Skip to main content

Reality Construction in Cognitive Agents Through Processes of Info-computation

  • Chapter
  • First Online:
Representation and Reality in Humans, Other Living Organisms and Intelligent Machines

Abstract

What is reality for an agent? What is minimal cognition? How does the morphology of a cognitive agent affect cognition? These are still open questions among scientists and philosophers. In this chapter we propose the idea of info-computational nature as a framework for answering those questions. Within the info-computational framework, information is defined as a structure (for an agent), and computation as the dynamics of information (information processing). To an agent, nature therefore appears as an informational structure with computational dynamics. Both information and computation in this context have broader meaning than in everyday use, and both are necessarily grounded in physical implementation. Evolution of increasingly complex living agents is understood as a process of morphological (physical, embodied) computation driven by agents’ interactions with the environment. It is a process much more complex than random variation; instead the mechanisms of change are morphological computational processes of self-organisation (and re-organisation). Reality for an agent emerges as a result of interactions with the environment together with internal information processing. Following Maturana and Varela, we take cognition to be the process of living of an organism, and thus it appears on different levels of complexity, from cellular via organismic to social. The simpler the agent, the simpler its “reality” defined by the network of networks of info-computational processes, which constitute its cognition. The debated topic of consciousness takes its natural place in this framework, as a process of information integration that we suggest naturally evolved in organisms with a nervous system. Computing nature/pancomputationalism is sometimes confused with panpsychism or claimed to necessarily imply panpsychism, which we show is not the case. Even though we focus on natural systems in this chapter, the info-computational approach is general and can be used to model both biological and artifactual cognitive agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Horsman, C., Stepney, S., Wagner, R., Kendon, V.: When does a physical system compute? Proc. R. Soc. A 470(2169), 20140182 (2014)

    Article  Google Scholar 

  2. Burgin, M., Dodig-Crnkovic, G.: A taxonomy of computation and information architecture. In: Galster, M. (ed.) Proceedings of the 2015 European Conference on Software Architecture Workshops (ECSAW’ 15), ACM Press, New York (2015)

    Google Scholar 

  3. Dodig-Crnkovic, G.: Significance of models of computation, from turing model to natural computation. Mind Mach. 21(2), 301–322 (2011)

    Article  Google Scholar 

  4. Fodor, J., Pylyshyn, Z.: Connectionism and cognitive architecture: a critical analysis. Cognit. 28, 3–71 (1988)

    Article  Google Scholar 

  5. Maturana, H., Varela, F.: Autopoiesis and cognition: the realization of the living. D. Reidel, Dordrecht (1980)

    Book  Google Scholar 

  6. Stewart, J.: Cognition = life: implications for higher-level cognition. Behav. Process. 35, 311–326 (1996)

    Article  Google Scholar 

  7. Lorenz, H.: Ancient theories of soul. In: The Stanford Encyclopedia of Philosophy (2009)

    Google Scholar 

  8. Varela, F., Thompson, E., Rosch, E.: The Embodied Mind: Cognitive Science and Human Experience. MIT Press (1991)

    Google Scholar 

  9. Vernon, D.: A survey of artificial cognitive systems: implications for the autonomous development of mental capabilities in computational agents. IEEE Trans. Evol. Comput. 11(2), 151–180 (2007)

    Article  Google Scholar 

  10. Fresco, N.: Physical Computation and Cognitive Science. Springer (2014)

    Google Scholar 

  11. Bishop, M.: A cognitive computation fallacy? cognition, computations and panpsychism. Cognit. Comput. 1, 221–233 (2009)

    Article  Google Scholar 

  12. Dodig-Crnkovic, G.: Information, computation, cognition. Agency-based hierarchies of levels. In: Müller, V.C. (ed.) Fundamental Issues of Artificial Intelligence (Synthese Library). Springer (2014)

