Skip to main content

History of Ultrasound in Urology

  • Chapter
  • First Online:
Practical Urological Ultrasound

Abstract

The field of ultrasound radiography has rapidly evolved since its inception in the eighteenth century. Along with the complex evolution of ultrasound, several attempts to incorporate ultrasound into more sophisticated techniques, including MRI, three-dimensional imaging, and sonoelastography, have yielded remarkable results. Ultrasound has revolutionized the field of urology and will continue to play an important role in diagnosis of various urologic diseases in the years to come.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Corcoran AJ, Barber JR, Conner WE. Tiger moth jams bat sonar. Science. 2009;325(5938):325–7.

    Article  CAS  PubMed  Google Scholar 

  2. Dunning DR, Roeder KD. Moth sounds and the insect-catching behavior of bats. Science. 1965;147:173–4.

    Article  CAS  PubMed  Google Scholar 

  3. Mackay RL, Liaw HM. Dolphin vocalization mechanisms. Science. 1981;212(4495):676–8.

    Article  CAS  PubMed  Google Scholar 

  4. Ruttimann J. Frogs chat in ultrasound. Nature News. 2006.

    Google Scholar 

  5. Galambos R. The avoidance of obstacles by flying bats: Spallanzani’s ideas (1794) and later theories. Isis. 1942;34(2):132–40.

    Article  Google Scholar 

  6. Dijkgraaf S. Spallanzani’s unpublished experiments on the sensory basis of object perception in bats. Isis. 1960;51(1):9–20.

    Article  CAS  PubMed  Google Scholar 

  7. Curie J, Curie P. Sur ’electricite polaire dans cristaux hemiedres a face inclinees. C R Seances Acad Sci. 1880;91:383.

    Google Scholar 

  8. Katzir S. The discovery of the piezoelectric effect. In: The beginnings of piezoelectricity: a study in mundane physics. Netherlands: Springer; 2006. p. 15–64.

    Chapter  Google Scholar 

  9. Curie P. Radioactive substances, especially radium. In: Nobel Lecture. 1905.

    Google Scholar 

  10. Diamantis A, Magiorkinis E, Papadimitriou A, Androutsos G. The contribution of Maria Sklodowska-Curie and Pierre Curie to nuclear and medical physics. A hundred and ten years after the discovery of radium. Hell J Nucl Med. 2008;11(1):33–8.

    PubMed  Google Scholar 

  11. Seitz F. The cosmic inventor: Reginald Aubrey Fessenden (1866–1932). Am Philos Soc. 1999;89:41–6.

    Google Scholar 

  12. Chilowsky C, Langevin M. Procedes et appareils pour la production de signaux sous-marins diriges et pour la localisation a distance d’obstacles sous-marins. 1916.

    Google Scholar 

  13. Martin J. History of ultrasound. In: Sanders R, Resnick M, editors. Ultrasound in urology. Baltimore: Williams and Wilkins; 1984. p. 1–12.

    Google Scholar 

  14. Zimmerman D. Paul Langevin and the discovery of active sonar or asdic. North Mar. 2002;12(1):39–52.

    Google Scholar 

  15. Sokolov SY. The ultra-acoustic microsocpe. Zh Tekh Fiz. 1949;19:271.

    CAS  Google Scholar 

  16. Jagannathan J, et al. High-intensity focused ultrasound surgery of the brain: part 1—a historical perspective with modern applications. Neurosurgery. 2009;64(2):201–10. discussion 210–1.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dussik K. Uber die Moglichkeit, hochfrequente mechanische Schwingungen als diagnostische Mittel zu verwerten. Z Ges Neurol Psych. 1941;174:153–68.

    Article  Google Scholar 

  18. Thomas AMK, Banerjee A, Busch U. Uber die Moglichkeit, hochfrequente mechanische Schwingungen als diagnostische Mittel zu verwerten. In: Banerjee A, Thomas AMK, Busch U, editors. Classic papers in modern diagnostic radiology. Berlin: Springer; 2005. p. 144–61.

    Chapter  Google Scholar 

  19. Shampo MA, Kyle RA. Karl Theodore Dussik—pioneer in ultrasound. Mayo Clin Proc. 1995;70(12):1136.

    Article  CAS  PubMed  Google Scholar 

  20. Thomas AMK, Banerjee A, Busch U. Application of echo-ranging techniques to the determination of structure of biological tissues. In: Banerjee A, Thomas AMK, Busch U, editors. Classic papers in modern diagnostic radiology. Berlin: Springer; 2005. p. 162–9.

    Chapter  Google Scholar 

  21. Wild JJ, Reid JM. Application of echo-ranging techniques to the determination of structure of biological tissues. Science. 1952;115(2983):226–30.

    Article  CAS  PubMed  Google Scholar 

  22. Hill CR. Early days of scanning: pioneers and sleepwalkers. Radiography. 2009;15:15–22.

    Article  Google Scholar 

  23. Edler I, Hertz CH. The use of ultrasonic reflectoscope for the continuous recording of the movements of heart walls. Clin Physiol Funct Imaging. 2004;24(3):118–36.

    Article  CAS  PubMed  Google Scholar 

  24. Fraser AG. Inge Edler and the origins of clinical echocardiography. Eur J Echocardiogr. 2001;2(1):3–5.

    Article  CAS  PubMed  Google Scholar 

  25. Holmes JH, et al. The ultrasonic visualization of soft tissue structures in the human body. Trans Am Clin Climatol Assoc. 1954;66:208–25.

    CAS  PubMed  Google Scholar 

  26. Donald I, Macvicar J, Brown TG. Investigation of abdominal masses by pulsed ultrasound. Lancet. 1958;1(7032):1188–95.

    Article  CAS  PubMed  Google Scholar 

  27. Thomas AMK, Banerjee AK, Busch U. Investigation of abdominal masses by pulsed ultrasound. In: Thomas AMK, Banerjee AK, Busch U, editors. Classic papers in modern diagnostic radiology. Berlin: Springer; 2005. p. 213–23.

    Chapter  Google Scholar 

  28. Doppler C. Über das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels. Abh Königl Böhm Ges Wiss. 1843;2:465–82.

    Google Scholar 

  29. Satomura S. Ultrasonic Doppler method for the inspection of cardiac function. J Acoust Soc Am. 1957;29:1181–5.

    Article  Google Scholar 

  30. Coman IM. Christian Andreas Doppler—the man and his legacy. Eur J Echocardiogr. 2005;6(1):7–10.

    Article  CAS  PubMed  Google Scholar 

  31. Hofmann D, Hollander HJ. Intrauterine diagnosis of hydrops fetus universalis using ultrasound. Zentralbl Gynakol. 1968;90(19):667–9.

    CAS  PubMed  Google Scholar 

  32. Woo J. A short history of the development of ultrasound in obstetrics and gynecology. http://www.ob-ultrasound.net/site_index.html.

  33. Bernstine RL, Callagan DA. Ultrasonic Doppler inspection of the fetal heart. Am J Obstet Gynecol. 1966;95(7):1001–4.

    Article  CAS  PubMed  Google Scholar 

  34. Buschmann W. On the diagnosis of carotid thrombosis. Albrecht Von Graefes Arch Ophthalmol. 1964;166:519–29.

    Article  CAS  PubMed  Google Scholar 

  35. Brinker RA, Landiss DJ, Croley TF. Detection of carotid artery bifurcation stenosis by Doppler ultrasound. Preliminary report. J Neurosurg. 1968;29(2):143–8.

    Article  CAS  PubMed  Google Scholar 

  36. Grossman BL, Wood EH. Evaluation of cerebrovascular disease utilizing a transcutaneous Doppler technic. Radiology. 1968;90(3):586–7.

    Article  CAS  PubMed  Google Scholar 

  37. Strandness Jr. D. Ultrasonic velocity determination in the diagnosis and evaluation of peripheral vascular disease. In: Symposium on ultrasound. Indiana University; 1968.

    Google Scholar 

  38. Kato K, Izumi T. A new ultrasonic flowmeter that can detect flow direction. In: Proceedings of the tenth scientic meeting of the Japan Society of Ultrasonics in Medicine; 1966. p. 78–9.

    Google Scholar 

  39. Maroon JC, Campbell RL, Dyken ML. Internal carotid artery occlusion diagnosed by Doppler ultrasound. Stroke. 1970;1(2):122–7.

    Article  CAS  PubMed  Google Scholar 

  40. McLeod F. A directional Doppler flowmeter. In: Digest of the seventh international conference on medical electronics and biological engineering; 1967. p. 213.

    Google Scholar 

  41. Bollinger A, Partsch H. Christian Doppler is 200 years young. Vasa. 2003;32(4):225–33.

    Article  PubMed  Google Scholar 

  42. Baker DW, Johnson SL, et al. Doppler echocardiography. In: Waag R, Gramiak R, editors. Cardiac ultrasound. St. Louis: CV Mosby; 1974. p. 24.

    Google Scholar 

  43. Maulik D, et al. Doppler color flow mapping of the fetal heart. Angiology. 1986;37(9):628–32.

    Article  CAS  PubMed  Google Scholar 

  44. Hamper UM, et al. Power Doppler imaging: clinical experience and correlation with color Doppler US and other imaging modalities. Radiographics. 1997;17(2):499–513.

    Article  CAS  PubMed  Google Scholar 

  45. Oktar SO, et al. Comparison of conventional sonography, real-time compound sonography, tissue harmonic sonography, and tissue harmonic compound sonography of abdominal and pelvic lesions. AJR. 2003;181:1341–7.

    Google Scholar 

  46. Sheikh K, et al. Real-time, three-dimensional echocardiography: feasibility and initial use. Echocardiography. 1991;8(1):119–25.

    Article  CAS  PubMed  Google Scholar 

  47. Desser TS, et al. Tissue harmonic imaging techniques: physical principles and clinical applications. Semin Ultrasound CT MR. 2001;22(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  48. Chan V, et al. Basics of ultrasound imaging. In: Atlas of ultrasound-guided procedures in interventional pain management, vol. 1. New York: Springer; 2011. p. 13–9.

    Chapter  Google Scholar 

  49. Takahashi H, Ouchi T. The ultrasonic diagnosis in the field of urology. Proc Jpn Soc Ultrason Med. 1963;3:7.

    Google Scholar 

  50. Watanabe H, et al. Development and application of new equipment for transrectal ultrasonography. J Clin Ultrasound. 1974;2(2):91–8.

    Article  CAS  PubMed  Google Scholar 

  51. Holm HH, Northeved A. A transurethral ultrasonic scanner. J Urol. 1974;111(2):238–41.

    CAS  PubMed  Google Scholar 

  52. Siddiqui M, Rais-Bahrami S, Turkbey B, et al. Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA. 2015;313(4):390–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Oliveira Neto JA, Parente DB. Multiparametric magnetic resonance imaging of the prostate. Magn Reson Imaging Clin N Am. 2013;21:409–26.

    Article  Google Scholar 

  54. Koh J, et al. Additional targeted biopsy in clinically suspected prostate cancer: prospective randomized comparison between contrast-enhanced ultrasound and sonoelastography guidance. Ultrasound Med Biol. 2015;41(11):2836–41.

    Article  PubMed  Google Scholar 

  55. Yen C-L, et al. The benefits of comparing conventional sonography, real-time spatial compound sonography, tissue harmonic sonography, and tissue harmonic compound sonography of hepatic lesions. Clin Imaging. 2008;32:11–5.

    Article  PubMed  Google Scholar 

  56. Boehm K, Salomon G, Beyer B, Schiffmann J, Simonis K, Graefen M, Budaeus L. Shear wave elastography for localization of prostate cancer lesions and assessment of elasticity thresholds: implications for targeted biopsies and active surveillance protocols. J Urol. 2015;2014(193):794–800.

    Article  Google Scholar 

  57. Goldberg BB, Pollack HM. Differentiation of renal masses using A-mode ultrasound. J Urol. 1971;105(6):765–71.

    CAS  PubMed  Google Scholar 

  58. Perri AJ, et al. Necrotic testicle with increased blood flow on Doppler ultrasonic examination. Urology. 1976;8(3):265–7.

    Article  CAS  PubMed  Google Scholar 

  59. Perri AJ, et al. The Doppler stethoscope and the diagnosis of the acute scrotum. J Urol. 1976;116(5):598–600.

    CAS  PubMed  Google Scholar 

  60. Watanabe H, et al. Non-invasive detection of ultrasonic Doppler signals from renal vessels. Tohoku J Exp Med. 1976;118(4):393–4.

    Article  CAS  PubMed  Google Scholar 

  61. Greene ER, et al. Noninvasive characterization of renal artery blood flow. Kidney Int. 1981;20(4):523–9.

    Article  CAS  PubMed  Google Scholar 

  62. Arima M, et al. Predictability of renal allograft prognosis during rejection crisis by ultrasonic Doppler flow technique. Urology. 1982;19(4):389–94.

    Article  CAS  PubMed  Google Scholar 

  63. Burgess SE, et al. Histologic changes in porcine eyes treated with high-intensity focused ultrasound. Ann Ophthalmol. 1987;19(4):133–8.

    CAS  PubMed  Google Scholar 

  64. Madersbacher S, et al. Tissue ablation in benign prostatic hyperplasia with high-intensity focused ultrasound. Eur Urol. 1993;23 Suppl 1:39–43.

    PubMed  Google Scholar 

  65. Madersbacher S, et al. Transcutaneous high-intensity focused ultrasound and irradiation: an organ-preserving treatment of cancer in a solitary testis. Eur Urol. 1998;33(2):195–201.

    Article  CAS  PubMed  Google Scholar 

  66. Chapelon JY, et al. Treatment of localised prostate cancer with transrectal high intensity focused ultrasound. Eur J Ultrasound. 1999;9(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  67. Berge V, Baco E, Karlsen SJ. A prospective study of salvage high-intensity focused ultrasound for locally radiorecurrent prostate cancer: Early results. Scand J Urol Nephrol. 2010;44(4):223–7.

    Article  PubMed  Google Scholar 

  68. Kohrmann KU, et al. High intensity focused ultrasound as noninvasive therapy for multilocal renal cell carcinoma: case study and review of the literature. J Urol. 2002;167(6):2397–403.

    Article  PubMed  Google Scholar 

  69. Margreiter M, Marberger M. Focal therapy and imaging in prostate and kidney cancer: high-intensity focused ultrasound ablation of small renal tumors. J Endourol. 2010;24(5):745–8.

    Article  PubMed  Google Scholar 

  70. Chen SL. Transrectal ultrasound-guided transperineal botulinum toxin a injection to the external urethral sphincter for treatment of detrusor external sphincter dyssynergia in patients with spinal cord injury. Arch Phys Med Rehabil. 2010;91(3):340–4.

    Article  PubMed  Google Scholar 

  71. Ozawa H, et al. The future of urodynamics: non-invasive ultrasound videourodynamics. Int J Urol. 2010;17(3):241–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinaya Vasudevan M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vasudevan, V., Waingankar, N., Gilbert, B.R. (2017). History of Ultrasound in Urology. In: Fulgham, P., Gilbert, B. (eds) Practical Urological Ultrasound. Current Clinical Urology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-43868-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43868-9_1

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-43867-2

  • Online ISBN: 978-3-319-43868-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics