Skip to main content

Essential Fatty Acids

  • Chapter
  • First Online:
Nutrition and Health in a Developing World

Part of the book series: Nutrition and Health ((NH))

Abstract

The purpose of this review is to highlight the role of essential fatty acids in diverse biologic processes and metabolic pathways that are relevant to both health and disease, throughout life; to describe the effect of essential fatty acids on pregnancy outcome, growth, and neurological development in infancy and early childhood and to review studies linking essential fatty acids to different chronic diseases in adults. Dietary sources of essential polyunsaturated fatty acids, their conversion to other n-3 and n-6 fatty acids, their amount in breast milk, availability in infant nutrition and specific needs of these fatty acids in developing countries, are addressed. Recommended essential fatty acid requirements during pregnancy, infancy, and childhood and in undernourished or less privileged populations are detailed, with an emphasis on nutritional interventions that may impact essential fatty acid status.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salem N Jr, Wegher B, Mena P, Uauy R. Arachidonic and docosahexanoic acids are biosynthesized from their 18-carbon chain precursors in human infants. Proc Natl Acad Sci USA. 1996;93:49–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hussein N, Ah-Sing E, Wilkinson P, et al. Long-chain conversion of 13C linoleic acid and alpha linolenic acid in response to marked changes in their dietary intake in men. J Lipid Res. 2005;46:269–80.

    Article  CAS  PubMed  Google Scholar 

  3. Goyens PL, Spilker ME, Zock PL, et al. Compartmental modeling to quantify alpha linolenic acid conversion after longer term intake of multiple tracer boluses. J Lipid Res. 2005;46:1474–83.

    Article  CAS  PubMed  Google Scholar 

  4. Innis SM. Omega3 fatty acids and neural development to 2 years of age: do we know enough for dietary recommendations? J Pediatr Gastroenterol Nutr. 2009;48:S16–24.

    Article  CAS  PubMed  Google Scholar 

  5. Simopoulos AP, Leaf A, Salem N Jr. Workshop Statement on the essentiality of and recommended dietary intakes for omega-6 and omega-3 fatty acids. Prostagland Leuk Essent Fat Acid. 2000;63:119–21.

    Article  CAS  Google Scholar 

  6. Simopoulos AP. Essential fatty acids in health and chronic diseases. Am J Clin Nutr. 1999;70:560S–9S.

    CAS  PubMed  Google Scholar 

  7. Simopoulos AP. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother. 2002;56:365–79.

    Article  CAS  PubMed  Google Scholar 

  8. Yam D, Eliraz A, Berry EM. Diet and disease—the Israeli paradox: possible dangers of a high omega 6 polyunsaturated fatty acid diet. Isr J Med Sci. 1996;32:1134–43.

    CAS  PubMed  Google Scholar 

  9. Seo T, Blaner WS, Deckelbaum RJ. Omega 3 fatty acids: molecular approaches to optimal biological outcomes. Curr Opin Lipidol. 2005;16:11–8.

    Article  CAS  PubMed  Google Scholar 

  10. Fritsche K. Fatty acids as modulators of the immune response. Ann Rev Nutr. 2006;26:45–73.

    Article  CAS  Google Scholar 

  11. Calder PC. Polyunsaturated fatty acids and inflammatory processes: new twists in an old tale. Biochimie 2009; 791–795.

    Google Scholar 

  12. Jung UJ, Torrejon C, Chang CL, Hamai H, Worgall TS, Deckelbaum RJ. Fatty acids regulate endothelial lipase and inflammatory markers in macrophages and in mouse aorta, a role for PPARγ. Arterioscler Thromb Vasc Biol. 2012;32:2929–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weylandt KH, Chui CY, Gomolka B, Waechter SF, Wiedenmann B. Omega-3 fatty acids and their lipid mediators: towards an understanding of resolving and protectin formation. Prostaglandins Other Lipid Mediat. 2012;97:73–82.

    Article  CAS  PubMed  Google Scholar 

  14. Bannenberg GL, Chiang N, Ariel A, Arita M, Tjonahen E, Gotlinger KH, Hong S, Serhan CN. Molecular circuits of resolution: formation and actions of resolvins and protectins. J Immunol. 2005;174:4345–55.

    Article  CAS  PubMed  Google Scholar 

  15. Raheja BS, Sadikot SM, Phatak RB, Rao MB. Significance of the w-6/w-3 ratio for insulin action in diabetes. Ann NY Acad Sci. 1993;683:258–71.

    Article  CAS  PubMed  Google Scholar 

  16. Horrobin DF, Huang YS. The role of linoleic acid and its metabolites in the lowering of plasma cholesterol and the prevalence of cardiovascular disease. Int J Cardiol. 1987;17:241–55.

    Article  CAS  PubMed  Google Scholar 

  17. Kromann N, Green A. Epidemiological studies in the Upernavik district, Greenland. Incidence of some chronic diseases 1950–1974. Acta Med Scand. 1980;208:401–6.

    Article  CAS  PubMed  Google Scholar 

  18. Lorente–Cebrian S, Costa AG, Navas–Carretero S, Zabala M, Martinez JA, Moreno-Aliaga MJ. Role of omega-3 fatty acids in obesity, metabolic syndrome and cardiovascular disease: a review of the evidence. J Physiol Biochem 2013; 69:633–651.

    Google Scholar 

  19. Cabre E, Manosa M, Gassull MA. Omega-3 fatty acids and inflammatory bowel disease—a systematic review. Br J Nutr. 2012;107(Suppl 2):S240–52.

    Article  CAS  PubMed  Google Scholar 

  20. de Lorgenile M, Renaud S, Mamelle N, Salen P, Martin JL, Monjaud I, Guidollet J, Touboul P, Delaye J. Mediterranean alpha linolenic acid-rich diet in secondary prevention of coronary artery disease. Lancet. 1994;343:1454–9.

    Article  Google Scholar 

  21. Saravanan P, Davidson NC, Schmidt EB, Calder PC. Cardiovascular effects of marine omega-3 fatty acids. Lancet. 2010;376:540–50.

    Article  CAS  PubMed  Google Scholar 

  22. Wang C, Harris WS, Chung M, et al. w-3 fatty acids from fish or fish-oil supplements but not alpha-linolenic acid acid, benefit cardiovascular disease outcomes in primary and secondary prevention studies: a systematic review. Amer J Clin Nutr. 2006;84:5–17.

    CAS  PubMed  Google Scholar 

  23. Hooper L, Thompson RL, Harrison RA, Summerbell CD, Ness AR, Moore HJ, Worthington HV, Durrington PN, Higgins JP, Capps NE, Riemersma RA, Ebrahim SB, Smith G. Risks and benefits of omega 3 fats for mortality, cardiovascular disease and cancer: a review. BMJ. 2006;332:752–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kromhout D, Giltay EJ, Geleijnse JM. For the Alpha Omega Trial Group. W-3 fatty acids and cardiovascular events after myocardial infarction. N Engl J Med. 2010;363:2015–26.

    Article  CAS  PubMed  Google Scholar 

  25. Rauche B, Schiele R. Schneider S et al OMEGA, a randomized placebo controlled trial to test the effect of highly purified omega-3 fatty acids on top of modern guideline adjusted therapy after myocardial infarction. Circulation. 2010;122:2152–9.

    Article  Google Scholar 

  26. Deckelbaum RJ, Calder PC. Different outcomes for omega -3 heart trials: why? Curr Opin Clin Nutr Metab Care. 2012;15:97–8.

    Article  PubMed  Google Scholar 

  27. Peat JK, Salome CM, Wollcock AJ. Factors associated with bronchial hyper responsiveness in Australian adults and children. Eur Respir J. 1992;5:921–9.

    CAS  PubMed  Google Scholar 

  28. Hodge L, Salome CM, Peat JK, Haby MM, Xuan W, Woolcock AJ. Consumption of oily fish and childhood asthma risk. Med J Aust. 1996;164:137–40.

    CAS  PubMed  Google Scholar 

  29. Broughton KS, Johnson CS, Pace BK, Liebman M, Kleppinger KM. Reduced asthma symptoms with w3fatty acid ingestion are related to 5-series leukotriene production. Am J Clin Nutr. 1997;65:1011–7.

    CAS  PubMed  Google Scholar 

  30. Takemura Y, Sakurai Y, Honjo S, Tokimatsu A, Gibo M, Hara T, Kusakari A, Kugai N. The relationship between fish intake and the prevalence of asthma. Prev Med. 2002;34:221–5.

    Article  PubMed  Google Scholar 

  31. Woods RK, Thien FC, Abramson MJ. Dietary marine fatty acid (fish oil) for asthma in adults and children. Cochrane Database Syst Rev 2002: CD001283.

    Google Scholar 

  32. Richardson AJ, Montgomery P. The Oxford-Durham study: a randomized, controlled trial of dietary supplementation with fatty acids in children with developmental coordination disorder. Pediatrics. 2005;115:1360–6.

    Article  PubMed  Google Scholar 

  33. Amminger GP, Berger GE, Schafer MR, Klier C, Friedrich MH, Feucht M. Omega-3 fatty acids supplementation in children with autism: a double blind, randomized, placebo-controlled pilot study. Biol Psychiatr. 2007;61:551–3.

    Article  CAS  Google Scholar 

  34. Richardson AJ. Omega-3 fatty acids in ADHD and related neurodevelopmental disorders. Int Rev Psychiatry. 2006;18:155–72.

    Article  PubMed  Google Scholar 

  35. Kremer JM. Omega-3 fatty acid supplements in rheumatoid arthritis. Am J Clin Nutr. 2000;71:349–51.

    Google Scholar 

  36. MacLean CH, Mojica WA, Morton SC, Pencharz J, Hasenfeld Garland R et al. Effects of omega-3 fatty acids on lipids and glycemic control in type II diabetes and the metabolic syndrome and on inflammatory bowel disease, rheumatoid arthritis, renal disease, systemic lupus erythematosus and osteoporosis. Evid Rep Technol Assess 2004; No 89, AHRQ Publ No 04-E012-2 Rockville MD: Agency Healthcare Res Qual.

    Google Scholar 

  37. Bartram HP, Gostner A, Scheppach W, Reddy BS, Rao CV, Dusel G, Richter F, Richter A, Kasper H. Effects of fish oil on rectal cell proliferation, mucosal fatty acid and prostaglandin E2 release in healthy subjects. Gastroenterology. 1993;105:1317–22.

    Article  CAS  PubMed  Google Scholar 

  38. Bartram HP, Gostner A, Scheppach W, Reddy BS, Rao CV, Dusel G, Richter F, Richter A, Kasper H. Missing antiproliferative effect of fish oil on rectal epithelium in healthy volunteers consuming a high fat diet. Potential role of the w3:w6 fatty acid ratio. Eur J Can Prev 1995; 4:231–237.

    Google Scholar 

  39. Calder PC, Deckelbaum RJ. Dietary fatty acids in health and disease: greater controversy, greater interest. Curr Opin Clin Nutr Metab Care. 2014;17:111–5.

    Article  PubMed  Google Scholar 

  40. Murphy RA, Mourtzakis M, Chu QS, et al. Supplementation with fish oil increases first line chemotherapy efficacy in patients with advanced non small cell lung cancer. Cancer. 2011;117:3774–80.

    Article  CAS  PubMed  Google Scholar 

  41. Roodhart JM, Daenen LG, Stigter EC, et al. Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids. Cancer Cell. 2011;20:370–83.

    Article  CAS  PubMed  Google Scholar 

  42. Brasky TM, Darke AK, Song X et al Plasma phospholipids fatty acids and prostate cancer risk in the SELECT trial J Natl Cancer Inst 2013; 105:1132–1141.

    Google Scholar 

  43. Dahm CC, Gorst-Rasmussen A, Crowe FL, et al. Fatty acid patterns and risk of prostate cancer in a case—control study nested within the European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr. 2012;96:1354–61.

    Article  CAS  PubMed  Google Scholar 

  44. Chua ME, Sio MC, Sorongon MC, Dy JS. Relationship of dietary intake of omega-3 and omega-6 fatty acids with risk of prostate cancer development: a meta-analysis of prospective studies and review of literature. Prostate Cancer. 2012;2012:826254.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Anderson BM, Ma DW. Are all n-3 polyunsaturated acids created equal? Lipids Health Dis 2009; 10;8:33. doi:10.1186/1476-511x-8-33.

  46. Carlson SE, Neuringer M. Polyunsaturated fatty acid status and neurodevelopment: a summary and clinical analysis of the literature. Lipids. 1999;34:171–8.

    Article  CAS  PubMed  Google Scholar 

  47. Descsi T, Koletzko B. Role of long-chain polyunsaturated fatty acids in early neurodevelopment. Nutr Neurosci. 2000;3:293–306.

    Article  Google Scholar 

  48. Uauy R, Hoffman DR. Mena P et al Term infant studies of DHA and ARA supplementation on neurodevelopment: results of randomized controlled trials. J Pediatr. 2003;143:17–25.

    Article  Google Scholar 

  49. Innis SM. Dietary omega 3 fatty acids and the developing brain. Brain Res. 2008;1237:35–43.

    Article  CAS  PubMed  Google Scholar 

  50. Hanebutt FL, Demmelmair H, Schiessl B, Larque E, Koletzko B. Long-chain polyunsaturated fatty acid transfer across the placenta. Clin Nutr. 2008;27:685–93.

    Article  CAS  PubMed  Google Scholar 

  51. Hibbeln JR, Davis JM, Steer C, Emmett P, Rogers I, Williams C, Golding J. Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC Study): an observational cohort study. Lancet. 2007;369:578–85.

    Article  PubMed  Google Scholar 

  52. Birch EE, Garfield S, Castaneda Y, Hughbanks-Wheaton D, Uauy R, Hoffman D. Visual acuity and cognitive outcomes at 4 years of age in a double-blind, randomized trial of long-chain polyunsaturated fatty acid-supplemented infant formula. Early Human Dev. 2007;83:279–84.

    Article  CAS  Google Scholar 

  53. Koletzko B, Cetin I, Brenna JT for the Perinatal Lipid Intake Working Group. Dietary fat intakes for pregnant and lactating women: Consensus Statement. Br J Nutr 2007; 98:873–877.

    Google Scholar 

  54. Denomme J, Stark KD, Holub BJ. Directly quantitated dietary (n-3) fatty acid intake of pregnant Canadian women are lower than current dietary recommendations. J Nutr. 2005;132:206–11.

    Google Scholar 

  55. Lewis NM, Widga AC, Buck JS, Frederick AM. Survey of omega3 fatty acids in diets of Midwest low income pregnant women. J Agromed. 1995;2:49–57.

    Article  Google Scholar 

  56. Houwelingen AC, Hornstra G. Relation between birth order and the maternal and neonatal DHA status. Eur J Clin Nutr. 1997;51:548–53.

    Article  PubMed  Google Scholar 

  57. Grandjean P, Bjerve KS, Weihe P, Stnerwald U. Birthweight in a fishing community: significance of essential fatty acids and marine food contaminants. Int J Epidemiol. 2001;30:1272–8.

    Article  CAS  PubMed  Google Scholar 

  58. Olsen SF, Secher NJ. Low consumption of seafood in early pregnancy as a risk factor for preterm delivery. BMJ. 2002;324(7335):447.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Szajewska H, Horvath A, Koletzko B. Effect of n-3 long-chain polyunsaturated fatty acid supplementation of women with low-risk pregnancies on pregnancy outcomes and growth measures at birth: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2006;83:1337–44.

    CAS  PubMed  Google Scholar 

  60. Makrides M, Duley L, Olsen SF. Marine oil and other prostaglandin precursor supplementation for pregnancy, uncomplicated by pre-eclampsia or intrauterine growth restriction. Cochrane Database Syst Rev 2006; 3:CD003402.

    Google Scholar 

  61. Horvath A, Koletzko B, Szajewska H. Effect of n-3 long-chain polyunsaturated fatty acid supplementation of women in high -risk pregnancies on pregnancy outcomes and growth measures at birth: a meta-analysis of randomized controlled trials. Br J Nutr. 2007;98:253–9.

    Article  CAS  PubMed  Google Scholar 

  62. Jakobovich E. Granot E. Effect of DHA supplementation during pregnancy on birth weight and gestational length. Presented at the 4th World Congress of Pediatric Gastroenterology, Hepatology and Nutrition, Nov. 2012, Taipei, Taiwan (manuscript in preparation).

    Google Scholar 

  63. Xiang M, Harbige LS, Zetterstrom R. Long-chain polyunsaturated fatty acids in Chinese and Swedish mothers: diet, breast milk and infant growth. Acta Paediatr. 2005;94:1543–9.

    Article  PubMed  Google Scholar 

  64. Ruan C, Liu X, Man H, Ma X, Lu G, Duan G, DeFrancesco CA, Connor WE. Milk composition in women from five different regions of China: the great diversity of milk fatty acids. J Nutr. 1995;125:2993–8.

    CAS  PubMed  Google Scholar 

  65. Brenna JT, Varamini B, Jensen RG, Diersen-Schade DA, Boettcher JA, Arterburn LM. Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am J Clin Nutr. 2007;85:1457–64.

    CAS  PubMed  Google Scholar 

  66. Larque E, Demmelmair H, Koletzko B. Perinatal supply and metabolism of long-chain polyunsaturated fatty acids: importance for the early development of the nervous system. Ann NY Acad Sci. 2002;967:299–310.

    Article  CAS  PubMed  Google Scholar 

  67. Bitman J, Wood L, Hamosh M, Hamosh P, Metha NR. Comparison of the lipid composition of breast milk from mothers of term and preterm infants. Amer J Clin Nutr. 1983;38:300–12.

    CAS  PubMed  Google Scholar 

  68. Luukkainen P, Salo MK, Nikkari T. Changes in the fatty acid composition of preterm and term human milk from 1 week to 6 months of lactation. J Pediatr Gastroenterol Nutr. 1994;18:355–60.

    Article  CAS  PubMed  Google Scholar 

  69. Genzel-Boroviczeny O, Wahle J, Koletzko B. Fatty acid composition of human milk during the 1st month after term and preterm delivery. Eur J Pediatr. 1997;156:142–7.

    Article  CAS  PubMed  Google Scholar 

  70. Kovacs A, Funke S, Marosvolgyi T, Burus I, Decsi T. Fatty acids in early human milk after preterm and full term delivery. J Pediatr Gastroenterol Nutr. 2005;41:454–9.

    Article  CAS  PubMed  Google Scholar 

  71. Granot E, Ishay-Gigi K, Malaach L, Flidel-Rimon O. Human milk fatty acid composition after preterm and full term delivery. J Mater Fetal Neonatal Med 2015; (in press).

    Google Scholar 

  72. Koutras AK, Vigorita VJ. Fecal secretory immunoglobulin in breast milk versus formula feeding in early life. J Pediatr Gastroenterol Nutr. 1989;9:58–61.

    Article  CAS  PubMed  Google Scholar 

  73. Slade HB, Schwartz SA. Mucosal immunity: the immunology of breast milk. J Allergy Clin Immunol. 1987;80:348–58.

    Article  CAS  PubMed  Google Scholar 

  74. Kramer MS. Does breast feeding help protect against atopic disease? J Pediatr. 1988;112:181–90.

    Article  CAS  PubMed  Google Scholar 

  75. Pita ML, Fernandez MR. De-Lucchi C et al Changes in the fatty acid pattern of red blood cell phospholipids induced by type of milk, dietary nucleotide supplementation and postnatal age, in preterm infants. J Pediatr Gastroenterol Nutr. 1988;7:740–7.

    Article  CAS  PubMed  Google Scholar 

  76. Endres S, Ghorbani R. Kelley VE et al The effect of dietary supplementation with w3 polyunsaturated fatty acids on the synthesis of interleukin -1 and tumor necrosis factor by mononuclear cells. N Engl J Med. 1989;320:265–71.

    Article  CAS  PubMed  Google Scholar 

  77. Calder PC. Dietary fatty acids and lymphocyte functions. Proc Nutr Soc. 1998;57:487–502.

    Article  CAS  PubMed  Google Scholar 

  78. Granot E, Golan D, Berry EM. Breast–fed and formula-fed infants do not differ in immunocompetent cell cytokine production despite differences in cell membrane fatty acid composition. Am J Clin Nutr. 2000;72:1202–5.

    CAS  PubMed  Google Scholar 

  79. Sherman MP. Human milk, fatty acids and the immune response: a new glimpse (Editorial). Am J Clin Nutr. 2000;72:1071–2.

    CAS  PubMed  Google Scholar 

  80. Field CJ, Thomson CA, Van Aerde JE, et al. Lower proportion of CD45RO+ cells and deficient interleukin-10 production by formula-fed infants, compared with human-fed, is corrected with supplementation of long-chain polyunsaturated fatty acids. J Pediatr Gastroenterol Nutr. 2000;31:291–9.

    Article  CAS  PubMed  Google Scholar 

  81. Mazurak VC, Lien V, Field CJ, Goruk SD, Pramuk K, Clandinin MT. Long-chain polyunsaturated fat supplementation in children with low docosahexanoic acid intakes alters immune phenotypes compared with placebo. J Pediatr Gastroenterol Nutr. 2008;48:570–9.

    Article  Google Scholar 

  82. Meydani SN. Effect of (n-3) polyunsaturated fatty acids on cytokine production and their biologic function. Nutrition. 1996;12:S8–14.

    CAS  PubMed  Google Scholar 

  83. Saedisomeolia A, Wood LG, Garg ML, Gibson PG, Wark AB. Anti-inflammatory effects of long-chain n-3 PUFA in rhinovirus-infected cultured airway epithelial cells. Br J Nutr. 2009;101:533–40.

    Article  CAS  PubMed  Google Scholar 

  84. Vaisman N, Zaruk Y, Shirazi I, Kaysar N, Barak V. The effect of fish oil supplementation on cytokine production in children. Eur Cytokine Netw. 2005;16:194–8.

    CAS  PubMed  Google Scholar 

  85. Granot E, Jakobovich E, Rabinowitz R, Levy P, Schlesinger M. DHA supplementation during pregnancy and lactation affects infants’ cellular but not humoral immune response. Mediators Inflamm 2011:493925.

    Google Scholar 

  86. Burlingame B, Nishida C, Uauy R, Weisell R (eds). Fats and fatty acids in human nutrition (from the joint FAO/WHO expert consultation on fats and fatty acids in human nutrition). In: Annals of Nutrition and Metabolism, 2009; vol: 55, Karger AG, Basel.

    Google Scholar 

  87. Koletzko B, Lien E, Agostoni C, Bohles H, Campoy C, Cetin I, Decsi T, et al. The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: review of current knowledge and consensus recommendations. J Perinat Med. 2008;36:5–14.

    CAS  PubMed  Google Scholar 

  88. Michaelsen KF, Dewey KG, Perez-Exposito AB, Nurhasan M, Lauritzen L, Roos N. Food sources and intake of n-6 and n-3fatty acids in low-income countries with emphasis on infants, young children (6–12 months) and pregnant and lactating women. Mater Child Nutr 2011; Suppl 2:124–140.

    Google Scholar 

  89. Huffman SL, Harika RK, Eilander A, Osendarp SJ. Essential fats: how do they affect growth and development of infants and young children in developing countries? A literature review. Mater Child Nutr 2011; Suppl 3:44–65.

    Google Scholar 

  90. Kumwenda C, Dewey KG, Hemsworth J, Ashorn P, Maleta K, Haskell MJ. Lipid based nutrient supplements do not decrease breast milk intake of Malawian children. Am J Clin Nutr. 2014;99:617–23.

    Article  CAS  PubMed  Google Scholar 

  91. Briend A, Dewey KG. Complementary feeding: keeping the message simple. J Pediatr Gastroenterol Nutr. 2014;58:275.

    Article  PubMed  Google Scholar 

  92. Chaparro CM, Dewey KG. Use of lipid-based nutrient supplements (LNS) to improve the nutrient adequacy of general food distribution rations for vulnerable sub-groups in emergency settings. Matern Child Nutr. 2010;6(Suppl 1):1–69.

    Article  PubMed  Google Scholar 

  93. Yang Z, Huffman SL. Modeling linoleic acid and alpha linolenic acid requirements for infants and young children in developing countries. Mater Child Nutr. 2013;9:S72–7.

    Article  Google Scholar 

  94. Franco VH, Hotta JK, Jorge SM, Dos Santos JE. Plasma fatty acids in children with grade III protein malnutrition in its different forms: marasmus, marasmus kwashiorkor and kwashiorkor. J Trop Pediatr. 1999;45:71–5.

    Article  CAS  PubMed  Google Scholar 

  95. Decsi T, Koletzko B. Effects of protein-energy malnutrition and human immunodeficiency virus-1 infection on essential fatty acid metabolism in children. Nutrition. 2000;16:447–53.

    Article  CAS  PubMed  Google Scholar 

  96. Marin MC, Rey GE, Pedersoli LC, Rodrigo MA, Alaniz MJ. Dietary long-chain fatty acids and visual response in malnourished nursing infants. Prostagland Leukotrien Essent Fatty Acids. 2000;63:385–90.

    Article  CAS  Google Scholar 

  97. Racine RA, Deckelbaum RJ. Sources of very- long-chain unsaturated omega-3 fatty acids: eicosapentanoic acid and docosahexanoic acid. Current Opin Clin Nutr Metab Care. 2007;10:123–8.

    Article  CAS  Google Scholar 

  98. Gotz N, Bulbarello A, Konig-Grillo S, Dusterioh A, Volker M. Long-chain polyunsaturated omega-3 fatty acids in food development. Sight Life. 2013;27:12–7.

    Google Scholar 

  99. Marszalek JR, Lodish HF. Docosahexaenoic acid, fatty acid-interacting proteins, and neuronal function: breast milk and fish are good for you. Annu Rev Cell Dev Biol. 2005;21:633–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Granot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Granot, E., Deckelbaum, R.J. (2017). Essential Fatty Acids. In: de Pee, S., Taren, D., Bloem, M. (eds) Nutrition and Health in a Developing World . Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-43739-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43739-2_14

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-43737-8

  • Online ISBN: 978-3-319-43739-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics