMed  Google Scholar 

  • Isakov N (1997) Immunoreceptor tyrosine-based activation motif (ITAM), a unique module linking antigen and Fc receptors to their signal cascades. J Leukoc Biol 61:6–16

    CAS  PubMed  Google Scholar 

  • Janeway CA, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  CAS  PubMed  Google Scholar 

  • Kerrigan AM, Brown GD (2009) C-type lectins and phagocytosis. Immunobiology 214(7):562–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klebanoff SJ (1999) Myeloperoxidase. Proc Assoc Am Physicians 111(5):383–389

    CAS  PubMed  Google Scholar 

  • Korade-Mirnics Z, Corey SJ (2000) Src kinase-mediated signaling in leukocytes. J Leukoc Biol 68(5):603–613

    CAS  PubMed  Google Scholar 

  • Kruskal BA, Sastry K, Warner AB, Mathieu CE, Ezekowitz RA (1992) Phagocytic chimeric receptors require both transmembrane and cytoplasmic domains from the mannose receptor. J Exp Med 176(6):1673–1680

    Article  CAS  PubMed  Google Scholar 

  • Kurihara T, Warr G, Loy J, Bravo R (1997) Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J Exp Med 186(10):1757–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurth I, Willimann K, Schaerli P, Hunziker T, Clark-Lewis I, Moser B (2001) Monocyte selectivity and tissue localization suggests a role for breast and kidney-expressed chemokine (BRAK) in macrophage development. J Exp Med 194(6):855–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuziel WA, Morgan SJ, Dawson TC, Griffin S, Smithies O, Ley K, Maeda N (1997) Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2. Proc Natl Acad Sci U S A 94(22):12053–12058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Largent BL, Walton KM, Hoppe CA, Lee YC, Schnaar RL (1984) Carbohydrate-specific adhesion of alveolar macrophages to mannose-derivatized surfaces. J Biol Chem 259(3):1764–1769

    CAS  PubMed  Google Scholar 

  • Linington C, Morgan BP, Scolding NJ, Wilkins P, Piddlesden S, Compston DA (1989) The role of complement in the pathogenesis of experimental allergic encephalomyelitis. Brain 112(Pt 4):895–911

    Article  PubMed  Google Scholar 

  • Londrigan SL, Tate MD, Brooks AG, Reading PC (2012) Cell-surface receptors on macrophages and dendritic cells for attachment and entry of influenza virus. J Leukoc Biol 92(1):97–106

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Rutledge BJ, Gu L, Fiorillo J, Lukacs NW, Kunkel SL, North R, Gerard C, Rollins BJ (1998) Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J Exp Med 187(4):601–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macura N, Zhang T, Casadevall A (2007) Dependence of macrophage phagocytic efficacy on antibody concentration. Infect Immun 75(4):1904–1915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mainardi CL, Seyer JM, Kang AH (1980) Type-specific collagenolysis: a type V collagen-degrading enzyme from macrophages. Biochem Biophys Res Commun 97(3):1108–1115

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Pomares L (2012) The mannose receptor. J Leukoc Biol 92(6):1177–1186

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Skinner AL, Araínga MA, Puligujja P, Palandri DL, Baldridge HM, Edagwa BJ, McMillan JM, Mosley RL, Gendelman HE (2015) Cellular responses and tissue depots for nanoformulated antiretroviral therapy. PLoS One 10(12):e0145966

    Article  PubMed  PubMed Central  Google Scholar 

  • Mellman IS, Plutner H, Steinman RM, Unkeless JC, Cohn ZA (1983) Internalization and degradation of macrophage Fc receptors during receptor-mediated phagocytosis. J Cell Biol 96(3):887–895

    Article  CAS  PubMed  Google Scholar 

  • Nathan C, Shiloh MU (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci U S A 97(16):8841–8848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobel Lectures (1967) Physiology or medicine 1901-1921. Elsevier, Amsterdam

    Google Scholar 

  • Ottaviani D, Lever E, Mitter R, Jones T, Forshew T, Christova R, Tomazou EM, Rakyan VK, Krawetz SA, Platts AE, Segarane B, Beck S, Sheer D (2008) Reconfiguration of genomic anchors upon transcriptional activation of the human major histocompatibility complex. Genome Res 18(11):1778–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petty HR, Hafeman DG, McConnell HM (1980) Specific antibody-dependent phagocytosis of lipid vesicles by RAW264 macrophages results in the loss of cell surface Fc but not C3b receptor activity. J Immunol 125(6):2391–2396

    CAS  PubMed  Google Scholar 

  • Pollock JD, Williams DA, Gifford MA, Li LL, Du X, Fisherman J, Orkin SH, Doerschuk CM, Dinauer MC (1995) Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat Genet 9(2):202–209

    Article  CAS  PubMed  Google Scholar 

  • Randolph GJ, Furie MB (1995) A soluble gradient of endogenous monocyte chemoattractant protein-1 promotes the transendothelial migration of monocytes in vitro. J Immunol 155(7):3610–3618

    CAS  PubMed  Google Scholar 

  • Redlich S, Ribes S, Schütze S, Eiffert H, Nau R (2013) Toll-like receptor stimulation increases phagocytosis of Cryptococcus neoformans by microglial cells. J Neuroinflammation 10(1):71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Root RK, Metcalf J, Oshino N, Chance B (1975) H2O2 release from human granulocytes during phagocytosis. I. Documentation, quantitation, and some regulating factors. J Clin Invest 55(5):945–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenwasser LJ, Dinarello CA (1981) Ability of human leukocytic pyrogen to enhance phytohemagglutinin induced murine thymocyte proliferation. Cell Immunol 63(1):134–142

    Article  CAS  PubMed  Google Scholar 

  • Rutkowski R, Pancewicz SA, Rutkowski K, Rutkowska J (2007) Reactive oxygen and nitrogen species in inflammatory process. Pol Merkur Lekarski 23(134):131–136

    CAS  PubMed  Google Scholar 

  • Schlesinger LS (1993) Macrophage phagocytosis of virulent but not attenuated strains of mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J Immunol 150(7):2920–2930

    CAS  PubMed  Google Scholar 

  • Schulert GS, Allen LA (2006) Differential infection of mononuclear phagocytes by Francisella tularensis: role of the macrophage mannose receptor. J Leukoc Biol 80(3):563–571

    Google Scholar 

  • Sharon N, Lis H (1995) Lectins--proteins with a sweet tooth: functions in cell recognition. Essays Biochem 30:59–75

    Google Scholar 

  • Sozzani S, Luini W, Molino M, Jílek P, Bottazzi B, Cerletti C, Matsushima K, Mantovani A (1991) The signal transduction pathway involved in the migration induced by a monocyte chemotactic cytokine. J Immunol 147(7):2215–2221

    CAS  PubMed  Google Scholar 

  • Stein M, Keshav S, Harris N, Gordon S (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176(1):287–292

    Article  CAS  PubMed  Google Scholar 

  • Strzelecka A, Kwiatkowska K, Sobota A (1997) Tyrosine phosphorylation and Fcγ receptor-mediated phagocytosis. FEBS Lett 400(1):11–14

    Article  CAS  PubMed  Google Scholar 

  • Sung SS, Nelson RS, Silverstein SC (1983a) The role of the mannose/N-acetylglucosamine receptor in the pinocytosis of horseradish peroxidase by mouse peritoneal macrophages. J Cell Physiol 116(1):21–25

    Google Scholar 

  • Sung SS, Nelson RS, Silverstein SC (1983b) Yeast mannans inhibit binding and phagocytosis of zymosan by mouse peritoneal macrophages. J Cell Biol 96(1):160–166

    Google Scholar 

  • Takemura R, Werb Z (1984) Regulation of elastase and plasminogen activator secretion in resident and inflammatory macrophages by receptors for the Fc domain of immunoglobulin G. J Exp Med 159(1):152–166

    Article  CAS  PubMed  Google Scholar 

  • Taylor ME, Bezouska K, Drickamer K (1992) Contribution to ligand binding by multiple carbohydrate-recognition domains in the macrophage mannose receptor. J Biol Chem 267(3):1719–1726

    Google Scholar 

  • Terkawi MA, Nishimura M, Furuoka H, Nishikawa Y (2016) Depletion of phagocytic cells during nonlethal Plasmodium yoelii infection causes severe malaria characterized by acute renal failure in mice. Infect Immun 84(3):845–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unkeless JC, Gordon S, Reich E (1974) Secretion of plasminogen activator by stimulated macrophages. J Exp Med 139(4):834–850

    Google Scholar 

  • Van Furth R, Cohn ZA (1968) The origin and kinetics of mononuclear phagocytes. J Exp Med 128(3):415–435

    Article  PubMed  PubMed Central  Google Scholar 

  • Virolainen M (1968) Hematopoietic origin of macrophages as studied by chromosome markers in mice. J Exp Med 127(5):943–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogl T, Ludwig S, Goebeler M, Strey A, Thorey IS, Reichelt R, Foell D, Gerke V, Manitz MP, Nacken W, Werner S, Sorg C, Roth J (2004) MRP8 and MRP14 control microtubule reorganization during transendothelial migration of phagocytes. Blood 104(13):4260–4268

    Article  CAS  PubMed  Google Scholar 

  • Volkman A, Gowans JL (1965) The origin of macrophages from bone marrow in the rat. Br J Exp Pathol 46:62–70

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JM, Griffin JD, Rambaldi A, Chen ZG, Mantovani A (1988) Induction of monocyte migration by recombinant macrophage colony-stimulating factor. J Immunol 141(2):575–579

    CAS  PubMed  Google Scholar 

  • Werb Z, Gordon S (1975a) Elastase secretion by stimulated macrophages. Characterization and regulation. J Exp Med 142(2):361–377

    Article  CAS  PubMed  Google Scholar 

  • Werb Z, Gordon S (1975b) Secretion of a specific collagenase by stimulated macrophages. J Exp Med 142(2):346–360

    Article  CAS  PubMed  Google Scholar 

  • Whitelaw DM, Bell MF, Batho HF (1968) Monocyte kinetics: observations after pulse labeling. J Cell Physiol 72(1):65–71

    Article  CAS  PubMed  Google Scholar 

  • Yoshida R, Murray HW, Nathan CF (1988) Agonist and antagonist effects of interferon alpha and beta on activation of human macrophages. Two classes of interferon gamma receptors and blockade of the high-affinity sites by interferon alpha or beta. J Exp Med 167(3):1171–1185

    Article  CAS  PubMed  Google Scholar 

  • Zelensky AN, Gready JE (2005) The C-type lectin-like domain superfamily. FEBS J 272(24):6179–6217

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard E. Gendelman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Banoub, M.G., Gendelman, H.E. (2017). Overview of Mononuclear Phagocytes. In: Ikezu, T., Gendelman, H. (eds) Neuroimmune Pharmacology. Springer, Cham. https://doi.org/10.1007/978-3-319-44022-4_11

Download citation

Publish with us

Policies and ethics