Skip to main content

Are Games a Viable Home Numeracy Practice?

  • Chapter
  • First Online:
Early Childhood Mathematics Skill Development in the Home Environment

Abstract

The promise that mathematics can be taught from a young age through fun, engaging games is an enticing proposition, so enticing that considerable effort has been expended to determine whether gaming is an effective teaching tool. This effort includes not just individual investigations but multiple meta-analyses with a combined evaluation of over 500 studies testing the effectiveness of educational games. Despite all of this interest and the resulting concerted research effort, there is no clear answer as to whether games are a viable tool for improving young children’s numeracy ability. This ambiguity is due to math game research not addressing two critical questions: what is a game and how does learning occur within the context of a game. Answering these questions is the first step in determining whether math games can be both fun and formative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abt, C. C. (1975). Serious games. New York, NY: Viking Compass.

    Google Scholar 

  • Alloway, T. (2007). Working memory, reading, and mathematical skills in children with developmental coordination disorder. Journal of Experimental Child Psychology, 96, 20–36.

    Article  PubMed  Google Scholar 

  • Annetta, L. A., Minogue, J., Holmes, S. Y., & Cheng, M.-T. (2009). Investigating the impact of video games on high school students’ engagement and learning about genetics. Computers & Education, 53(1), 74–85. doi:10.1016/j.compedu.2008.12.020.

    Article  Google Scholar 

  • Annetta, L. A., Murray, M. R., Laird, S. G., Bohr, S. C., & Park, J. C. (2006). Serious games: Incorporating video games in the classroom. Educause Quarterly, 3, 16–22.

    Google Scholar 

  • Bakker, M., Van Den Heuvel-Panhuizen, M., & Robitzsch, A. (2015). Effects of playing mathematics computer games on primary school students’ multiplicative reasoning ability. Contemporary Educational Psychology, 40(C), 55–71.

    Google Scholar 

  • Ballard, C. G., Corbett, A., Clack, H., & Owen, A. (2010). Can brain training games improve cognition in people over 60? Alzheimer’s & Dementia, 6(4), e55–e56. doi:10.1016/j.jalz.2010.08.171.

    Article  Google Scholar 

  • Barab, S., Thomas, M., Dodge, T., Carteaux, R., & Tuzun, H. (2005). Making learning fun: Quest Atlantis, a game without guns. Educational Technology Research and Development, 53(1), 86–107. doi:10.1007/BF02504859.

    Article  Google Scholar 

  • Bateson, G. (1987). Steps to an ecology of mind. NY: Ballantine.

    Google Scholar 

  • Bogost, I. (2007). Persuasive games: The expressive power of videogames. Cambridge, MA: MIT Press.

    Google Scholar 

  • Butterworth, B. (2011). 16 - Foundational numerical capacities and the origins of dyscalculia. Space, Time and Number in the Brain, 1(c), 249–265. doi:10.1016/B978-0-12-385948-8.00016-5.

    Article  Google Scholar 

  • Caillois, R. (1958). Les, jeux et les hommes (Man, play, and games). Librairie Gallimard, Paris.

    Google Scholar 

  • Chang, M., Evans, M., Kim, S., Deater-Deckard, K., & Norton, A. (2014). Educational video games and students’ game engagement (pp. 1–3). Presented at the 2014 International Conference on Information Science and Applications (ICISA), IEEE. doi:10.1109/ICISA.2014.6847390.

  • Chang, M., Evans, M. A., Kim, S., Norton, A., Deater-Deckard, K., & Samur, Y. (2015). The effects of an educational video game on mathematical engagement. Education and Information Technologies, 1–17.

    Google Scholar 

  • Chorianopoulos, K., Giannakos, M. N., & Chrisochoides, N. (2014). Design Principles for Serious Games in Mathematics (pp. 1–5). Presented at the the 18th Panhellenic Conference, New York, New York, USA: ACM Press.

    Google Scholar 

  • Csikszentmihalyi, M. (1990). Flow: The psychology of optimal performance. New York, NY: Cambridge University Press.

    Google Scholar 

  • Deater-Deckard, K., Chang, M., & Evans, M. E. (2013). Engagement states and learning from educational games. New Directions for Child and Adolescent Development, 2013(139), 21–30. doi:10.1002/cad.20028.

    Article  PubMed  Google Scholar 

  • Deater-Deckard, K., Mallah, E., Chang, S., Evans, M. A., & Norton, A. (2014). Student behavioral engagement during mathematics educational video game instruction with 11–14 year olds. International Journal of Child-Computer Interaction, 2(3), 101–108. doi:10.1016/j.ijcci.2014.08.001.

    Article  Google Scholar 

  • Dehaene, S. (1997). The number sense: How the mind creates mathematics. Oxford: Oxford University Press.

    Google Scholar 

  • Dempsey, J. V., Rasmussen, K., & Lucassen, B. (1996). Instructional gaming: Implications for instructional technology. Paper presented at the annual meeting of the Association for Educational Communications and Technology, Nashville, TN.

    Google Scholar 

  • Emes, C. E. (1997). Is Mr Pac Man eating our children? A review of the effects of video games on children. Canadian Journal of Psychiatry, 42, 409–414.

    PubMed  Google Scholar 

  • Evans, M. A., Norton, A., Chang, M., Deater-Deckard, K., & Balci, O. (2013). Youth and video games: Exploring effects on learning and engagement. Zeitschrift FĂĽr Psychologie, 221(2), 98–106. doi:10.1027/2151-2604/a000135.

    Article  Google Scholar 

  • Feigenson, L. (2008). Parallel non-verbal enumeration is constrained by a set-based limit. Cognition, 107, 1–18.

    Google Scholar 

  • Foreman, J. (2003). Next-generation educational technology versus the lecture. EDUCAUSE Review, 38(4), 12–22.

    Google Scholar 

  • Fredricks, J., Blumenfeld, P., & Paris, A. (2004). School engagement: Potential of the concept, state of the evidence. Review of Educational Research, 74, 59–109.

    Article  Google Scholar 

  • Gallagher, A. M., De Lisi, R., Holst, P. C., Lisi, A. V. M.-D., Morely, M., & Cahalan, C. (2000). Gender differences in advanced mathematical problem solving. Journal of Experimental Child Psychology, 75, 165–190.

    Article  PubMed  Google Scholar 

  • Gee, J. P. (2005). Demonstrating the important learning found in COTS games. Paper presented at the Serious Games Summit 2005, San Francisco, CA.

    Google Scholar 

  • Girard, C., Ecalle, J., & Magnan, A. (2012). Serious games as new educational tools: How effective are they? A meta-analysis of recent studies. Journal of Computer Assisted Learning, 29(3), 207–219. doi:10.1111/j.1365-2729.2012.00489.x.

    Article  Google Scholar 

  • Harris, J. (2001). The effects of computer games on young children: A review of the research. RDS Occasional Paper, N0. 72, Research, Development, and Statistics Directorate, Government, UK.

    Google Scholar 

  • Harris, A., Yuill, N., & Luckin, R. (2008). The influence of context-specific and dispositional achievement goals on children’s paired collaborative interaction. British Journal of Educational Psychology, 78, 355–374. doi:10.1348/000709907X267067.

    Article  PubMed  Google Scholar 

  • Huizinga, J. (1955). Homo Ludens A Study of the Play-Element in Culture. Beacon Press. Boston, USA.

    Google Scholar 

  • Ischebeck, A., Schocke, M., & Delazer, M. (2009). The processing and representation of fractions within the brain: An fMRI investigation. NeuroImage, 47, 403–412.

    Article  PubMed  Google Scholar 

  • Jordan, N. C., Kaplan, D., Nabors Oláh, L., & Locuniak, M. N. (2006). Number sense growth in kindergarten: A longitudinal investigation of children at risk for mathematics difficulties. Child Development, 77(1), 153–175.

    Article  PubMed  Google Scholar 

  • Juul, J. (2005). Half-real. Video games between real rules and fictional worlds. Cambridge MA: The MIT Press.

    Google Scholar 

  • Juul, J. (2009). Fear of failing? the many meanings of difficulty in video games. The Video Game Theory Reader, 2, 237–252.

    Google Scholar 

  • Juul, J. (2013). The art of failure: An essay on the pain of playing video games. Cambridge, MA: MIT Press.

    Google Scholar 

  • Ke, F. (2008). A case study of computer gaming for math: Engaged learning from gameplay? Computers & Education, 51(4), 1609–1620. doi:10.1016/j.compedu.2008.03.003.

    Article  Google Scholar 

  • Kebritchi, M., Hirumi, A., & Bai, H. (2010). The effects of modern mathematics computer games on mathematics achievement and class motivation. Computers & Education, 55(2), 427–443. doi:10.1016/j.compedu.2010.02.007.

    Article  Google Scholar 

  • Kirriemuir, J., & McFarlane, A. (2004). Literature review in games and learning: A report for Futurelab. Retrieved June 15, 2015, from http://www.futurelab.org.uk/research/reviews/08_01/html.

  • Koster, R. (2004). Theory of fun for game design. Scottsdale, AZ: Paraglyph Press.

    Google Scholar 

  • Kucirkova, N. (2014). iPads in early education: Separating assumptions and evidence. Frontiers in Psychology, 5, 715. doi:10.3389/fpsyg.2014.00715.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laski, E. V., & Siegler, R. S. (2013). Learning From Number Board Games: You Learn What You Encode. Developmental Psychology, 1–13.

    Google Scholar 

  • Lefevre, J.-A., Wells, E., & Sowinski, C. (2014). Individual differences in basic arithmetical processes in children and adults. In Oxford handbook of numerical cognition (pp. 1–17). Oxford: Oxford University Press. doi:10.1093/oxfordhb/9780199642342.013.005.

    Google Scholar 

  • Maertens, M., Vandewaetere, M., Cornillie, F., & Desmet, P. (2014). From pen-and-paper content to educational math game content for children: A transfer with added difficulty. International Journal of Child-Computer Interaction, 2(2), 85–92.

    Google Scholar 

  • Mayer, R. (2014). Computer game for learning: An evidence-based approach. London: The MIT Press.

    Google Scholar 

  • Mayo, M. (2009). Video games: A route to large-scale STEM education? Science, 323(5910), 79–82. doi:10.1126/science.1166900.

    Article  PubMed  Google Scholar 

  • McEwen, R., & DubĂ©, A. K. (2015a). Intuitive or idiomatic? An information studies and cognitive psychology study of child-tablet computer interaction. Journal of the Association for Information Science and Technology, 51, 1–10. doi:10.1002/asi.23470.

    Google Scholar 

  • McEwen, R., & DubĂ©, A. K. (2015b). Engaging or distracting: Children’s tablet computer use in education. Journal of Educational Technology and Society, 18, 9–23.

    Google Scholar 

  • Murray, J. H. (1997). Hamlet on the holodeck: The future of narrative in cyberspace. New York, NY: Simon and Schuster.

    Google Scholar 

  • Norton, A., & Deater-Deckard, K. (2014). Mathematics in mind, brain, and education: A neo-piagetian approach. International Journal of Science and Mathematics Education, 12(3), 647–667. doi:10.1007/s10763-014-9512-6.

    Article  Google Scholar 

  • Oblinger, D. G. (2006). Games and learning: Digital games have the potential to bring play back to the learning experience. Educause Quarterly, 3, 5–7.

    Google Scholar 

  • O’Hearn, K., Hoffman, J.E., & Landau, B. (2011). Small subitizing range in people with Williams syndrome. Visual Cognition, 19(3), 289–312.

    Google Scholar 

  • Onatsu-Arvilommi, T., & Nurmi, J. E. (2000). The role of task-avoidant and task-focused behaviors in the development of reading and mathematical skills during the first school year. A cross-lagged longitudinal study. Journal of Educational Psychology, 92(3), 478–491. doi:10.1037//0022-0663.92.3.478.

    Article  Google Scholar 

  • Pass, F., Renkle, A., & Sweller, J. (2004). Cognitive load theory: Instructional implications of the interaction between information structure and cognitive architecture. Instructional Science, 32, 1–8.

    Article  Google Scholar 

  • PEW Research Internet Project. (2014). Mobile technology fact sheet e Jan 2014. Retrieved May 21, 2014, from http://www.pewinternet.org/fact-sheets/mobile-technology-fact-sheet/.

  • Presser, A. L., Vahey, P., & Zanchi, C. (2013). Designing early childhood math games: A research-driven approach (pp. 376–379). New York, NY: ACM. doi:10.1145/2485760.2485802.

    Google Scholar 

  • Ramani, G. B., & Siegler, R. S. (2008). Promoting broad and stable improvements in low-income children’s numerical knowledge through playing number board games. Child Development, 79, 375–394.

    Article  PubMed  Google Scholar 

  • Ramani, G. B., Siegler, R. S., & Hitti, A. (2012). Taking it to the classroom: Number board games as a small group learning activity. Journal of Educational Psychology, 104(3), 661–672. doi:10.1037/a0028995.

    Article  Google Scholar 

  • Randel, J., Morris, B., Wetzel, C. D., & Whitehall, B. (1992). The effectiveness of games for educational purposes: A review of recent research. Simulation and Gaming, 23(3), 261–276.

    Article  Google Scholar 

  • Revkin, S., Piazza, M., Izard, V., Cohen, L., & Dehaene, S. (2008). Does subitizing reflect numerical estimation? Psychological Science, 19, 607.

    Article  PubMed  Google Scholar 

  • Rogers, S. (2010). Level up!: The guide to great video game design. New York, NY: John Wiley & Sons.

    Google Scholar 

  • Salen, K., & Zimmerman, E. (2003). Rules of play: Game design fundamentals. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Shin, N., Sutherland, L. M., Norris, C. A., & Soloway, E. (2012). Effects of game technology on elementary student learning in mathematics. British Journal of Educational Technology, 43(4), 540–560. doi:10.1111/j.1467-8535.2011.01197.x.

    Article  Google Scholar 

  • Shrager, J., & Siegler, R. S. (1998). SCADS: A model of children’s strategy choices and strategy discoveries. Psychological Science, 9(5), 405–410.

    Article  Google Scholar 

  • Shuler, C. (2012). iLearn II: An analysis of the education category of the itunes app store. New York, NY: The Joan Ganz Cooney Center at Sesame Workshop.

    Google Scholar 

  • Siegler, R. S., & Araya, R. (2005). A computational model of conscious and unconscious strategy discover. Advances in Child Development and Behavior, 33, 1–42.

    Article  PubMed  Google Scholar 

  • Siegler, R. S., & Lemair, P. (1997). Older and younger adults’ strategy choices in multiplication: Testing predictions of ASCM using the choice/no-choice method. Journal of Experimental Psychology. General, 126, 71.

    Article  PubMed  Google Scholar 

  • Siegler, R. S., & Ramani, G. B. (2009). Playing linear number board games—But not circular ones—Improves low-income preschoolers’ numerical understanding. Journal of Educational Psychology, 101(3), 545–560. doi:10.1037/a0014239.

    Article  Google Scholar 

  • Skwarchuk, S.-L., Sowinski, C., & Lefevre, J.-A. (2014). Formal and informal home learning activities in relation to children’s early numeracy and literacy skills: The development of a home numeracy model. Journal of Experimental Child Psychology, 121(C), 63–84. doi:10.1016/j.jecp.2013.11.006.

    Article  PubMed  Google Scholar 

  • Suits, B. (1978). The grasshopper: Games, life, and utopia. Toronto, ON: University of Toronto Press.

    Google Scholar 

  • Sutton-Smith, B. (1997). The Ambiguity of Play. Cambridge, MA: Harvard UP.

    Google Scholar 

  • Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 4(4), 295–312.

    Article  Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological process. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Wilson, A. J., Dehaene, S., Pinel, P., Revkin, S. K., Cohen, L., & Cohen, D. (2006). Principles underlying the design of “The Number Race”, an adaptive computer game for remediation of dyscalculia. Behavioral and Brain Functions, 2(1), 19. doi:10.1186/1744-9081-2-19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wouters, P., van Nimwegen, C., van Oostendorp, H., & van der Spek, E. D. (2013). A meta-analysis of the cognitive and motivational effects of serious games. Journal of Educational Psychology, 105(2), 249–265. doi:10.1037/a0031311.

    Article  Google Scholar 

  • Young, M. F., Slota, S., Cutter, A. B., Jalette, G., Mullin, G., Lai, B., … Yukhymenko, M. (2012). Our princess is in another castle: A review of trends in serious gaming for education. Review of Educational Research, 82(1), 61–89. doi:10.3102/0034654312436980.

    Google Scholar 

  • Zimmerman, E. (2004). Narrative, interactivity, play, and games: Four naughty concepts in need of discipline. In N. Wardrip-Fruin & P. Harrigan (Eds.), First person: New media as story, performance, and game (pp. 154–164). Cambridge, MA: MIT Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam K. Dubé Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dubé, A.K., Keenan, A. (2016). Are Games a Viable Home Numeracy Practice?. In: Blevins-Knabe, B., Austin, A. (eds) Early Childhood Mathematics Skill Development in the Home Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-43974-7_10

Download citation

Publish with us

Policies and ethics