    Google Scholar 

  13. Fernandez, B., Xabier, E., Paolo, D., Rohde, M.: Defining agency: individuality, normativity, asymmetry, and spatio-temporality in action. Adapt. Behav. 17(5), 367–386 (2009)

    Article  Google Scholar 

  14. Cruse, H.: The evolution of cognition—a hypothesis. Cognit. Sci. 27, 135–155 (2003)

    Google Scholar 

  15. Froese, T., Ziemke, T.: Enactive artificial intelligence: investigating the systemic organization of life and mind. Artif. Intell. 173, 466–500 (2009)

    Article  Google Scholar 

  16. Kauffman, S.: Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press (1993)

    Google Scholar 

  17. Deacon, T.: Incomplete Nature. How Mind Emerged from Matter. W. W. Norton (2011)

    Google Scholar 

  18. Ben-Jacob, E., Shapira, Y., Tauber, A.I.: Smart bacteria. In: Margulis, L., Asikainen, C.A., Krumbein, W.E (eds.) Chimera and Consciousness. Evolution of the Sensory Self. MIT Press (2011)

    Chapter  Google Scholar 

  19. Ben-Jacob, E., Shapira, Y., Tauber, A.I.: Seeking the foundations of cognition in bacteria. Phys. A 359, 495–524 (2006)

    Article  Google Scholar 

  20. Maturana, H.: Autopoiesis, structural coupling and cognition: a history of these and other notions in the biology of cognition. Cybern. Hum. Knowing 9(3–4), 5–34 (2002)

    Google Scholar 

  21. Witzany, G.: Biocommunication and Natural Genome Editing. Springer (2010)

    Book  Google Scholar 

  22. Ng, W., Bassler, B.L.: Bacterial quorum-sensing network architectures. Annu. Rev. Genet. 43, 197–222 (2009)

    Article  Google Scholar 

  23. Pratt, S.C.: Quorum sensing by encounter rates in the Ant Temnothorax-Albipennis. Behav. Ecol. 16(2), 488–496 (2005)

    Article  Google Scholar 

  24. Doya, K.: Metalearning and neuromodulation. Neural Netw. 15(4–6), 95–506 (2002)

    Article  Google Scholar 

  25. Dodig-Crnkovic, G.: Investigations into information semantics and ethics of computing. Zhurnal Eksperimental’noi I Teoreticheskoi Fiziki. Mälardalen University Press, Västerås, Sweden (2006). http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:No+Title#0. http://www.diva-portal.org/smash/record.jsf?pid=diva2:120541

  26. Bull, L., Holley, J., Costello, B.D.L., Adamatzky, A.: Computing Nature, vol. 7. Springer, Berlin, Heidelberg (2013)

    Google Scholar 

  27. Dodig-Crnkovic, G.: Physical computation as dynamics of form that glues everything together. Information 3(4), 204–218 (2012)

    Article  Google Scholar 

  28. Landauer, R.: Computation: a fundamental physical view. Phys. Scr. 35, 88–95 (1987)

    Article  Google Scholar 

  29. Landauer, R.: Information is physical. Phys. Today 44, 23–29 (1991)

    Article  Google Scholar 

  30. Landauer, R.: The physical nature of information. Phys. Lett. A 217, 188 (1996)

    Article  MathSciNet  Google Scholar 

  31. Clark, A.: Being There: Putting Brain, Body and World Together Again. Oxford University Press (1997)

    Google Scholar 

  32. Pfeifer, R., Bongard, J.: How the Body Shapes the Way We Think—A New View of Intelligence. MIT Press (2006)

    Google Scholar 

  33. Hewitt, C.: What is computation? actor model versus Turing’s model. In: Zenil, H. (ed.) A Computable Universe, Understanding Computation & Exploring Nature as Computation. World Scientific Publishing, Imperial College Press (2012)

    Chapter  Google Scholar 

  34. Castelfranchi, C.: Guarantees for autonomy in cognitive agent architecture. Intel. Agent 890, 56–70 (1995)

    Article  Google Scholar 

  35. Putnam, H.: Mathematics, Matter and Method. Cambridge University Press (1975)

    Google Scholar 

  36. Ganti, T.: The Principles of Life. Oxford University Press (2003)

    Google Scholar 

  37. Luisi, L.: Autopoiesis: a review and a reappraisal. Naturwissenschaften 90, 49–59 (2003)

    Google Scholar 

  38. Ben-Jacob, E.: Bacterial complexity: more is different on all levels. In: Nakanishi, S., Kageyama, R., Watanabe, D. (eds.) Systems Biology—The Challenge of Complexity, pp. 25–35. Springer (2009)

    Chapter  Google Scholar 

  39. Ben-Jacob, E.: Learning from bacteria about natural information processing. Ann. N. Y. Acad. Sci. 1178, 78–90 (2009)

    Article  Google Scholar 

  40. Adamatzky, A.: Physarum Machines. Computers from Slime Mould. World Scientific (2010)

    Google Scholar 

  41. Pombo, O., Torres J.M., Symons J., Rahman S., (eds.): Special Sciences and the Unity of Science. Springer (2012)

    Google Scholar 

  42. Rosen, R.: Anticipatory Systems. Pergamon Press (1985)

    Google Scholar 

  43. Popper, K.: All Life Is Problem Solving. Routledge (1999)

    Google Scholar 

  44. Bohan B., Paul: On communication and computation. Mind Mach. 14(1), 1–19 (2004)

    Google Scholar 

  45. Shapiro, J.A.: Evolution: A View from the 21st Century. FT Press Science, New Jersey (2011)

    Google Scholar 

  46. Kauffman, S., Clayton, P.: On emergence, agency, and organization. Biol. Philos. 21(4), 500–520 (2006)

    Article  Google Scholar 

  47. Crutchfield, J., Ditto, W., Sinha, S.: Introduction to focus issue: intrinsic and designed computation: information processing in dynamical systems-beyond the digital hegemony. Chaos 20(3), 037101–037106 (2010)

    Article  Google Scholar 

  48. Crutchfield, J., Wiesner, K.: Intrinsic quantum computation. Phys. Lett. A 374(4), 375–380 (2008)

    Article  MathSciNet  Google Scholar 

  49. Clark, A.: Microcognition: Philosophy, Cognitive Science, and Parallel Distributed Processing. MIT Press (1989)

    Google Scholar 

  50. Rozenberg, G., Kari, L.: The many facets of natural computing. Commun. ACM 51, 72–83 (2008)

    Google Scholar 

  51. Rozenberg, G., Bäck, T., Kok, J.N. (eds.): Handbook of Natural Computing. Springer (2012)

    Google Scholar 

  52. Denning, P.: Computing is a natural science. Commun. ACM 50(7), 13–18 (2007)

    Article  Google Scholar 

  53. Wang, Y.: On abstract intelligence: toward a unifying theory of natural, artificial, machinable, and computational intelligence. Int. J. Softw. Sci. Comput. Intel. 1(1), 1–17 (2009)

    Article  Google Scholar 

  54. Dodig-Crnkovic, G., Müller, V.: A dialogue concerning two world systems: info-computational vs. mechanistic. In: Dodig-Crnkovic, G., Burgin, M. (eds.) Information and Computation, pp. 149–184. World Scientific (2011)

    Chapter  Google Scholar 

  55. Pauen, M.: Reality and representation qualia, computers, and the ‘explanatory gap’. In: Riegler, A., Peschl, M., von Stein, A. (eds.) Understanding Representation in the Cognitive Sciences. Kluwer Academic/Plenum Publishers, New York (1999)

    Google Scholar 

  56. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. 237(641), 37–72 (1952)

    Article  MathSciNet  Google Scholar 

  57. Kampis, G.: Self-Modifying Systems in Biology and Cognitive Science: A New Framework for Dynamics, Information, and Complexity. Pergamon Press, Amsterdam (1991)

    Google Scholar 

  58. Kantor, F.W.: An informal partial overview of information mechanics. Int. J. Theor. Phys. 21(6–7), 525–535 (1982)

    Article  Google Scholar 

  59. Sloman, A.: Meta-morphogenesis: evolution and development of information-processing machinery. In: Cooper, S.B., van Leeuwen, J. (eds.) Alan Turing: His Work and Impact. Elsevier, Amsterdam (2013)

    Google Scholar 

  60. Valiant, L.: Probably Approximately Correct: Nature’s Algorithms for Learning and Prospering in a Complex World. Basic Books (2013)

    Google Scholar 

  61. Fisher, J., Henzinger, T.A.: Executable cell biology. Nat. Biotechnol. 25(11), 1239–1249 (2007)

    Article  Google Scholar 

  62. Chaitin, G.: Epistemology as information theory: from Leibniz to Ω. In: Dodig Crnkovic, G. (ed.) Computation, Information, Cognition—The Nexus and The Liminal, pp. 2–17. Cambridge Scholars Publishing (2007)

    Google Scholar 

  63. Dodig-Crnkovic, G.: Information and energy/matter. Information 3(4), 751 (2012)

    Article  Google Scholar 

  64. Floridi, L.: A defense of informational structural realism. Synthese 161(2), 219–253 (2008)

    Article  MathSciNet  Google Scholar 

  65. Sayre, K.M.: Cybernetics and the Philosophy of Mind. Routledge & Kegan Paul (1976)

    Google Scholar 

  66. Zeilinger, A.: The message of the quantum. Nature 438(7069), 743 (2005)

    Article  Google Scholar 

  67. Vedral, V.: Decoding Reality: The Universe as Quantum Information. Oxford University Press (2010)

    Google Scholar 

  68. Shannon, C.: Mathematical theory of the differential analyzer. J. Math. Phys. 20, 337–354 (1941)

    Article  MathSciNet  Google Scholar 

  69. Dodig-Crnkovic, G.: Epistemology naturalized: the info-computationalist approach. APA Newslett. Philos. Comput. 06(2), 9–13 (2007)

    Google Scholar 

  70. Dodig-Crnkovic, G.: Knowledge generation as natural computation. J. Syst. Cybernet. Inf. 6(3), 12–16 (2008)

    Google Scholar 

  71. Dodig-Crnkovic, G.: Info-computationalism and morphological computing of informational structure. In: Plamen, L. Simeonov, L., Smith, S., Ehresmann, A.C. (eds.) Integral Biomathics, pp. 97–104. Berlin, Heidelberg (2012)

    Chapter  Google Scholar 

  72. Dodig-Crnkovic, G.: Dynamics of information as natural computation. Information 2(3), 460–477 (2011)

    Article  MathSciNet  Google Scholar 

  73. Bateson, G.: Steps to an ecology of mind: collected essays in anthropology, psychiatry, evolution, and epistemology. In: Adriaans, P., Benthem van, J. (eds.). University of Chicago Press, Amsterdam (1972)

    Google Scholar 

  74. McGonigle, D., Mastrian, K.: Introduction to information, information science, and information systems. In: Nursing Informatics and the Foundation of Knowledge, vol. 22. Jones & Bartlett (2012)

    Google Scholar 

  75. Hewitt, C.: What is commitment? physical, organizational, and social. In: Noriega, P., Vazquez-Salceda, J., Boella, G., Boissier, O., Dignum, V. (eds.) Coordination, Organizations, Institutions, and Norms in Agent Systems II, pp. 293–307. Springer, Berlin, Heidelberg (2007)

    Chapter  Google Scholar 

  76. Hauser, H., Füchslin, R.M., Pfeifer, R.: Opinions and Outlooks on Morphological Computation. e-book (2014)

    Google Scholar 

  77. Maturana, H., Varela, F.: The Tree of Knowledge. Shambala (1992)

    Google Scholar 

  78. Schroeder, M.: Dualism of selective and structural manifestations of information in modelling of information dynamics. In: Dodig-Crnkovic, G., Giovagnoli, R. (eds.) Computing Nature, SAPERE 7, pp. 125–137. Springer (2013)

    Chapter  Google Scholar 

  79. Grossberg, G.A., Carpenter, S.: ART 2: self-organization of stable category recognition codes for analog input patterns. Appl. Opt. 26(23), 4919–4930 (1987)

    Article  Google Scholar 

  80. Wheeler, J.A.: Information, physics, quantum: the search for links. In: Zurek, W.(ed.) Complexity, Entropy, and the Physics of Information. Addison-Wesley (1990)

    Google Scholar 

  81. Kantor, F.W.: Information Mechanics. Wiley-Interscience, New York (1977)

    Google Scholar 

  82. Dodig-Crnkovic, G., Giovagnoli, R.: Natural/unconventional computing and its philosophical significance. Entropy 14(12), 2408–2412 (2012)

    Article  MathSciNet  Google Scholar 

  83. Tononi, G.: An information integration theory of consciousness. BMC Neurosci. 5(42), 1–22 (2004)

    Google Scholar 

  84. Tononi, G.: Consciousness as integrated information: a provisional manifesto. Bio. Bulletin 215(3), 216–242 (2008)

    Article  Google Scholar 

  85. Tononi, G.: The integrated information theory of consciousness: an updated account. Arch. Ital. Biol. 150(2/3), 290–326 (2012)

    Google Scholar 

  86. Koch, C.: Consciousness—Confessions of a Romantic Reductionist. MIT Press (2012)

    Google Scholar 

  87. Piccinini, G.: Computation in physical systems. In: The Stanford Encyclopedia of Philosophy (2012)

    Google Scholar 

  88. von Uexküll, J.: Theoretical Biology. Harcourt, Brace, New York (1926)

    Google Scholar 

  89. Putnam, H.: Representation and Reality. MIT press (1988)

    Google Scholar 

  90. Maturana, H.: Biology of Cognition. Research Report BCL 9. 1970, Biological Computer Laboratory: Urbana, IL. Defense Technical Information Center, Illinois (1970)

    Google Scholar 

  91. van Dijk, J., Kerkhofs, R., Van Rooij, I., Haselager, P.: Special section: can there be such a thing as embodied embedded cognitive neuroscience? Theory Psychol. 18, 297–316 (2008)

    Article  Google Scholar 

  92. Dodig-Crnkovic, G.: Modeling life as cognitive info-computation. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds.) Computability in Europe 2014. LNCS, pp. 153–162. Springer, Berlin, Heidelberg (2014)

    MATH  Google Scholar 

  93. Ehresmann, A.C.: MENS, an info-computational model for (neuro-)cognitive systems capable of creativity. Entropy 14, 1703–1716 (2012)

    Article  Google Scholar 

  94. Ghosh, S., Aswani, K., Singh, S., Sahu, S., Fujita, D., Bandyopadhyay, A.: Design and construction of a brain-like computer: a new class of frequency-fractal computing using wireless communication in a supramolecular organic, inorganic system. Information 5(1), 28–100 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank the reviewers Jan van Leeuwen, Marcin Schroeder, Matej Hoffmann, Raffaela Giovagnoli and Tom Froese for their constructive and very helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordana Dodig-Crnkovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dodig-Crnkovic, G., von Haugwitz, R. (2017). Reality Construction in Cognitive Agents Through Processes of Info-computation. In: Dodig-Crnkovic, G., Giovagnoli, R. (eds) Representation and Reality in Humans, Other Living Organisms and Intelligent Machines. Studies in Applied Philosophy, Epistemology and Rational Ethics, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-43784-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43784-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43782-8

  • Online ISBN: 978-3-319-43784-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics